| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(#6994)
In #6984 we optimized dropped blocks even if they had unreachable code. In #6988
that part was reverted, and blocks with unreachable code were ignored once more.
However, I realized that the check was not actually for unreachable code, but for
having an unreachable child, so it would miss things like this:
(block
(block
..
(br $somewhere) ;; unreachable type, but no unreachable code
)
)
But it is useful to merge such blocks: we don't need the inner block here.
To fix this, just run ReFinalize if we change anything, which will propagate
unreachability as needed. I think MergeBlocks was written before we had
that utility, so it didn't use it...
This is not only useful for itself but will unblock an EH optimization in a
later PR, that has code in this form. It also simplifies the code by removing
the hasUnreachableChild checks.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When I refactored the optimizeDroppedBlock logic in #6982, I didn't move the
unreachability check with that code, which was wrong. When that function
was called from another place in #6984, the fuzzer found an issue.
Diff without whitespace is smaller. This reverts almost all the test updates
from #6984 - those changes were on blocks with unreachable children.
The change was safe on them, but in general removing a block value in the
presence of unreachable code is tricky, so it's best to avoid it.
The testcase is a little bizarre, but it's the one the fuzzer found and I can't
find a way to generate a better one (other than to reduce it, which I did).
|
|
|
|
|
|
| |
Just call optimizeDroppedBlock from visitDrop to handle that.
Followup to #6982. This optimizes the new testcase added there. Some older
tests also improve.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The argument is the minimum benefit we must see for us to decide to optimize, e.g.
--monomorphize --pass-arg=monomorphize-min-benefit@50
When the minimum benefit is 50% then if we reduce the cost by 50% through
monomorphization then we optimize there. 95% would only optimize when we
remove almost all the cost, etc.
In practice I see 95% will actually tend to reduce code size overall, as while we add
monomorphized versions of functions, we only do so when we remove a lot of
work and size, and after inlining we gain benefits. However, 50% or even lower can
lead to better benchmark results, in return for larger code size, just like with
inlining. To be careful, the default is set to 95%.
Previously we optimized whenever we saw any benefit at all, which is the same
as requiring a minimum benefit of 0%. Old tests have the flag applied in this PR
to set that value, so they do not change.
|
|
We now consider a drop to be part of the call context: If we see
(drop
(call $foo)
)
(func $foo (result i32)
(i32.const 42)
)
Then we'd monomorphize to this:
(call $foo_1) ;; call the specialized function instead
(func $foo_1 ;; the specialized function returns nothing
(drop ;; the drop was moved into here
(i32.const 42)
)
)
With the drop now in the called function, we may be able to optimize out unused work.
Refactor a bit of code out of DAE that we can reuse here, into a new return-utils.h.
|