summaryrefslogtreecommitdiff
path: root/test/passes/precompute_all-features.txt
Commit message (Collapse)AuthorAgeFilesLines
* [Parser] Enable the new text parser by default (#6371)Thomas Lively2024-04-251-2/+2
| | | | | | | | | | | | | | The new text parser is faster and more standards compliant than the old text parser. Enable it by default in wasm-opt and update the tests to reflect the slightly different results it produces. Besides following the spec, the new parser differs from the old parser in that it: - Does not synthesize `loop` and `try` labels unnecessarily - Synthesizes different block names in some cases - Parses exports in a different order - Parses `nop`s instead of empty blocks for empty control flow arms - Does not support parsing Poppy IR - Produces different error messages - Cannot parse `pop` except as the first instruction inside a `catch`
* Do not repeat types names in text output (#6499)Thomas Lively2024-04-161-27/+27
| | | | | | | | | | For types that do not have explicit names, we generate index-based names in the printer. However, we did not previously ensure that the generated types were not already used as explicit names, so it was possible to print the same name for multiple types, which is not valid. Fix the problem by skipping indices that are already used as type names. Fixes #6492.
* Fix incorrect wat in tests (#6207)Thomas Lively2024-01-081-1/+1
| | | | | | | | | The new wat parser is much more strict than the legacy wat parser; the latter accepts all sorts of things that the spec does not allow. To ease an eventual transition to using the new wat parser by default, update the tests to use the standard text format in many places where they previously did not. We do not yet have a way to prevent new errors from being introduced into the test suite, but at least there will now be many fewer errors when it comes time to make the switch.
* Require `then` and `else` with `if` (#6201)Thomas Lively2024-01-041-16/+26
| | | | | | | | | | | | We previously supported (and primarily used) a non-standard text format for conditionals in which the condition, if-true expression, and if-false expression were all simply s-expression children of the `if` expression. The standard text format, however, requires the use of `then` and `else` forms to introduce the if-true and if-false arms of the conditional. Update the legacy text parser to require the standard format and update all tests to match. Update the printer to print the standard format as well. The .wast and .wat test inputs were mechanically updated with this script: https://gist.github.com/tlively/85ae7f01f92f772241ec994c840ccbb1
* Use the standard shared memory text format (#6200)Thomas Lively2024-01-031-1/+1
| | | | | Update the legacy text parser and all tests to use the standard text format for shared memories, e.g. `(memory $m 1 1 shared)` rather than `(memory $m (shared 1 1))`. Also remove support for non-standard in-line "data" or "segment" declarations. This change makes the tests more compatible with the new text parser, which only supports the standard format.
* Update `tuple.make` text format to include arity (#6169)Thomas Lively2023-12-121-1/+1
| | | | | | | | | | Previously, the number of tuple elements was inferred from the number of s-expression children of the `tuple.make` expression, but that scheme would not work in the new wat parser, where s-expressions are optional and cannot be semantically meaningful. Update the text format to take the number of tuple elements (i.e. the tuple arity) as an immediate. This new format will be able to be implemented in the new parser as follow-on work.
* Simplify and consolidate type printing (#5816)Thomas Lively2023-08-241-27/+27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When printing Binaryen IR, we previously generated names for unnamed heap types based on their structure. This was useful for seeing the structure of simple types at a glance without having to separately go look up their definitions, but it also had two problems: 1. The same name could be generated for multiple types. The generated names did not take into account rec group structure or finality, so types that differed only in these properties would have the same name. Also, generated type names were limited in length, so very large types that shared only some structure could also end up with the same names. Using the same name for multiple types produces incorrect and unparsable output. 2. The generated names were not useful beyond the most trivial examples. Even with length limits, names for nontrivial types were extremely long and visually noisy, which made reading disassembled real-world code more challenging. Fix these problems by emitting simple indexed names for unnamed heap types instead. This regresses readability for very simple examples, but the trade off is worth it. This change also reduces the number of type printing systems we have by one. Previously we had the system in Print.cpp, but we had another, more general and extensible system in wasm-type-printing.h and wasm-type.cpp as well. Remove the old type printing system from Print.cpp and replace it with a much smaller use of the new system. This requires significant refactoring of Print.cpp so that PrintExpressionContents object now holds a reference to a parent PrintSExpression object that holds the type name state. This diff is very large because almost every test output changed slightly. To minimize the diff and ease review, change the type printer in wasm-type.cpp to behave the same as the old type printer in Print.cpp except for the differences in name generation. These changes will be reverted in much smaller PRs in the future to generally improve how types are printed.
* Use Names instead of indices to identify segments (#5618)Thomas Lively2023-04-041-3/+3
| | | | | | | | | | All top-level Module elements are identified and referred to by Name, but for historical reasons element and data segments were referred to by index instead. Fix this inconsistency by using Names to refer to segments from expressions that use them. Also parse and print segment names like we do for other elements. The C API is partially converted to use names instead of indices, but there are still many functions that refer to data segments by index. Finishing the conversion can be done in the future once it becomes necessary.
* Change the default type system to isorecursive (#5239)Thomas Lively2022-11-231-21/+21
| | | | | | | | | | This makes Binaryen's default type system match the WasmGC spec. Update the way type definitions without supertypes are printed to reduce the output diff for MVP tests that do not involve WasmGC. Also port some type-builder.cpp tests from test/example to test/gtest since they needed to be rewritten to work with isorecursive type anyway. A follow-on PR will remove equirecursive types completely.
* Implement bottom heap types (#5115)Thomas Lively2022-10-071-6/+6
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | These types, `none`, `nofunc`, and `noextern` are uninhabited, so references to them can only possibly be null. To simplify the IR and increase type precision, introduce new invariants that all `ref.null` instructions must be typed with one of these new bottom types and that `Literals` have a bottom type iff they represent null values. These new invariants requires several additional changes. First, it is now possible that the `ref` or `target` child of a `StructGet`, `StructSet`, `ArrayGet`, `ArraySet`, or `CallRef` instruction has a bottom reference type, so it is not possible to determine what heap type annotation to emit in the binary or text formats. (The bottom types are not valid type annotations since they do not have indices in the type section.) To fix that problem, update the printer and binary emitter to emit unreachables instead of the instruction with undetermined type annotation. This is a valid transformation because the only possible value that could flow into those instructions in that case is null, and all of those instructions trap on nulls. That fix uncovered a latent bug in the binary parser in which new unreachables within unreachable code were handled incorrectly. This bug was not previously found by the fuzzer because we generally stop emitting code once we encounter an instruction with type `unreachable`. Now, however, it is possible to emit an `unreachable` for instructions that do not have type `unreachable` (but are known to trap at runtime), so we will continue emitting code. See the new test/lit/parse-double-unreachable.wast for details. Update other miscellaneous code that creates `RefNull` expressions and null `Literals` to maintain the new invariants as well.
* Avoid adding new unneeded names to blocks in text roundtripping (#4943)Alon Zakai2022-08-221-1/+1
| | | | | | | | | | | | | | | | | | | | | | | Previously the wat parser would turn this input: (block (nop) ) into something like this: (block $block17 (nop) ) It just added a name all the time, in case the block is referred to by an index later even though it doesn't have a name. This PR makes us rountrip more precisely by not adding such names: if there was no name before, and there is no break by index, then do not add a name. In addition, this will be useful for non-nullable locals since whether a block has a name or not matters there. Like #4912, this makes us more regular in our usage of block names.
* Restore the `extern` heap type (#4898)Thomas Lively2022-08-171-6/+6
| | | | | | | The GC proposal has split `any` and `extern` back into two separate types, so reintroduce `HeapType::ext` to represent `extern`. Before it was originally removed in #4633, externref was a subtype of anyref, but now it is not. Now that we have separate heaptype type hierarchies, make `HeapType::getLeastUpperBound` fallible as well.
* Remove externref (#4633)Thomas Lively2022-05-041-6/+6
| | | | | | Remove `Type::externref` and `HeapType::ext` and replace them with uses of anyref and any, respectively, now that we have unified these types in the GC proposal. For backwards compatibility, continue to parse `extern` and `externref` and maintain their relevant C API functions.
* [Precompute][SIMD] Enable constant folding for simd (#4381)Max Graey2021-12-131-12/+3
|
* Revert "Partially fix Precompute on SIMD (#3983)" (#4002)Alon Zakai2021-07-191-8/+1
| | | | | | | | | | | | | This reverts commit b68691e826a46d1b03b27c552b1f5b7f51f92665. Instead of applying the workaround to avoid precomputing SIMD in more places, which prevents things we could optimize before, we should probably focus on making the workaround not needed - that is, implement full SIMD support in the intepreter (the reason for that PR), and the other TODO in the comment here, // Until engines implement v128.const and we have SIMD-aware optimizations // that can break large v128.const instructions into smaller consts and // splats, do not try to precompute v128 expressions.
* Partially fix Precompute on SIMD (#3983)Alon Zakai2021-07-131-1/+8
| | | We had the logic in only one place.
* Remove Type ordering (#3793)Thomas Lively2021-05-181-1/+1
| | | | | | | | | As found in #3682, the current implementation of type ordering is not correct, and although the immediate issue would be easy to fix, I don't think the current intended comparison algorithm is correct in the first place. Rather than try to switch to using a correct algorithm (which I am not sure I know how to implement, although I have an idea) this PR removes Type ordering entirely. In places that used Type ordering with std::set or std::map because they require deterministic iteration order, this PR uses InsertOrdered{Set,Map} instead.
* Reorder global definitions in Print pass (#3770)Abbas Mashayekh2021-04-021-2/+2
| | | | This is needed to make sure globals are printed before element segments, where `global.get` can appear both as offset and an expression.
* Remove passive keyword from data segment parser (#3757)Abbas Mashayekh2021-03-301-1/+1
| | | | | | | | The passive keyword has been removed from spec's text format, and now any data segment that doesn't have an offset is considered as passive. This PR remove that from both parser and the Print pass, plus all tests that used that syntax. Fixes #2339
* Emit "elem declare" for functions that need it (#3653)Alon Zakai2021-03-041-0/+1
| | | | | | | This adds support for reading (elem declare func $foo .. in the text and binary formats. We can simply ignore it: we don't need to represent it in IR, rather we find what needs to be declared when writing. That part takes a little more work, for which this adds a shared helper function.
* Properly use text format type names in printing (#3591)Alon Zakai2021-02-231-1/+1
| | | | | | | | | | | | | | | | | | | This adds a TypeNames entry to modules, which can store names for types. So far this PR uses that to store type names from text format. Future PRs will add support for field names and for the binary format. (Field names are added to wasm.h here to see if we agree on this direction.) Most of the work here is threading a module through the various functions in Print.cpp. This keeps the module optional, so that we can still print an expression independently of a module, which has always been the case, and which I think we should keep (but, if a module was mandatory perhaps this would be a little simpler, and could be refactored into a form that depends on that). 99% of this diff are test updates, since almost all our tests use the text format, and many of them specify a type name but we used to ignore it. This is a step towards a proper solution for #3589
* Remove exnref and br_on_exn (#3505)Heejin Ahn2021-01-221-10/+0
| | | This removes `exnref` type and `br_on_exn` instruction.
* Intern HeapTypes and clean up types code (#3428)Thomas Lively2020-12-071-1/+1
| | | | | | | | | Interns HeapTypes using the same patterns and utilities already used to intern Types. This allows HeapTypes to efficiently be compared for equality and hashed, which may be important for very large struct types in the future. This change also has the benefit of increasing symmetry between the APIs of Type and HeapType, which will make the developer experience more consistent. Finally, this change will make TypeBuilder (#3418) much simpler because it will no longer have to introduce TypeInfo variants to refer to HeapTypes indirectly.
* Update reference types (#3084)Daniel Wirtz2020-09-091-7/+7
| | | | | | | Align with the current state of the reference types proposal: * Remove `nullref` * Remove `externref` and `funcref` subtyping * A `Literal` of a nullable reference type can now represent `null` (previously was type `nullref`) * Update the tests and temporarily comment out those tests relying on subtyping
* Fix br_on_exn handling in ReFinalize (#2854)Heejin Ahn2020-05-151-0/+10
| | | | | | | | | | | | In `ReFinalize`'s branch handling, `updateBreakValueType` is supposed to be executed only when the branch itself is not replaced with its argument (because it is guaranteed not to be taken). Also this moves `visitBrOnExn` from `RuntimeExpressionRunner` to its base class `ExpressionRunner`, because it does not depend on anything on the runtime instance to work. This is effectively NFC for now because `visitTry` is still only implemented only in `RuntimeExpressionRunner` because it relies on multivalue handling of it, and without it we cannot create a valid exception `Literal`.
* Refactor expression runner so it can be used via the C and JS APIs (#2702)Daniel Wirtz2020-04-201-0/+3
| | | | | | | Refactors most of the precompute pass's expression runner into its base class so it can also be used via the C and JS APIs. Also adds the option to populate the runner with known constant local and global values upfront, and remembers assigned intermediate values as well as traversing into functions if requested.
* Fix reuse of constant nodes in Precompute (#2764)Heejin Ahn2020-04-141-0/+50
| | | | | | | | | | Previously we tried to reuse `Const` node if a precomputed value is a constant node. But now we have two more kinds of constant node (`RefNull` and `RefFunc`), so we shouldn't reuse them interchangeably, meaning we shouldn't try to reuse a `Const` node when the value at hand is a `RefNull`. This correctly checks the type of node and tries to reuse only if the types of nodes match. Fixes #2759.
* Remove function index printing (#2742)Thomas Lively2020-04-091-19/+19
| | | | | | | | `BinaryIndexes` was only used in two places (Print.cpp and wasm-binary.h), so it didn't seem to be a great fit for module-utils.h. This change moves it to wasm-binary.h and removes its usage in Print.cpp. This means that function indexes are no longer printed, but those were of limited utility and were the source of annoying noise when updating tests, anyway.
* Update Precompute to handle tuples (#2687)Thomas Lively2020-03-101-1/+9
| | | | | | This involves replacing `Literal::makeZero` with `Literal::makeZeroes` and `Literal::makeSingleZero` and updating `isConstantExpression` to handle constant tuples as well. Also makes `Literals` its own struct and adds convenience methods on it.
* Add support for reference types proposal (#2451)Heejin Ahn2019-12-301-0/+4
| | | | | | | | | | | | This adds support for the reference type proposal. This includes support for all reference types (`anyref`, `funcref`(=`anyfunc`), and `nullref`) and four new instructions: `ref.null`, `ref.is_null`, `ref.func`, and new typed `select`. This also adds subtype relationship support between reference types. This does not include table instructions yet. This also does not include wasm2js support. Fixes #2444 and fixes #2447.
* Remove FunctionType (#2510)Thomas Lively2019-12-111-22/+22
| | | | | | | | | | | | | | | | | Function signatures were previously redundantly stored on Function objects as well as on FunctionType objects. These two signature representations had to always be kept in sync, which was error-prone and needlessly complex. This PR takes advantage of the new ability of Type to represent multiple value types by consolidating function signatures as a pair of Types (params and results) stored on the Function object. Since there are no longer module-global named function types, significant changes had to be made to the printing and emitting of function types, as well as their parsing and manipulation in various passes. The C and JS APIs and their tests also had to be updated to remove named function types.
* Refactor type and function parsing (#2143)Heejin Ahn2019-05-241-20/+20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Refactored & fixed typeuse parsing rules so now the rules more closely follow the spec. There have been multiple parsing rules that were different in subtle ways, which are supposed to be the same according to the spec. - Duplicate types, i.e., types with the same signature, in the type section are allowed as long as they don't have the same given name. If a name is given, we use it; if type name is not given, we generate one in the form of `$FUNCSIG$` + signature string. If the same generated name already exists in the type section, we append `_` at the end. This causes most of the changes in the autogenerated type names in test outputs. - A typeuse has to be in the order of (type) -> (param) -> (result), if more than one of them exist. In case of function definitions, (local) has to be after all of these. Fixed some test cases that violate this rule. - When only (param)/(result) are given, its type will be the type with the smallest existing type index whose parameter and result are the same. If there's no such type, a new type will be created and inserted. - Added a test case `duplicate_types.wast` to test type namings for duplicate types. - Refactored `parseFunction` function. - Add more overrides to helper functions: `getSig` and `ensureFunctionType`.
* Do not precompute bulk memory operations (#2023)Thomas Lively2019-04-171-0/+252
Fixes #1984