| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(select
(foo
(X)
)
(foo
(Y)
)
(condition)
)
=>
(foo
(select
(X)
(Y)
(condition)
)
)
To make this simpler, refactor optimizeTernary to be templated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements emscripten-core/emscripten#13744
Inlining functions with a single use allows us to remove the function afterward.
That looks highly beneficial, shrinking every single benchmark in emscripten's
benchmark suite, by an average of 2% on the macrobenchmarks and 3.5% on
all of them. Speed also improves, although mostly on the microbenchmarks so
that might be less realistic.
There may be a slight downside to startup time due to emitting larger functions,
but given the baseline compilers in VMs these days it seems worth it, as the
delay would be just to get to the upper tier. On the benchmark suite the risk
seems low.
See more details in the PR above.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
Also, format the asmFunc call to make it more readable in the ES6
modules case.
|
| |
|
|
|
| |
Add floating point Eq and Ne operators to Properties::isSymmetric. Also treat additional float ops as symmetric specifically in OptimizeInstructions when their operands are known to be non-NaN.
|
|
|
|
|
|
|
|
|
|
|
| |
i64 reinterprets were lowered in the i64 pass, and i32s at the very end, in
wasm2js itself. This could break since in between the i64 pass and wasm2js
we run optimizations, and the optimizer was not aware of what we lower
the i32 reinterprets to - calls to use scratch memory. Those calls have a
side effect of altering scratch memory. The optimizer just saw an i32
reinterpret, and moved it across the i64 reinterpret's scratch memory calls.
This makes 32-bit reinterprets use separate scratch memory from 64-bit ones,
which means they can never interfere with each other.
|
|
|
|
|
|
|
|
|
|
|
|
| |
isBinary was used where we should only accept
a signed binary, as removing the | 0 from an unsigned
value may be incorrect.
This does regress a few small things (as can be seen
in the diff). If it's important we can add more sophisticated
optimizations here, perhaps like an assumption that the
signedness of a local never matters.
Fixes emscripten-core/emscripten#10173
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This optimizes stuff like
(global.set $x (i32.const 123))
(global.get $x)
into
(global.set $x (i32.const 123))
(i32.const 123)
This doesn't help much with LLVM output as it's rare to use globals (except for the stack pointer, and that's already well optimized), but it may help on general wasm. It can also help with Asyncify that does use globals extensively.
|
|
|
| |
We don't ever emit "use asm" anymore, so this similar annotation is not really useful, it just increases size.
|
| |
|
|
|
| |
This happens on e.g. an i32 load of a constant offset, then we have constant >> 2.
|
|
|
| |
This helps quite a lot on wasm2js.
|
|
|
|
| |
When loading a boolean, prefer the signed heap (which is more commonly used, and may be faster).
We never use HEAPU32 (HEAP32 is always enough), just remove it.
|
|
|
|
|
| |
We don't actually try to emit traps for loads, stores, invalid float to ints, etc., so when optimizing we may as well do so under the assumption those traps do not exist.
This lets us emit nice code for a select whose operands are loads, for example - otherwise, the values seem to have side effects.
|
|
|
| |
In particular, coalesce-locals is useful even if closure is run later (apparently it finds stuff closure can't).
|
|
We flatten for the i64 lowering etc. passes, and it is worth optimizing afterwards, to clean up stuff they created. That is run if the user ran wasm2js with an optimization level (like wasm2js -O3).
Split the test files to check both optimized and unoptimized code.
|