| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(#5989)
Fixes #5983: The testcase from there is used here in a new testcase
remove-unused-brs_levels in which we check if we are willing to unconditionally
do a division operation. Turning an if with an arm that does a division into a
select, which always does the division, is almost 5x slower, so we should probably
be extremely careful about doing that.
I took some measurements and have some suggestions for changes in this PR:
* Raise the cost of div/rem to what I measure on my machine, which is 5x slower
than an add, or worse.
* For some reason we added the if arms rather than take the max of them, so
fix that. This does not help the issue, but was confusing.
* Adjust TooCostlyToRunUnconditionally in the pass from 9 to 8 (this helps
balance the last point).
* Use half that value when not optimizing for size. That is, we allow only 4 extra
unconditional work normally, and 8 in -Os, and when -Oz then we allow any
extra amount.
Aside from the new testcases, some existing ones changed. They all appear to
change in a reasonable way, to me.
We should perhaps go even further than this, and not even run a division
unconditionally in -Os, but I wasn't sure it makes sense to go that far as
other benchmarks may be affected. For now, this makes the benchmark in
#5983 run at full speed in -O3 or -Os, and it remains slow in -Oz. The
modified version of the benchmark that only divides in the if (no other
operations) is still fast in -O3, but it become slow in -Os as we do turn that
if into a select (but again, I didn't want to go that far as to overfit on that one
benchmark).
|
|
|
|
|
|
|
| |
As noted in #4739, legacy language emitting nan and infinity
exists, with the observation that it can be removed once asm.js
is no longer used and global NaN is available.
This commit removes that asm.js-specific code accordingly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
possible (#5194)
(local.set $refined (cast (local.get $plain)))
..
.. (local.get $plain) .. ;; we can change this to read from $refined
By using the more refined type we may be able to eliminate casts later.
To do this, look at the fallthrough value (so we can look through a cast or a block
value - this is the reason for the small wasm2js improvements in tests), and also
extend the code that picks which local index to read to look at types (previously
we just ignored any pairs of locals with different types).
|
|
|
|
|
|
|
|
| |
The previous code was making emscripten-specific assumptions about
imports basically all coming from the `env` module.
I can't find a way to make this backwards compatible so may do a
combined roll with the emscripten-side change:
https://github.com/emscripten-core/emscripten/pull/17806
|
|
|
|
|
|
| |
This import was being injected and then used to implement trapping.
Rather than injecting an import that doesn't exist in the original
module we instead use the existing mechanism to implement this as
an internal helper.
|
|
|
|
|
|
|
|
|
|
|
| |
Previously we were assuming asmLibraryArg which is what emscripten
passes as the `env` import object but using this method is more
flexible and should allow wasm2js to work with import that are
not all form a single object.
The slight size increase here is just temporary until emscripten
gets updated.
See https://github.com/emscripten-core/emscripten/pull/17737
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(select
(foo
(X)
)
(foo
(Y)
)
(condition)
)
=>
(foo
(select
(X)
(Y)
(condition)
)
)
To make this simpler, refactor optimizeTernary to be templated.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This implements emscripten-core/emscripten#13744
Inlining functions with a single use allows us to remove the function afterward.
That looks highly beneficial, shrinking every single benchmark in emscripten's
benchmark suite, by an average of 2% on the macrobenchmarks and 3.5% on
all of them. Speed also improves, although mostly on the microbenchmarks so
that might be less realistic.
There may be a slight downside to startup time due to emitting larger functions,
but given the baseline compilers in VMs these days it seems worth it, as the
delay would be just to get to the upper tier. On the benchmark suite the risk
seems low.
See more details in the PR above.
|
| |
|
| |
|
| |
|
|
|
|
|
| |
Also, format the asmFunc call to make it more readable in the ES6
modules case.
|
| |
|
|
|
| |
Add floating point Eq and Ne operators to Properties::isSymmetric. Also treat additional float ops as symmetric specifically in OptimizeInstructions when their operands are known to be non-NaN.
|
|
|
|
|
|
|
|
|
|
|
| |
i64 reinterprets were lowered in the i64 pass, and i32s at the very end, in
wasm2js itself. This could break since in between the i64 pass and wasm2js
we run optimizations, and the optimizer was not aware of what we lower
the i32 reinterprets to - calls to use scratch memory. Those calls have a
side effect of altering scratch memory. The optimizer just saw an i32
reinterpret, and moved it across the i64 reinterpret's scratch memory calls.
This makes 32-bit reinterprets use separate scratch memory from 64-bit ones,
which means they can never interfere with each other.
|
|
|
|
|
|
|
|
|
|
|
|
| |
isBinary was used where we should only accept
a signed binary, as removing the | 0 from an unsigned
value may be incorrect.
This does regress a few small things (as can be seen
in the diff). If it's important we can add more sophisticated
optimizations here, perhaps like an assumption that the
signedness of a local never matters.
Fixes emscripten-core/emscripten#10173
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This optimizes stuff like
(global.set $x (i32.const 123))
(global.get $x)
into
(global.set $x (i32.const 123))
(i32.const 123)
This doesn't help much with LLVM output as it's rare to use globals (except for the stack pointer, and that's already well optimized), but it may help on general wasm. It can also help with Asyncify that does use globals extensively.
|
|
|
| |
We don't ever emit "use asm" anymore, so this similar annotation is not really useful, it just increases size.
|
| |
|
|
|
| |
This happens on e.g. an i32 load of a constant offset, then we have constant >> 2.
|
|
|
| |
This helps quite a lot on wasm2js.
|
|
|
|
| |
When loading a boolean, prefer the signed heap (which is more commonly used, and may be faster).
We never use HEAPU32 (HEAP32 is always enough), just remove it.
|
|
|
|
|
| |
We don't actually try to emit traps for loads, stores, invalid float to ints, etc., so when optimizing we may as well do so under the assumption those traps do not exist.
This lets us emit nice code for a select whose operands are loads, for example - otherwise, the values seem to have side effects.
|
|
|
| |
In particular, coalesce-locals is useful even if closure is run later (apparently it finds stuff closure can't).
|
|
We flatten for the i64 lowering etc. passes, and it is worth optimizing afterwards, to clean up stuff they created. That is run if the user ran wasm2js with an optimization level (like wasm2js -O3).
Split the test files to check both optimized and unoptimized code.
|