summaryrefslogtreecommitdiff
path: root/third_party/llvm-project/include/llvm/ObjectYAML/DWARFEmitter.h
Commit message (Collapse)AuthorAgeFilesLines
* DWARF: Update DW_AT_stmt_list which are offsets into the debug_line section ↵Alon Zakai2020-01-281-0/+4
| | | | | | | | (#2628) The debug_line section is the only one in which we change sizes and so must update offsets. It turns out that there are such offsets, DW_AT_stmt_list, so without updating them we can't handle multi-unit dwarf files.
* DWARF: Update .debug_loc (#2616)Alon Zakai2020-01-231-0/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | Add support for that section to the YAML layer, and add code to update it. The updating is slightly tricky - unlike .debug_ranges, the size of entries is not fixed. So we can't just skip entries, as the end marker is smaller than a normal entry. Instead, replace now-invalid segments with (1, 1) which is of size 0 and so should be ignored by the debugger (we can't use (0, 0) as that would be an end marker, and (-1, *) is the special base marker). In the future we probably do want to do this in a more sophisticated manner, completely rewriting the indexes into the section as well. For now though this should be enough for when binaryen does not optimize (as we don't move/reorder anything). Note that this doesn't update the location description (like where on the wasm expression stack the value is). Again, that is correct for when binaryen doesn't optimize, but for fully optimized builds we would need to track things (which would be hard!). Also clean up some code that uses "Extra" instead of "Delimiter" that was missed before, and shorten some unnecessarily long names.
* DWARF parsing and writing support using LLVM (#2520)Alon Zakai2019-12-191-0/+50
This imports LLVM code for DWARF handling. That code has the Apache 2 license like us. It's also the same code used to emit DWARF in the common toolchain, so it seems like a safe choice. This adds two passes: --dwarfdump which runs the same code LLVM runs for llvm-dwarfdump. This shows we can parse it ok, and will be useful for debugging. And --dwarfupdate writes out the DWARF sections (unchanged from what we read, so it just roundtrips - for updating we need #2515). This puts LLVM in thirdparty which is added here. All the LLVM code is behind USE_LLVM_DWARF, which is on by default, but off in JS for now, as it increases code size by 20%. This current approach imports the LLVM files directly. This is not how they are intended to be used, so it required a bunch of local changes - more than I expected actually, for the platform-specific stuff. For now this seems to work, so it may be good enough, but in the long term we may want to switch to linking against libllvm. A downside to doing that is that binaryen users would need to have an LLVM build, and even in the waterfall builds we'd have a problem - while we ship LLVM there anyhow, we constantly update it, which means that binaryen would need to be on latest llvm all the time too (which otherwise, given DWARF is quite stable, we might not need to constantly update). An even larger issue is that as I did this work I learned about how DWARF works in LLVM, and while the reading code is easy to reuse, the writing code is trickier. The main code path is heavily integrated with the MC layer, which we don't have - we might want to create a "fake MC layer" for that, but it sounds hard. Instead, there is the YAML path which is used mostly for testing, and which can convert DWARF to and from YAML and from binary. Using the non-YAML parts there, we can convert binary DWARF to the YAML layer's nice Info data, then convert that to binary. This works, however, this is not the path LLVM uses normally, and it supports only some basic DWARF sections - I had to add ranges support, in fact. So if we need more complex things, we may end up needing to use the MC layer approach, or consider some other DWARF library. However, hopefully that should not affect the core binaryen code which just calls a library for DWARF stuff. Helps #2400