1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
/*
* Copyright 2023 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef wasm_analysis_lattices_stack_h
#define wasm_analysis_lattices_stack_h
#include <deque>
#include <iostream>
#include <optional>
#include "../lattice.h"
namespace wasm::analysis {
// Note that in comments, bottom is left and top is right.
// This lattice models the behavior of a stack of values. The lattice is
// templated on L, which is a lattice which can model some abstract property of
// a value on the stack. The StackLattice itself can push or pop abstract values
// and access the top of stack.
//
// The goal here is not to operate directly on the stacks. Rather, the
// StackLattice organizes the L elements in an efficient and natural way which
// reflects the behavior of the wasm value stack. Transfer functions will
// operate on stack elements individually. The stack itself is an intermediate
// structure.
//
// Comparisons are done elementwise, starting from the top of the stack. For
// instance, to compare the stacks [c,b,a], [b',a'], we first compare a with a',
// then b with b'. Then we make note of the fact that the first stack is higher,
// with an extra c element at the bottom.
//
// Similarly, least upper bounds are done elementwise starting from the top. For
// instance LUB([b, a], [b', a']) = [LUB(b, b'), LUB(a, a')], while LUB([c, b,
// a], [b', a']) = [c, LUB(b, b'), LUB(a, a')].
//
// These are done from the top of the stack because this addresses the problem
// of scopes. For instance, if we have the following program
//
// i32.const 0
// i32.const 0
// if (result i32)
// i32.const 1
// else
// i32.const 2
// end
// i32.add
//
// Before the if-else control flow, we have [] -> [i32], and after the if-else
// control flow we have [i32, i32] -> [i32]. However, inside each of the if and
// else conditions, we have [] -> [i32], because they cannot see the stack
// elements pushed by the enclosing scope. In effect in the if and else, we have
// a stack [i32 | i32], where we can't "see" left of the |.
//
// Conceptually, we can also imagine each stack [b, a] as being implicitly an
// infinite stack of the form (bottom) [... BOTTOM, BOTTOM, b, a] (top). This
// makes stacks in different scopes comparable, with only their contents
// different. Stacks in more "inner" scopes simply have more bottom elements in
// the bottom portion.
//
// A common application for this lattice is modeling the Wasm value stack. For
// instance, one could use this to analyze the maximum bit size of values on the
// Wasm value stack. When new actual values are pushed or popped off the Wasm
// value stack by instructions, the same is done to abstract lattice elements in
// the StackLattice.
//
// When two control flows are joined together, one with stack [b, a] and another
// with stack [b, a'], we can take the least upper bound to produce a stack [b,
// LUB(a, a')], where LUB(a, a') takes the maximum of the two maximum bit
// values.
template<Lattice L> class StackLattice {
L& lattice;
public:
StackLattice(L& lattice) : lattice(lattice) {}
class Element {
// The top lattice can be imagined as an infinitely high stack of top
// elements, which is unreachable in most cases. In practice, we make the
// stack an optional, and we represent top with the absence of a stack.
std::optional<std::deque<typename L::Element>> stackValue =
std::deque<typename L::Element>();
public:
bool isTop() const { return !stackValue.has_value(); }
bool isBottom() const {
return stackValue.has_value() && stackValue->empty();
}
void setToTop() { stackValue.reset(); }
typename L::Element& stackTop() { return stackValue->back(); }
void push(typename L::Element&& element) {
// We can imagine each stack [b, a] as being implicitly an infinite stack
// of the form (bottom) [... BOTTOM, BOTTOM, b, a] (top). In that case,
// adding a bottom element to an empty stack changes nothing, so we don't
// actually add a bottom.
if (stackValue.has_value() &&
(!stackValue->empty() || !element.isBottom())) {
stackValue->push_back(std::move(element));
}
}
void push(const typename L::Element& element) {
if (stackValue.has_value() &&
(!stackValue->empty() || !element.isBottom())) {
stackValue->push_back(std::move(element));
}
}
typename L::Element pop() {
typename L::Element value = stackValue->back();
stackValue->pop_back();
return value;
}
// When taking the LUB, we take the LUBs of the elements of each stack
// starting from the top of the stack. So, LUB([b, a], [b', a']) is
// [LUB(b, b'), LUB(a, a')]. If one stack is higher than the other,
// the bottom of the higher stack will be kept, while the LUB of the
// corresponding tops of each stack will be taken. For instance,
// LUB([d, c, b, a], [b', a']) is [d, c, LUB(b, b'), LUB(a, a')].
//
// We start at the top because it makes taking the LUB of stacks with
// different scope easier, as mentioned at the top of the file. It also
// fits with the conception of the stack starting at the top and having
// an infinite bottom, which allows stacks of different height and scope
// to be easily joined.
bool makeLeastUpperBound(const Element& other) noexcept {
// Top element cases, since top elements don't actually have the stack
// value.
if (isTop()) {
return false;
} else if (other.isTop()) {
stackValue.reset();
return true;
}
bool modified = false;
// Merge the shorter height stack with the top of the longer height
// stack. We do this by taking the LUB of each pair of matching elements
// from both stacks.
auto otherIt = other.stackValue->crbegin();
auto thisIt = stackValue->rbegin();
for (;
thisIt != stackValue->rend() && otherIt != other.stackValue->crend();
++thisIt, ++otherIt) {
modified |= thisIt->makeLeastUpperBound(*otherIt);
}
// If the other stack is higher, append the bottom of it to our current
// stack.
for (; otherIt != other.stackValue->crend(); ++otherIt) {
stackValue->push_front(*otherIt);
modified = true;
}
return modified;
}
void print(std::ostream& os) {
if (isTop()) {
os << "TOP STACK" << std::endl;
return;
}
for (auto iter = stackValue->rbegin(); iter != stackValue->rend();
++iter) {
iter->print(os);
os << std::endl;
}
}
friend StackLattice;
};
// Like in computing the LUB, we compare the tops of the two stacks, as it
// handles the case of stacks of different scopes. Comparisons are done by
// element starting from the top.
//
// If the left stack is higher, and left top >= right top, then we say
// that left stack > right stack. If the left stack is lower and the left top
// >= right top or if the left stack is higher and the right top > left top or
// they are unrelated, then there is no relation. Same applies for the reverse
// relationship.
LatticeComparison compare(const Element& left,
const Element& right) const noexcept {
// Handle cases where there are top elements.
if (left.isTop()) {
if (right.isTop()) {
return LatticeComparison::EQUAL;
} else {
return LatticeComparison::GREATER;
}
} else if (right.isTop()) {
return LatticeComparison::LESS;
}
bool hasLess = false;
bool hasGreater = false;
// Check the tops of both stacks which match (i.e. are within the heights
// of both stacks). If there is a pair which is not related, the stacks
// cannot be related.
for (auto leftIt = left.stackValue->crbegin(),
rightIt = right.stackValue->crbegin();
leftIt != left.stackValue->crend() &&
rightIt != right.stackValue->crend();
++leftIt, ++rightIt) {
LatticeComparison currComparison = lattice.compare(*leftIt, *rightIt);
switch (currComparison) {
case LatticeComparison::NO_RELATION:
return LatticeComparison::NO_RELATION;
case LatticeComparison::LESS:
hasLess = true;
break;
case LatticeComparison::GREATER:
hasGreater = true;
break;
default:
break;
}
}
// Check cases for when the stacks have unequal. As a rule, if a stack
// is higher, it is greater than the other stack, but if and only if
// when comparing their matching top portions the top portion of the
// higher stack is also >= the top portion of the shorter stack.
if (left.stackValue->size() > right.stackValue->size()) {
hasGreater = true;
} else if (right.stackValue->size() > left.stackValue->size()) {
hasLess = true;
}
if (hasLess && !hasGreater) {
return LatticeComparison::LESS;
} else if (hasGreater && !hasLess) {
return LatticeComparison::GREATER;
} else if (hasLess && hasGreater) {
// Contradiction, and therefore must be unrelated.
return LatticeComparison::NO_RELATION;
} else {
return LatticeComparison::EQUAL;
}
}
Element getBottom() const noexcept { return Element{}; }
};
} // namespace wasm::analysis
#endif // wasm_analysis_lattices_stack_h
|