1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
|
/*
* Copyright 2015 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// asm.js-to-WebAssembly translator. Uses the Emscripten optimizer
// infrastructure.
//
#ifndef wasm_asm2wasm_h
#define wasm_asm2wasm_h
#include "wasm.h"
#include "emscripten-optimizer/optimizer.h"
#include "mixed_arena.h"
#include "shared-constants.h"
#include "asm_v_wasm.h"
#include "pass.h"
#include "ast_utils.h"
#include "wasm-builder.h"
namespace wasm {
using namespace cashew;
// Utilities
static void abort_on(std::string why, Ref element) {
std::cerr << why << ' ';
element->stringify(std::cerr);
std::cerr << '\n';
abort();
}
static void abort_on(std::string why, IString element) {
std::cerr << why << ' ' << element.str << '\n';
abort();
}
// useful when we need to see our parent, in an asm.js expression stack
struct AstStackHelper {
static std::vector<Ref> astStack;
AstStackHelper(Ref curr) {
astStack.push_back(curr);
}
~AstStackHelper() {
astStack.pop_back();
}
Ref getParent() {
if (astStack.size() >= 2) {
return astStack[astStack.size()-2];
} else {
return Ref();
}
}
};
std::vector<Ref> AstStackHelper::astStack;
//
// Asm2WasmPreProcessor - does some initial parsing/processing
// of asm.js code.
//
struct Asm2WasmPreProcessor {
bool memoryGrowth = false;
char* process(char* input) {
// emcc --separate-asm modules can look like
//
// Module["asm"] = (function(global, env, buffer) {
// ..
// });
//
// we need to clean that up.
if (*input == 'M') {
size_t num = strlen(input);
while (*input != 'f') {
input++;
num--;
}
char *end = input + num - 1;
while (*end != '}') {
*end = 0;
end--;
}
}
// asm.js memory growth uses a quite elaborate pattern. Instead of parsing and
// matching it, we do a simpler detection on emscripten's asm.js output format
const char* START_FUNCS = "// EMSCRIPTEN_START_FUNCS";
char *marker = strstr(input, START_FUNCS);
if (marker) {
*marker = 0; // look for memory growth code just up to here
char *growthSign = strstr(input, "return true;"); // this can only show up in growth code, as normal asm.js lacks "true"
if (growthSign) {
memoryGrowth = true;
// clean out this function, we don't need it
char *growthFuncStart = strstr(input, "function ");
assert(strstr(growthFuncStart + 1, "function ") == 0); // should be only this one function in this area, so no confusion for us
char *growthFuncEnd = strchr(growthSign, '}');
assert(growthFuncEnd > growthFuncStart + 5);
growthFuncStart[0] = '/';
growthFuncStart[1] = '*';
growthFuncEnd--;
growthFuncEnd[0] = '*';
growthFuncEnd[1] = '/';
}
*marker = START_FUNCS[0];
}
return input;
}
};
//
// Asm2WasmBuilder - converts an asm.js module into WebAssembly
//
class Asm2WasmBuilder {
Module& wasm;
MixedArena &allocator;
Builder builder;
// globals
unsigned nextGlobal; // next place to put a global
unsigned maxGlobal; // highest address we can put a global
struct MappedGlobal {
unsigned address;
WasmType type;
bool import; // if true, this is an import - we should read the value, not just set a zero
IString module, base;
MappedGlobal() : address(0), type(none), import(false) {}
MappedGlobal(unsigned address, WasmType type, bool import, IString module, IString base) : address(address), type(type), import(import), module(module), base(base) {}
};
// function table
std::map<IString, int> functionTableStarts; // each asm function table gets a range in the one wasm table, starting at a location
std::map<CallIndirect*, IString> callIndirects; // track these, as we need to fix them after we know the functionTableStarts. this maps call => its function table
bool memoryGrowth;
bool debug;
bool imprecise;
public:
std::map<IString, MappedGlobal> mappedGlobals;
// the global mapping info is not present in the output wasm. We need to save it on the side
// if we intend to load and run this module's wasm.
void serializeMappedGlobals(const char *filename) {
FILE *f = fopen(filename, "w");
assert(f);
fprintf(f, "{\n");
bool first = true;
for (auto& pair : mappedGlobals) {
auto name = pair.first;
auto& global = pair.second;
if (first) first = false;
else fprintf(f, ",");
fprintf(f, "\"%s\": { \"address\": %d, \"type\": %d, \"import\": %d, \"module\": \"%s\", \"base\": \"%s\" }\n",
name.str, global.address, global.type, global.import, global.module.str, global.base.str);
}
fprintf(f, "}");
fclose(f);
}
private:
void allocateGlobal(IString name, WasmType type, bool import, IString module = IString(), IString base = IString()) {
assert(mappedGlobals.find(name) == mappedGlobals.end());
mappedGlobals.emplace(name, MappedGlobal(nextGlobal, type, import, module, base));
nextGlobal += 8;
assert(nextGlobal < maxGlobal);
}
struct View {
unsigned bytes;
bool integer, signed_;
AsmType type;
View() : bytes(0) {}
View(unsigned bytes, bool integer, bool signed_, AsmType type) : bytes(bytes), integer(integer), signed_(signed_), type(type) {}
};
std::map<IString, View> views; // name (e.g. HEAP8) => view info
// Imported names of Math.*
IString Math_imul;
IString Math_clz32;
IString Math_fround;
IString Math_abs;
IString Math_floor;
IString Math_ceil;
IString Math_sqrt;
IString llvm_cttz_i32;
IString tempDoublePtr; // imported name of tempDoublePtr
// possibly-minified names, detected via their exports
IString udivmoddi4;
IString getTempRet0;
// function types. we fill in this information as we see
// uses, in the first pass
std::map<IString, FunctionType> importedFunctionTypes;
std::map<IString, std::vector<CallImport*>> importedFunctionCalls;
void noteImportedFunctionCall(Ref ast, WasmType resultType, AsmData *asmData, CallImport* call) {
assert(ast[0] == CALL && ast[1][0] == NAME);
IString importName = ast[1][1]->getIString();
FunctionType type;
type.name = IString((std::string("type$") + importName.str).c_str(), false); // TODO: make a list of such types
type.result = resultType;
Ref args = ast[2];
for (unsigned i = 0; i < args->size(); i++) {
type.params.push_back(detectWasmType(args[i], asmData));
}
// if we already saw this signature, verify it's the same (or else handle that)
if (importedFunctionTypes.find(importName) != importedFunctionTypes.end()) {
FunctionType& previous = importedFunctionTypes[importName];
#if 0
std::cout << "compare " << importName.str << "\nfirst: ";
type.print(std::cout, 0);
std::cout << "\nsecond: ";
previous.print(std::cout, 0) << ".\n";
#endif
if (type != previous) {
// merge it in. we'll add on extra 0 parameters for ones not actually used, etc.
for (size_t i = 0; i < type.params.size(); i++) {
if (previous.params.size() > i) {
if (previous.params[i] == none) {
previous.params[i] = type.params[i]; // use a more concrete type
}
} else {
previous.params.push_back(type.params[i]); // add a new param
}
}
if (previous.result == none) {
previous.result = type.result; // use a more concrete type
}
}
} else {
importedFunctionTypes[importName] = type;
}
importedFunctionCalls[importName].push_back(call);
}
FunctionType* getFunctionType(Ref parent, ExpressionList& operands) {
// generate signature
WasmType result = !!parent ? detectWasmType(parent, nullptr) : none;
return ensureFunctionType(getSig(result, operands), &wasm, allocator);
}
public:
Asm2WasmBuilder(Module& wasm, bool memoryGrowth, bool debug, bool imprecise)
: wasm(wasm),
allocator(wasm.allocator),
builder(wasm),
nextGlobal(8),
maxGlobal(1000),
memoryGrowth(memoryGrowth),
debug(debug),
imprecise(imprecise) {}
void processAsm(Ref ast);
void optimize();
private:
AsmType detectAsmType(Ref ast, AsmData *data) {
if (ast[0] == NAME) {
IString name = ast[1]->getIString();
if (!data->isLocal(name)) {
// must be global
assert(mappedGlobals.find(name) != mappedGlobals.end());
return wasmToAsmType(mappedGlobals[name].type);
}
} else if (ast[0] == SUB && ast[1][0] == NAME) {
// could be a heap access, use view info
auto view = views.find(ast[1][1]->getIString());
if (view != views.end()) {
return view->second.type;
}
}
return detectType(ast, data, false, Math_fround);
}
WasmType detectWasmType(Ref ast, AsmData *data) {
return asmToWasmType(detectAsmType(ast, data));
}
bool isUnsignedCoercion(Ref ast) {
return detectSign(ast, Math_fround) == ASM_UNSIGNED;
}
BinaryOp parseAsmBinaryOp(IString op, Ref left, Ref right, AsmData *asmData) {
if (op == PLUS) return BinaryOp::Add;
if (op == MINUS) return BinaryOp::Sub;
if (op == MUL) return BinaryOp::Mul;
if (op == AND) return BinaryOp::And;
if (op == OR) return BinaryOp::Or;
if (op == XOR) return BinaryOp::Xor;
if (op == LSHIFT) return BinaryOp::Shl;
if (op == RSHIFT) return BinaryOp::ShrS;
if (op == TRSHIFT) return BinaryOp::ShrU;
if (op == EQ) return BinaryOp::Eq;
if (op == NE) return BinaryOp::Ne;
WasmType leftType = detectWasmType(left, asmData);
#if 0
std::cout << "CHECK\n";
left->stringify(std::cout);
std::cout << " => " << printWasmType(leftType);
std::cout << '\n';
right->stringify(std::cout);
std::cout << " => " << printWasmType(detectWasmType(right, asmData)) << "\n";
#endif
bool isInteger = leftType == WasmType::i32;
bool isUnsigned = isUnsignedCoercion(left) || isUnsignedCoercion(right);
if (op == DIV) {
if (isInteger) {
return isUnsigned ? BinaryOp::DivU : BinaryOp::DivS;
}
return BinaryOp::Div;
}
if (op == MOD) {
if (isInteger) {
return isUnsigned ? BinaryOp::RemU : BinaryOp::RemS;
}
return BinaryOp::RemS; // XXX no floating-point remainder op, this must be handled by the caller
}
if (op == GE) {
if (isInteger) {
return isUnsigned ? BinaryOp::GeU : BinaryOp::GeS;
}
return BinaryOp::Ge;
}
if (op == GT) {
if (isInteger) {
return isUnsigned ? BinaryOp::GtU : BinaryOp::GtS;
}
return BinaryOp::Gt;
}
if (op == LE) {
if (isInteger) {
return isUnsigned ? BinaryOp::LeU : BinaryOp::LeS;
}
return BinaryOp::Le;
}
if (op == LT) {
if (isInteger) {
return isUnsigned ? BinaryOp::LtU : BinaryOp::LtS;
}
return BinaryOp::Lt;
}
abort_on("bad wasm binary op", op);
abort(); // avoid warning
}
int32_t bytesToShift(unsigned bytes) {
switch (bytes) {
case 1: return 0;
case 2: return 1;
case 4: return 2;
case 8: return 3;
default: {}
}
abort();
return -1; // avoid warning
}
std::map<unsigned, Ref> tempNums;
Literal checkLiteral(Ref ast) {
if (ast[0] == NUM) {
return Literal((int32_t)ast[1]->getInteger());
} else if (ast[0] == UNARY_PREFIX) {
if (ast[1] == PLUS && ast[2][0] == NUM) {
return Literal((double)ast[2][1]->getNumber());
}
if (ast[1] == MINUS && ast[2][0] == NUM) {
double num = -ast[2][1]->getNumber();
if (isSInteger32(num)) return Literal((int32_t)num);
if (isUInteger32(num)) return Literal((uint32_t)num);
assert(false && "expected signed or unsigned int32");
}
if (ast[1] == PLUS && ast[2][0] == UNARY_PREFIX && ast[2][1] == MINUS && ast[2][2][0] == NUM) {
return Literal((double)-ast[2][2][1]->getNumber());
}
if (ast[1] == MINUS && ast[2][0] == UNARY_PREFIX && ast[2][1] == PLUS && ast[2][2][0] == NUM) {
return Literal((double)-ast[2][2][1]->getNumber());
}
}
return Literal();
}
Literal getLiteral(Ref ast) {
Literal ret = checkLiteral(ast);
if (ret.type == none) abort();
return ret;
}
void fixCallType(Expression* call, WasmType type) {
if (call->is<Call>()) call->type = type;
if (call->is<CallImport>()) call->type = type;
else if (call->is<CallIndirect>()) call->type = type;
}
FunctionType* getBuiltinFunctionType(Name module, Name base, ExpressionList* operands = nullptr) {
if (module == GLOBAL_MATH) {
if (base == ABS) {
assert(operands && operands->size() == 1);
WasmType type = (*operands)[0]->type;
if (type == i32) return ensureFunctionType("ii", &wasm, allocator);
if (type == f32) return ensureFunctionType("ff", &wasm, allocator);
if (type == f64) return ensureFunctionType("dd", &wasm, allocator);
}
}
return nullptr;
}
// ensure a nameless block
Block* blockify(Expression* expression) {
if (expression->is<Block>() && !expression->cast<Block>()->name.is()) return expression->dynCast<Block>();
auto ret = allocator.alloc<Block>();
ret->list.push_back(expression);
ret->finalize();
return ret;
}
Function* processFunction(Ref ast);
};
void Asm2WasmBuilder::processAsm(Ref ast) {
assert(ast[0] == TOPLEVEL);
Ref asmFunction = ast[1][0];
assert(asmFunction[0] == DEFUN);
Ref body = asmFunction[3];
assert(body[0][0] == STAT && body[0][1][0] == STRING && (body[0][1][1]->getIString() == IString("use asm") || body[0][1][1]->getIString() == IString("almost asm")));
auto addImport = [&](IString name, Ref imported, WasmType type) {
assert(imported[0] == DOT);
Ref module = imported[1];
IString moduleName;
if (module[0] == DOT) {
// we can have (global.Math).floor; skip the 'Math'
assert(module[1][0] == NAME);
if (module[2] == MATH) {
if (imported[2] == IMUL) {
assert(Math_imul.isNull());
Math_imul = name;
return;
} else if (imported[2] == CLZ32) {
assert(Math_clz32.isNull());
Math_clz32 = name;
return;
} else if (imported[2] == FROUND) {
assert(Math_fround.isNull());
Math_fround = name;
return;
} else if (imported[2] == ABS) {
assert(Math_abs.isNull());
Math_abs = name;
return;
} else if (imported[2] == FLOOR) {
assert(Math_floor.isNull());
Math_floor = name;
return;
} else if (imported[2] == CEIL) {
assert(Math_ceil.isNull());
Math_ceil = name;
return;
} else if (imported[2] == SQRT) {
assert(Math_sqrt.isNull());
Math_sqrt = name;
return;
}
}
std::string fullName = module[1][1]->getCString();
fullName += '.';
fullName += + module[2]->getCString();
moduleName = IString(fullName.c_str(), false);
} else {
assert(module[0] == NAME);
moduleName = module[1]->getIString();
if (moduleName == ENV) {
auto base = imported[2]->getIString();
if (base == TEMP_DOUBLE_PTR) {
assert(tempDoublePtr.isNull());
tempDoublePtr = name;
// we don't return here, as we can only optimize out some uses of tDP. So it remains imported
} else if (base == LLVM_CTTZ_I32) {
assert(llvm_cttz_i32.isNull());
llvm_cttz_i32 = name;
return;
}
}
}
auto import = allocator.alloc<Import>();
import->name = name;
import->module = moduleName;
import->base = imported[2]->getIString();
// special-case some asm builtins
if (import->module == GLOBAL && (import->base == NAN_ || import->base == INFINITY_)) {
type = WasmType::f64;
}
if (type != WasmType::none) {
// wasm has no imported constants, so allocate a global, and we need to write the value into that
allocateGlobal(name, type, true, import->module, import->base);
} else {
wasm.addImport(import);
}
};
IString Int8Array, Int16Array, Int32Array, UInt8Array, UInt16Array, UInt32Array, Float32Array, Float64Array;
// first pass - do almost everything, but function imports and indirect calls
for (unsigned i = 1; i < body->size(); i++) {
Ref curr = body[i];
if (curr[0] == VAR) {
// import, global, or table
for (unsigned j = 0; j < curr[1]->size(); j++) {
Ref pair = curr[1][j];
IString name = pair[0]->getIString();
Ref value = pair[1];
if (value[0] == NUM) {
// global int
assert(value[1]->getNumber() == 0);
allocateGlobal(name, WasmType::i32, false);
} else if (value[0] == BINARY) {
// int import
assert(value[1] == OR && value[3][0] == NUM && value[3][1]->getNumber() == 0);
Ref import = value[2]; // env.what
addImport(name, import, WasmType::i32);
} else if (value[0] == UNARY_PREFIX) {
// double import or global
assert(value[1] == PLUS);
Ref import = value[2];
if (import[0] == NUM) {
// global
assert(import[1]->getNumber() == 0);
allocateGlobal(name, WasmType::f64, false);
} else {
// import
addImport(name, import, WasmType::f64);
}
} else if (value[0] == CALL) {
assert(value[1][0] == NAME && value[1][1] == Math_fround && value[2][0][0] == NUM && value[2][0][1]->getNumber() == 0);
allocateGlobal(name, WasmType::f32, false);
} else if (value[0] == DOT) {
// simple module.base import. can be a view, or a function.
if (value[1][0] == NAME) {
IString module = value[1][1]->getIString();
IString base = value[2]->getIString();
if (module == GLOBAL) {
if (base == INT8ARRAY) {
Int8Array = name;
} else if (base == INT16ARRAY) {
Int16Array = name;
} else if (base == INT32ARRAY) {
Int32Array = name;
} else if (base == UINT8ARRAY) {
UInt8Array = name;
} else if (base == UINT16ARRAY) {
UInt16Array = name;
} else if (base == UINT32ARRAY) {
UInt32Array = name;
} else if (base == FLOAT32ARRAY) {
Float32Array = name;
} else if (base == FLOAT64ARRAY) {
Float64Array = name;
}
}
}
// function import
addImport(name, value, WasmType::none);
} else if (value[0] == NEW) {
// ignore imports of typed arrays, but note the names of the arrays
value = value[1];
assert(value[0] == CALL);
unsigned bytes;
bool integer, signed_;
AsmType asmType;
Ref constructor = value[1];
if (constructor[0] == DOT) { // global.*Array
IString heap = constructor[2]->getIString();
if (heap == INT8ARRAY) {
bytes = 1; integer = true; signed_ = true; asmType = ASM_INT;
} else if (heap == INT16ARRAY) {
bytes = 2; integer = true; signed_ = true; asmType = ASM_INT;
} else if (heap == INT32ARRAY) {
bytes = 4; integer = true; signed_ = true; asmType = ASM_INT;
} else if (heap == UINT8ARRAY) {
bytes = 1; integer = true; signed_ = false; asmType = ASM_INT;
} else if (heap == UINT16ARRAY) {
bytes = 2; integer = true; signed_ = false; asmType = ASM_INT;
} else if (heap == UINT32ARRAY) {
bytes = 4; integer = true; signed_ = false; asmType = ASM_INT;
} else if (heap == FLOAT32ARRAY) {
bytes = 4; integer = false; signed_ = true; asmType = ASM_FLOAT;
} else if (heap == FLOAT64ARRAY) {
bytes = 8; integer = false; signed_ = true; asmType = ASM_DOUBLE;
} else {
abort_on("invalid view import", heap);
}
} else { // *ArrayView that was previously imported
assert(constructor[0] == NAME);
IString viewName = constructor[1]->getIString();
if (viewName == Int8Array) {
bytes = 1; integer = true; signed_ = true; asmType = ASM_INT;
} else if (viewName == Int16Array) {
bytes = 2; integer = true; signed_ = true; asmType = ASM_INT;
} else if (viewName == Int32Array) {
bytes = 4; integer = true; signed_ = true; asmType = ASM_INT;
} else if (viewName == UInt8Array) {
bytes = 1; integer = true; signed_ = false; asmType = ASM_INT;
} else if (viewName == UInt16Array) {
bytes = 2; integer = true; signed_ = false; asmType = ASM_INT;
} else if (viewName == UInt32Array) {
bytes = 4; integer = true; signed_ = false; asmType = ASM_INT;
} else if (viewName == Float32Array) {
bytes = 4; integer = false; signed_ = true; asmType = ASM_FLOAT;
} else if (viewName == Float64Array) {
bytes = 8; integer = false; signed_ = true; asmType = ASM_DOUBLE;
} else {
abort_on("invalid short view import", viewName);
}
}
assert(views.find(name) == views.end());
views.emplace(name, View(bytes, integer, signed_, asmType));
} else if (value[0] == ARRAY) {
// function table. we merge them into one big table, so e.g. [foo, b1] , [b2, bar] => [foo, b1, b2, bar]
// TODO: when not using aliasing function pointers, we could merge them by noticing that
// index 0 in each table is the null func, and each other index should only have one
// non-null func. However, that breaks down when function pointer casts are emulated.
functionTableStarts[name] = wasm.table.names.size(); // this table starts here
Ref contents = value[1];
for (unsigned k = 0; k < contents->size(); k++) {
IString curr = contents[k][1]->getIString();
wasm.table.names.push_back(curr);
}
} else {
abort_on("invalid var element", pair);
}
}
} else if (curr[0] == DEFUN) {
// function
wasm.addFunction(processFunction(curr));
} else if (curr[0] == RETURN) {
// exports
Ref object = curr[1];
Ref contents = object[1];
for (unsigned k = 0; k < contents->size(); k++) {
Ref pair = contents[k];
IString key = pair[0]->getIString();
assert(pair[1][0] == NAME);
IString value = pair[1][1]->getIString();
if (key == Name("_emscripten_replace_memory")) {
// asm.js memory growth provides this special non-asm function, which we don't need (we use grow_memory)
assert(!wasm.checkFunction(value));
continue;
} else if (key == UDIVMODDI4) {
udivmoddi4 = value;
} else if (key == GET_TEMP_RET0) {
getTempRet0 = value;
}
assert(wasm.checkFunction(value));
auto export_ = allocator.alloc<Export>();
export_->name = key;
export_->value = value;
wasm.addExport(export_);
}
}
}
// second pass. first, function imports
std::vector<IString> toErase;
for (auto* import : wasm.imports) {
IString name = import->name;
if (importedFunctionTypes.find(name) != importedFunctionTypes.end()) {
// special math builtins
FunctionType* builtin = getBuiltinFunctionType(import->module, import->base);
if (builtin) {
import->type = builtin;
continue;
}
import->type = ensureFunctionType(getSig(&importedFunctionTypes[name]), &wasm, allocator);
} else if (import->module != ASM2WASM) { // special-case the special module
// never actually used
toErase.push_back(name);
}
}
for (auto curr : toErase) {
wasm.removeImport(curr);
}
// fill out call_import - add extra params as needed. asm tolerates ffi overloading, wasm does not
for (auto& pair : importedFunctionCalls) {
IString name = pair.first;
auto& list = pair.second;
auto type = importedFunctionTypes[name];
for (auto* call : list) {
for (size_t i = call->operands.size(); i < type.params.size(); i++) {
auto val = allocator.alloc<Const>();
val->type = val->value.type = type.params[i];
call->operands.push_back(val);
}
}
}
// finalize indirect calls
for (auto& pair : callIndirects) {
CallIndirect* call = pair.first;
IString tableName = pair.second;
assert(functionTableStarts.find(tableName) != functionTableStarts.end());
auto sub = allocator.alloc<Binary>();
// note that the target is already masked, so we just offset it, we don't need to guard against overflow (which would be an error anyhow)
sub->op = Add;
sub->left = call->target;
sub->right = allocator.alloc<Const>()->set(Literal((int32_t)functionTableStarts[tableName]));
sub->type = WasmType::i32;
call->target = sub;
}
// apply memory growth, if relevant
if (memoryGrowth) {
// create and export a function that just calls memory growth
Builder builder(wasm);
wasm.addFunction(builder.makeFunction(
GROW_WASM_MEMORY,
{ { NEW_SIZE, i32 } },
none,
{},
builder.makeHost(
GrowMemory,
Name(),
{ builder.makeGetLocal(0, i32) }
)
));
auto export_ = allocator.alloc<Export>();
export_->name = export_->value = GROW_WASM_MEMORY;
wasm.addExport(export_);
}
wasm.memory.exportName = MEMORY;
#if 0 // enable asm2wasm i64 optimizations when browsers have consistent i64 support in wasm
if (udivmoddi4.is() && getTempRet0.is()) {
// generate a wasm-optimized __udivmoddi4 method, which we can do much more efficiently in wasm
// we can only do this if we know getTempRet0 as well since we use it to figure out which minified global is tempRet0
// (getTempRet0 might be an import, if this is a shared module, so we can't optimize that case)
int tempRet0;
{
Expression* curr = wasm.getFunction(getTempRet0)->body;
if (curr->is<Block>()) curr = curr->cast<Block>()->list[0];
curr = curr->cast<Return>()->value;
auto* load = curr->cast<Load>();
auto* ptr = load->ptr->cast<Const>();
tempRet0 = ptr->value.geti32() + load->offset;
}
// udivmoddi4 receives xl, xh, yl, yl, r, and
// if r then *r = x % y
// returns x / y
auto* func = wasm.getFunction(udivmoddi4);
assert(!func->type.is());
Builder::clearLocals(func);
Index xl = Builder::addParam(func, "xl", i32),
xh = Builder::addParam(func, "xh", i32),
yl = Builder::addParam(func, "yl", i32),
yh = Builder::addParam(func, "yh", i32),
r = Builder::addParam(func, "r", i32),
x64 = Builder::addVar(func, "x64", i64),
y64 = Builder::addVar(func, "y64", i64);
auto* body = allocator.alloc<Block>();
auto recreateI64 = [&](Index target, Index low, Index high) {
return builder.makeSetLocal(
target,
builder.makeBinary(
Or,
builder.makeUnary(
ExtendUInt32,
builder.makeGetLocal(low, i32)
),
builder.makeBinary(
Shl,
builder.makeUnary(
ExtendUInt32,
builder.makeGetLocal(high, i32)
),
builder.makeConst(Literal(int64_t(32)))
)
)
);
};
body->list.push_back(recreateI64(x64, xl, xh));
body->list.push_back(recreateI64(y64, yl, yh));
body->list.push_back(
builder.makeIf(
builder.makeGetLocal(r, i32),
builder.makeStore(
8, 0, 8,
builder.makeGetLocal(r, i32),
builder.makeBinary(
RemU,
builder.makeGetLocal(x64, i64),
builder.makeGetLocal(y64, i64)
)
)
)
);
body->list.push_back(
builder.makeSetLocal(
x64,
builder.makeBinary(
DivU,
builder.makeGetLocal(x64, i64),
builder.makeGetLocal(y64, i64)
)
)
);
body->list.push_back(
builder.makeStore(
4, 0, 4,
builder.makeConst(Literal(int32_t(tempRet0))),
builder.makeUnary(
WrapInt64,
builder.makeBinary(
ShrU,
builder.makeGetLocal(x64, i64),
builder.makeConst(Literal(int64_t(32)))
)
)
)
);
body->list.push_back(
builder.makeUnary(
WrapInt64,
builder.makeGetLocal(x64, i64)
)
);
func->body = body;
}
#endif
}
Function* Asm2WasmBuilder::processFunction(Ref ast) {
auto name = ast[1]->getIString();
if (debug) {
std::cout << "\nfunc: " << ast[1]->getIString().str << '\n';
ast->stringify(std::cout);
std::cout << '\n';
}
auto function = allocator.alloc<Function>();
function->name = name;
Ref params = ast[2];
Ref body = ast[3];
unsigned nextId = 0;
auto getNextId = [&nextId](std::string prefix) {
return IString((prefix + '$' + std::to_string(nextId++)).c_str(), false);
};
// given an asm.js label, returns the wasm label for breaks or continues
auto getBreakLabelName = [](IString label) {
return IString((std::string("label$break$") + label.str).c_str(), false);
};
auto getContinueLabelName = [](IString label) {
return IString((std::string("label$continue$") + label.str).c_str(), false);
};
IStringSet functionVariables; // params or vars
IString parentLabel; // set in LABEL, then read in WHILE/DO/SWITCH
std::vector<IString> breakStack; // where a break will go
std::vector<IString> continueStack; // where a continue will go
AsmData asmData; // need to know var and param types, for asm type detection
for (unsigned i = 0; i < params->size(); i++) {
Ref curr = body[i];
assert(curr[0] == STAT);
curr = curr[1];
assert(curr[0] == ASSIGN && curr[2][0] == NAME);
IString name = curr[2][1]->getIString();
AsmType asmType = detectType(curr[3], nullptr, false, Math_fround);
Builder::addParam(function, name, asmToWasmType(asmType));
functionVariables.insert(name);
asmData.addParam(name, asmType);
}
unsigned start = params->size();
while (start < body->size() && body[start][0] == VAR) {
Ref curr = body[start];
for (unsigned j = 0; j < curr[1]->size(); j++) {
Ref pair = curr[1][j];
IString name = pair[0]->getIString();
AsmType asmType = detectType(pair[1], nullptr, true, Math_fround);
Builder::addVar(function, name, asmToWasmType(asmType));
functionVariables.insert(name);
asmData.addVar(name, asmType);
}
start++;
}
bool addedI32Temp = false;
auto ensureI32Temp = [&]() {
if (addedI32Temp) return;
addedI32Temp = true;
Builder::addVar(function, I32_TEMP, i32);
functionVariables.insert(I32_TEMP);
asmData.addVar(I32_TEMP, ASM_INT);
};
bool seenReturn = false; // function->result is updated if we see a return
// processors
std::function<Expression* (Ref, unsigned)> processStatements;
std::function<Expression* (Ref, unsigned)> processUnshifted;
std::function<Expression* (Ref)> process = [&](Ref ast) -> Expression* {
AstStackHelper astStackHelper(ast); // TODO: only create one when we need it?
if (debug) {
std::cout << "at: ";
ast->stringify(std::cout);
std::cout << '\n';
}
IString what = ast[0]->getIString();
if (what == STAT) {
return process(ast[1]); // and drop return value, if any
} else if (what == ASSIGN) {
if (ast[2][0] == NAME) {
IString name = ast[2][1]->getIString();
if (functionVariables.has(name)) {
auto ret = allocator.alloc<SetLocal>();
ret->index = function->getLocalIndex(ast[2][1]->getIString());
ret->value = process(ast[3]);
ret->type = ret->value->type;
return ret;
}
// global var, do a store to memory
assert(mappedGlobals.find(name) != mappedGlobals.end());
MappedGlobal global = mappedGlobals[name];
auto ret = allocator.alloc<Store>();
ret->bytes = getWasmTypeSize(global.type);
ret->offset = 0;
ret->align = ret->bytes;
auto ptr = allocator.alloc<Const>();
ptr->value = Literal(int32_t(global.address)); // XXX for wasm64, need 64
ret->ptr = ptr;
ret->value = process(ast[3]);
ret->type = global.type;
return ret;
} else if (ast[2][0] == SUB) {
Ref target = ast[2];
assert(target[1][0] == NAME);
IString heap = target[1][1]->getIString();
assert(views.find(heap) != views.end());
View& view = views[heap];
auto ret = allocator.alloc<Store>();
ret->bytes = view.bytes;
ret->offset = 0;
ret->align = view.bytes;
ret->ptr = processUnshifted(target[2], view.bytes);
ret->value = process(ast[3]);
ret->type = asmToWasmType(view.type);
if (ret->type != ret->value->type) {
// in asm.js we have some implicit coercions that we must do explicitly here
if (ret->type == f32 && ret->value->type == f64) {
auto conv = allocator.alloc<Unary>();
conv->op = DemoteFloat64;
conv->value = ret->value;
conv->type = WasmType::f32;
ret->value = conv;
} else {
abort();
}
}
return ret;
}
abort_on("confusing assign", ast);
} else if (what == BINARY) {
if ((ast[1] == OR || ast[1] == TRSHIFT) && ast[3][0] == NUM && ast[3][1]->getNumber() == 0) {
auto ret = process(ast[2]); // just look through the ()|0 or ()>>>0 coercion
fixCallType(ret, i32);
return ret;
}
BinaryOp binary = parseAsmBinaryOp(ast[1]->getIString(), ast[2], ast[3], &asmData);
auto ret = allocator.alloc<Binary>();
ret->op = binary;
ret->left = process(ast[2]);
ret->right = process(ast[3]);
ret->finalize();
if (binary == BinaryOp::RemS && isWasmTypeFloat(ret->type)) {
// WebAssembly does not have floating-point remainder, we have to emit a call to a special import of ours
CallImport *call = allocator.alloc<CallImport>();
call->target = F64_REM;
call->operands.push_back(ret->left);
call->operands.push_back(ret->right);
call->type = f64;
static bool addedImport = false;
if (!addedImport) {
addedImport = true;
auto import = allocator.alloc<Import>(); // f64-rem = asm2wasm.f64-rem;
import->name = F64_REM;
import->module = ASM2WASM;
import->base = F64_REM;
import->type = ensureFunctionType("ddd", &wasm, allocator);
wasm.addImport(import);
}
return call;
}
return ret;
} else if (what == NUM) {
auto ret = allocator.alloc<Const>();
double num = ast[1]->getNumber();
if (isSInteger32(num)) {
ret->value = Literal(int32_t(toSInteger32(num)));
} else if (isUInteger32(num)) {
ret->value = Literal(uint32_t(toUInteger32(num)));
} else {
ret->value = Literal(num);
}
ret->type = ret->value.type;
return ret;
} else if (what == NAME) {
IString name = ast[1]->getIString();
if (functionVariables.has(name)) {
// var in scope
auto ret = allocator.alloc<GetLocal>();
ret->index = function->getLocalIndex(name);
ret->type = asmToWasmType(asmData.getType(name));
return ret;
}
if (name == DEBUGGER) {
CallImport *call = allocator.alloc<CallImport>();
call->target = DEBUGGER;
call->type = none;
static bool addedImport = false;
if (!addedImport) {
addedImport = true;
auto import = allocator.alloc<Import>(); // debugger = asm2wasm.debugger;
import->name = DEBUGGER;
import->module = ASM2WASM;
import->base = DEBUGGER;
import->type = ensureFunctionType("v", &wasm, allocator);
wasm.addImport(import);
}
return call;
}
// global var, do a load from memory
assert(mappedGlobals.find(name) != mappedGlobals.end());
MappedGlobal global = mappedGlobals[name];
auto ret = allocator.alloc<Load>();
ret->bytes = getWasmTypeSize(global.type);
ret->signed_ = true; // but doesn't matter
ret->offset = 0;
ret->align = ret->bytes;
auto ptr = allocator.alloc<Const>();
ptr->value = Literal(int32_t(global.address)); // XXX for wasm64, need 64
ret->ptr = ptr;
ret->type = global.type;
return ret;
} else if (what == SUB) {
Ref target = ast[1];
assert(target[0] == NAME);
IString heap = target[1]->getIString();
assert(views.find(heap) != views.end());
View& view = views[heap];
auto ret = allocator.alloc<Load>();
ret->bytes = view.bytes;
ret->signed_ = view.signed_;
ret->offset = 0;
ret->align = view.bytes;
ret->ptr = processUnshifted(ast[2], view.bytes);
ret->type = getWasmType(view.bytes, !view.integer);
return ret;
} else if (what == UNARY_PREFIX) {
if (ast[1] == PLUS) {
Literal literal = checkLiteral(ast);
if (literal.type != none) {
return allocator.alloc<Const>()->set(literal);
}
auto ret = process(ast[2]); // we are a +() coercion
if (ret->type == i32) {
auto conv = allocator.alloc<Unary>();
conv->op = isUnsignedCoercion(ast[2]) ? ConvertUInt32 : ConvertSInt32;
conv->value = ret;
conv->type = WasmType::f64;
return conv;
}
if (ret->type == f32) {
auto conv = allocator.alloc<Unary>();
conv->op = PromoteFloat32;
conv->value = ret;
conv->type = WasmType::f64;
return conv;
}
fixCallType(ret, f64);
return ret;
} else if (ast[1] == MINUS) {
if (ast[2][0] == NUM || (ast[2][0] == UNARY_PREFIX && ast[2][1] == PLUS && ast[2][2][0] == NUM)) {
auto ret = allocator.alloc<Const>();
ret->value = getLiteral(ast);
ret->type = ret->value.type;
return ret;
}
AsmType asmType = detectAsmType(ast[2], &asmData);
if (asmType == ASM_INT) {
// wasm has no unary negation for int, so do 0-
auto ret = allocator.alloc<Binary>();
ret->op = Sub;
ret->left = allocator.alloc<Const>()->set(Literal((int32_t)0));
ret->right = process(ast[2]);
ret->type = WasmType::i32;
return ret;
}
auto ret = allocator.alloc<Unary>();
ret->op = Neg;
ret->value = process(ast[2]);
if (asmType == ASM_DOUBLE) {
ret->type = WasmType::f64;
} else if (asmType == ASM_FLOAT) {
ret->type = WasmType::f32;
} else {
abort();
}
return ret;
} else if (ast[1] == B_NOT) {
// ~, might be ~~ as a coercion or just a not
if (ast[2][0] == UNARY_PREFIX && ast[2][1] == B_NOT) {
if (imprecise) {
auto ret = allocator.alloc<Unary>();
ret->value = process(ast[2][2]);
ret->op = ret->value->type == f64 ? TruncSFloat64 : TruncSFloat32; // imprecise, because this wasm thing might trap, while asm.js never would
ret->type = WasmType::i32;
return ret;
} else {
// WebAssembly traps on float-to-int overflows, but asm.js wouldn't, so we must emulate that
CallImport *ret = allocator.alloc<CallImport>();
ret->target = F64_TO_INT;
auto input = process(ast[2][2]);
if (input->type == f32) {
auto conv = allocator.alloc<Unary>();
conv->op = PromoteFloat32;
conv->value = input;
conv->type = WasmType::f64;
input = conv;
}
ret->operands.push_back(input);
ret->type = i32;
static bool addedImport = false;
if (!addedImport) {
addedImport = true;
auto import = allocator.alloc<Import>(); // f64-to-int = asm2wasm.f64-to-int;
import->name = F64_TO_INT;
import->module = ASM2WASM;
import->base = F64_TO_INT;
import->type = ensureFunctionType("id", &wasm, allocator);
wasm.addImport(import);
}
return ret;
}
}
// no bitwise unary not, so do xor with -1
auto ret = allocator.alloc<Binary>();
ret->op = Xor;
ret->left = process(ast[2]);
ret->right = allocator.alloc<Const>()->set(Literal(int32_t(-1)));
ret->type = WasmType::i32;
return ret;
} else if (ast[1] == L_NOT) {
auto ret = allocator.alloc<Unary>();
ret->op = EqZ;
ret->value = process(ast[2]);
ret->type = i32;
return ret;
}
abort_on("bad unary", ast);
} else if (what == IF) {
auto ret = allocator.alloc<If>();
ret->condition = process(ast[1]);
ret->ifTrue = process(ast[2]);
ret->ifFalse = !!ast[3] ? process(ast[3]) : nullptr;
return ret;
} else if (what == CALL) {
if (ast[1][0] == NAME) {
IString name = ast[1][1]->getIString();
if (name == Math_imul) {
assert(ast[2]->size() == 2);
auto ret = allocator.alloc<Binary>();
ret->op = Mul;
ret->left = process(ast[2][0]);
ret->right = process(ast[2][1]);
ret->type = WasmType::i32;
return ret;
}
if (name == Math_clz32 || name == llvm_cttz_i32) {
assert(ast[2]->size() == 1);
auto ret = allocator.alloc<Unary>();
ret->op = name == Math_clz32 ? Clz : Ctz;
ret->value = process(ast[2][0]);
ret->type = WasmType::i32;
return ret;
}
if (name == Math_fround) {
assert(ast[2]->size() == 1);
Literal lit = checkLiteral(ast[2][0]);
if (lit.type == i32) {
return allocator.alloc<Const>()->set(Literal((float)lit.geti32()));
} else if (lit.type == f64) {
return allocator.alloc<Const>()->set(Literal((float)lit.getf64()));
}
auto ret = allocator.alloc<Unary>();
ret->value = process(ast[2][0]);
if (ret->value->type == f64) {
ret->op = DemoteFloat64;
} else if (ret->value->type == i32) {
ret->op = ConvertSInt32;
} else if (ret->value->type == f32) {
return ret->value;
} else if (ret->value->type == none) { // call, etc.
ret->value->type = f32;
return ret->value;
} else {
abort_on("confusing fround target", ast[2][0]);
}
ret->type = f32;
return ret;
}
if (name == Math_abs) {
// overloaded on type: i32, f32 or f64
Expression* value = process(ast[2][0]);
if (value->type == i32) {
// No wasm support, so use a temp local
ensureI32Temp();
auto set = allocator.alloc<SetLocal>();
set->index = function->getLocalIndex(I32_TEMP);
set->value = value;
set->type = i32;
auto get = [&]() {
auto ret = allocator.alloc<GetLocal>();
ret->index = function->getLocalIndex(I32_TEMP);
ret->type = i32;
return ret;
};
auto isNegative = allocator.alloc<Binary>();
isNegative->op = LtS;
isNegative->left = get();
isNegative->right = allocator.alloc<Const>()->set(Literal(0));
isNegative->finalize();
auto block = allocator.alloc<Block>();
block->list.push_back(set);
auto flip = allocator.alloc<Binary>();
flip->op = Sub;
flip->left = allocator.alloc<Const>()->set(Literal(0));
flip->right = get();
flip->type = i32;
auto select = allocator.alloc<Select>();
select->ifTrue = flip;
select->ifFalse = get();
select->condition = isNegative;
select->type = i32;
block->list.push_back(select);
block->finalize();
return block;
} else if (value->type == f32 || value->type == f64) {
auto ret = allocator.alloc<Unary>();
ret->op = Abs;
ret->value = value;
ret->type = value->type;
return ret;
} else {
abort();
}
}
if (name == Math_floor || name == Math_sqrt || name == Math_ceil) {
// overloaded on type: f32 or f64
Expression* value = process(ast[2][0]);
if (value->type == f32 || value->type == f64) {
auto ret = allocator.alloc<Unary>();
ret->op = name == Math_floor ? Floor : name == Math_ceil ? Ceil : Sqrt;
ret->value = value;
ret->type = value->type;
return ret;
} else {
abort();
}
}
Call* ret;
if (wasm.checkImport(name)) {
Ref parent = astStackHelper.getParent();
WasmType type = !!parent ? detectWasmType(parent, &asmData) : none;
auto specific = allocator.alloc<CallImport>();
noteImportedFunctionCall(ast, type, &asmData, specific);
ret = specific;
} else {
ret = allocator.alloc<Call>();
}
ret->target = name;
Ref args = ast[2];
for (unsigned i = 0; i < args->size(); i++) {
ret->operands.push_back(process(args[i]));
}
return ret;
}
// function pointers
auto ret = allocator.alloc<CallIndirect>();
Ref target = ast[1];
assert(target[0] == SUB && target[1][0] == NAME && target[2][0] == BINARY && target[2][1] == AND && target[2][3][0] == NUM); // FUNCTION_TABLE[(expr) & mask]
ret->target = process(target[2]); // TODO: as an optimization, we could look through the mask
Ref args = ast[2];
for (unsigned i = 0; i < args->size(); i++) {
ret->operands.push_back(process(args[i]));
}
ret->fullType = getFunctionType(astStackHelper.getParent(), ret->operands);
ret->type = ret->fullType->result;
callIndirects[ret] = target[1][1]->getIString(); // we need to fix this up later, when we know how asm function tables are layed out inside the wasm table.
return ret;
} else if (what == RETURN) {
WasmType type = !!ast[1] ? detectWasmType(ast[1], &asmData) : none;
if (seenReturn) {
assert(function->result == type);
} else {
function->result = type;
}
// wasm has no return, so we just break on the topmost block
auto ret = allocator.alloc<Return>();
ret->value = !!ast[1] ? process(ast[1]) : nullptr;
return ret;
} else if (what == BLOCK) {
Name name;
if (parentLabel.is()) {
name = getBreakLabelName(parentLabel);
parentLabel = IString();
breakStack.push_back(name);
}
auto ret = processStatements(ast[1], 0);
if (name.is()) {
breakStack.pop_back();
Block* block = ret->dynCast<Block>();
if (block && block->name.isNull()) {
block->name = name;
} else {
block = allocator.alloc<Block>();
block->name = name;
block->list.push_back(ret);
block->finalize();
ret = block;
}
}
return ret;
} else if (what == BREAK) {
auto ret = allocator.alloc<Break>();
assert(breakStack.size() > 0);
ret->name = !!ast[1] ? getBreakLabelName(ast[1]->getIString()) : breakStack.back();
return ret;
} else if (what == CONTINUE) {
auto ret = allocator.alloc<Break>();
assert(continueStack.size() > 0);
ret->name = !!ast[1] ? getContinueLabelName(ast[1]->getIString()) : continueStack.back();
return ret;
} else if (what == WHILE) {
bool forever = ast[1][0] == NUM && ast[1][1]->getInteger() == 1;
auto ret = allocator.alloc<Loop>();
IString out, in;
if (!parentLabel.isNull()) {
out = getBreakLabelName(parentLabel);
in = getContinueLabelName(parentLabel);
parentLabel = IString();
} else {
out = getNextId("while-out");
in = getNextId("while-in");
}
ret->out = out;
ret->in = in;
breakStack.push_back(out);
continueStack.push_back(in);
if (forever) {
ret->body = process(ast[2]);
} else {
Break *breakOut = allocator.alloc<Break>();
breakOut->name = out;
If *condition = allocator.alloc<If>();
condition->condition = builder.makeUnary(EqZ, process(ast[1]));
condition->ifTrue = breakOut;
auto body = allocator.alloc<Block>();
body->list.push_back(condition);
body->list.push_back(process(ast[2]));
body->finalize();
ret->body = body;
}
// loops do not automatically loop, add a branch back
Block* block = blockify(ret->body);
auto continuer = allocator.alloc<Break>();
continuer->name = ret->in;
block->list.push_back(continuer);
ret->body = block;
continueStack.pop_back();
breakStack.pop_back();
return ret;
} else if (what == DO) {
if (ast[1][0] == NUM && ast[1][1]->getNumber() == 0) {
// one-time loop, unless there is a continue
IString stop;
if (!parentLabel.isNull()) {
stop = getBreakLabelName(parentLabel);
parentLabel = IString();
} else {
stop = getNextId("do-once");
}
IString more = getNextId("unlikely-continue");
breakStack.push_back(stop);
continueStack.push_back(more);
auto child = process(ast[2]);
continueStack.pop_back();
breakStack.pop_back();
// if we never continued, we don't need a loop
BreakSeeker breakSeeker(more);
breakSeeker.walk(child);
if (breakSeeker.found == 0) {
auto block = allocator.alloc<Block>();
block->list.push_back(child);
block->name = stop;
block->finalize();
return block;
} else {
auto loop = allocator.alloc<Loop>();
loop->body = child;
loop->out = stop;
loop->in = more;
return loop;
}
}
// general do-while loop
auto ret = allocator.alloc<Loop>();
IString out, in;
if (!parentLabel.isNull()) {
out = getBreakLabelName(parentLabel);
in = getContinueLabelName(parentLabel);
parentLabel = IString();
} else {
out = getNextId("do-out");
in = getNextId("do-in");
}
ret->out = out;
ret->in = in;
breakStack.push_back(out);
continueStack.push_back(in);
ret->body = process(ast[2]);
continueStack.pop_back();
breakStack.pop_back();
Break *continuer = allocator.alloc<Break>();
continuer->name = in;
continuer->condition = process(ast[1]);
Block *block = blockify(ret->body);
block->list.push_back(continuer);
ret->body = block;
return ret;
} else if (what == FOR) {
Ref finit = ast[1],
fcond = ast[2],
finc = ast[3],
fbody = ast[4];
auto ret = allocator.alloc<Loop>();
IString out, in;
if (!parentLabel.isNull()) {
out = getBreakLabelName(parentLabel);
in = getContinueLabelName(parentLabel);
parentLabel = IString();
} else {
out = getNextId("for-out");
in = getNextId("for-in");
}
ret->out = out;
ret->in = in;
breakStack.push_back(out);
continueStack.push_back(in);
Break *breakOut = allocator.alloc<Break>();
breakOut->name = out;
If *condition = allocator.alloc<If>();
condition->condition = builder.makeUnary(EqZ, process(fcond));
condition->ifTrue = breakOut;
auto body = allocator.alloc<Block>();
body->list.push_back(condition);
body->list.push_back(process(fbody));
body->list.push_back(process(finc));
body->finalize();
ret->body = body;
// loops do not automatically loop, add a branch back
Block* block = blockify(ret->body);
auto continuer = allocator.alloc<Break>();
continuer->name = ret->in;
block->list.push_back(continuer);
ret->body = block;
continueStack.pop_back();
breakStack.pop_back();
Block *outer = allocator.alloc<Block>();
// add an outer block for the init as well
outer->list.push_back(process(finit));
outer->list.push_back(ret);
outer->finalize();
return outer;
} else if (what == LABEL) {
assert(parentLabel.isNull());
parentLabel = ast[1]->getIString();
return process(ast[2]);
} else if (what == CONDITIONAL) {
auto ret = allocator.alloc<If>();
ret->condition = process(ast[1]);
ret->ifTrue = process(ast[2]);
ret->ifFalse = process(ast[3]);
ret->type = ret->ifTrue->type;
return ret;
} else if (what == SEQ) {
// Some (x, y) patterns can be optimized, like bitcasts,
// (HEAP32[tempDoublePtr >> 2] = i, Math_fround(HEAPF32[tempDoublePtr >> 2])); // i32->f32
// (HEAP32[tempDoublePtr >> 2] = i, +HEAPF32[tempDoublePtr >> 2]); // i32->f32, no fround
// (HEAPF32[tempDoublePtr >> 2] = f, HEAP32[tempDoublePtr >> 2] | 0); // f32->i32
if (ast[1][0] == ASSIGN && ast[1][2][0] == SUB && ast[1][2][1][0] == NAME && ast[1][2][2][0] == BINARY && ast[1][2][2][1] == RSHIFT &&
ast[1][2][2][2][0] == NAME && ast[1][2][2][2][1] == tempDoublePtr && ast[1][2][2][3][0] == NUM && ast[1][2][2][3][1]->getNumber() == 2) {
// (?[tempDoublePtr >> 2] = ?, ?) so far
auto heap = ast[1][2][1][1]->getIString();
if (views.find(heap) != views.end()) {
AsmType writeType = views[heap].type;
AsmType readType = ASM_NONE;
Ref readValue;
if (ast[2][0] == BINARY && ast[2][1] == OR && ast[2][3][0] == NUM && ast[2][3][1]->getNumber() == 0) {
readType = ASM_INT;
readValue = ast[2][2];
} else if (ast[2][0] == UNARY_PREFIX && ast[2][1] == PLUS) {
readType = ASM_DOUBLE;
readValue = ast[2][2];
} else if (ast[2][0] == CALL && ast[2][1][0] == NAME && ast[2][1][1] == Math_fround) {
readType = ASM_FLOAT;
readValue = ast[2][2][0];
}
if (readType != ASM_NONE) {
if (readValue[0] == SUB && readValue[1][0] == NAME && readValue[2][0] == BINARY && readValue[2][1] == RSHIFT &&
readValue[2][2][0] == NAME && readValue[2][2][1] == tempDoublePtr && readValue[2][3][0] == NUM && readValue[2][3][1]->getNumber() == 2) {
// pattern looks right!
Ref writtenValue = ast[1][3];
if (writeType == ASM_INT && (readType == ASM_FLOAT || readType == ASM_DOUBLE)) {
auto conv = allocator.alloc<Unary>();
conv->op = ReinterpretInt;
conv->value = process(writtenValue);
conv->type = WasmType::f32;
if (readType == ASM_DOUBLE) {
auto promote = allocator.alloc<Unary>();
promote->op = PromoteFloat32;
promote->value = conv;
promote->type = WasmType::f64;
return promote;
}
return conv;
} else if (writeType == ASM_FLOAT && readType == ASM_INT) {
auto conv = allocator.alloc<Unary>();
conv->op = ReinterpretFloat;
conv->value = process(writtenValue);
conv->type = WasmType::i32;
return conv;
}
}
}
}
}
auto ret = allocator.alloc<Block>();
ret->list.push_back(process(ast[1]));
ret->list.push_back(process(ast[2]));
ret->finalize();
return ret;
} else if (what == SWITCH) {
IString name; // for breaking out of the entire switch
if (!parentLabel.isNull()) {
name = getBreakLabelName(parentLabel);
parentLabel = IString();
} else {
name = getNextId("switch");
}
breakStack.push_back(name);
auto br = allocator.alloc<Switch>();
br->condition = process(ast[1]);
assert(br->condition->type == i32);
Ref cases = ast[2];
bool seen = false;
int min = 0; // the lowest index we see; we will offset to it
for (unsigned i = 0; i < cases->size(); i++) {
Ref curr = cases[i];
Ref condition = curr[0];
if (!condition->isNull()) {
assert(condition[0] == NUM || condition[0] == UNARY_PREFIX);
int32_t index = getLiteral(condition).geti32();
if (!seen) {
seen = true;
min = index;
} else {
if (index < min) min = index;
}
}
}
Binary* offsetor = allocator.alloc<Binary>();
offsetor->op = BinaryOp::Sub;
offsetor->left = br->condition;
offsetor->right = allocator.alloc<Const>()->set(Literal(min));
offsetor->type = i32;
br->condition = offsetor;
auto top = allocator.alloc<Block>();
top->list.push_back(br);
top->finalize();
for (unsigned i = 0; i < cases->size(); i++) {
Ref curr = cases[i];
Ref condition = curr[0];
Ref body = curr[1];
auto case_ = processStatements(body, 0);
Name name;
if (condition->isNull()) {
name = br->default_ = getNextId("switch-default");
} else {
assert(condition[0] == NUM || condition[0] == UNARY_PREFIX);
int32_t index = getLiteral(condition).geti32();
assert(index >= min);
index -= min;
assert(index >= 0);
size_t index_s = index;
name = getNextId("switch-case");
if (br->targets.size() <= index_s) {
br->targets.resize(index_s+1);
}
br->targets[index_s] = name;
}
auto next = allocator.alloc<Block>();
top->name = name;
next->list.push_back(top);
next->list.push_back(case_);
next->finalize();
top = next;
}
// ensure a default
if (br->default_.isNull()) {
br->default_ = getNextId("switch-default");
}
for (size_t i = 0; i < br->targets.size(); i++) {
if (br->targets[i].isNull()) br->targets[i] = br->default_;
}
top->name = br->default_;
breakStack.pop_back();
// Create a topmost block for breaking out of the entire switch
auto ret = allocator.alloc<Block>();
ret->name = name;
ret->list.push_back(top);
return ret;
}
abort_on("confusing expression", ast);
return (Expression*)nullptr; // avoid warning
};
// given HEAP32[addr >> 2], we need an absolute address, and would like to remove that shift.
// if there is a shift, we can just look through it, etc.
processUnshifted = [&](Ref ptr, unsigned bytes) {
auto shifts = bytesToShift(bytes);
if (ptr[0] == BINARY && ptr[1] == RSHIFT && ptr[3][0] == NUM && ptr[3][1]->getInteger() == shifts) {
return process(ptr[2]); // look through it
} else if (ptr[0] == NUM) {
// constant, apply a shift (e.g. HEAP32[1] is address 4)
unsigned addr = ptr[1]->getInteger();
unsigned shifted = addr << shifts;
auto ret = allocator.alloc<Const>();
ret->value = Literal(int32_t(shifted));
return (Expression*)ret;
}
abort_on("bad processUnshifted", ptr);
return (Expression*)nullptr; // avoid warning
};
processStatements = [&](Ref ast, unsigned from) -> Expression* {
unsigned size = ast->size() - from;
if (size == 0) return allocator.alloc<Nop>();
if (size == 1) return process(ast[from]);
auto block = allocator.alloc<Block>();
for (unsigned i = from; i < ast->size(); i++) {
block->list.push_back(process(ast[i]));
}
block->finalize();
return block;
};
// body
function->body = processStatements(body, start);
// cleanups/checks
assert(breakStack.size() == 0 && continueStack.size() == 0);
assert(parentLabel.isNull());
return function;
}
void Asm2WasmBuilder::optimize() {
PassRunner passRunner(&allocator);
passRunner.addDefaultOptimizationPasses();
if (maxGlobal < 1024) {
passRunner.add("post-emscripten");
}
passRunner.run(&wasm);
}
} // namespace wasm
#endif // wasm_asm2wasm_h
|