summaryrefslogtreecommitdiff
path: root/src/binaryen-c.cpp
blob: d01c4329c9f3f5e1b29a1b01205d918e99556705 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
/*
 * Copyright 2016 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//===============================
// Binaryen C API implementation
//===============================

#include <mutex>

#include "binaryen-c.h"
#include "pass.h"
#include "wasm.h"
#include "wasm-binary.h"
#include "wasm-builder.h"
#include "wasm-interpreter.h"
#include "wasm-printing.h"
#include "wasm-validator.h"
#include "cfg/Relooper.h"
#include "shell-interface.h"

using namespace wasm;

// Literal utilities

static_assert(sizeof(BinaryenLiteral) == sizeof(Literal), "Binaryen C API literal must match wasm.h");

BinaryenLiteral toBinaryenLiteral(Literal x) {
  BinaryenLiteral ret;
  ret.type = x.type;
  switch (x.type) {
    case WasmType::i32: ret.i32 = x.geti32(); break;
    case WasmType::i64: ret.i64 = x.geti64(); break;
    case WasmType::f32: ret.i32 = x.reinterpreti32(); break;
    case WasmType::f64: ret.i64 = x.reinterpreti64(); break;
    default: abort();
  }
  return ret;
}

Literal fromBinaryenLiteral(BinaryenLiteral x) {
  switch (x.type) {
    case WasmType::i32: return Literal(x.i32);
    case WasmType::i64: return Literal(x.i64);
    case WasmType::f32: return Literal(x.i32).castToF32();
    case WasmType::f64: return Literal(x.i64).castToF64();
    default: abort();
  }
}

// Tracing support

static int tracing = 0;

void traceNameOrNULL(const char *name) {
  if (name) std::cout << "\"" << name << "\"";
  else std::cout << "NULL";
}

std::map<BinaryenFunctionTypeRef, size_t> functionTypes;
std::map<BinaryenExpressionRef, size_t> expressions;
std::map<BinaryenFunctionRef, size_t> functions;
std::map<RelooperBlockRef, size_t> relooperBlocks;

size_t noteExpression(BinaryenExpressionRef expression) {
  auto id = expressions.size();
  assert(expressions.find(expression) == expressions.end());
  expressions[expression] = id;
  return id;
}

extern "C" {

//
// ========== Module Creation ==========
//

// Core types

BinaryenType BinaryenNone(void) { return none; }
BinaryenType BinaryenInt32(void) { return i32; }
BinaryenType BinaryenInt64(void) { return i64; }
BinaryenType BinaryenFloat32(void) { return f32; }
BinaryenType BinaryenFloat64(void) { return f64; }

// Modules

BinaryenModuleRef BinaryenModuleCreate(void) {
  if (tracing) {
    std::cout << "  the_module = BinaryenModuleCreate();\n";
    std::cout << "  expressions[size_t(NULL)] = BinaryenExpressionRef(NULL);\n";
    expressions[NULL] = 0;
  }

  return new Module();
}
void BinaryenModuleDispose(BinaryenModuleRef module) {
  if (tracing) {
    std::cout << "  BinaryenModuleDispose(the_module);\n";
    std::cout << "  functionTypes.clear();\n";
    std::cout << "  expressions.clear();\n";
    std::cout << "  functions.clear();\n";
    std::cout << "  relooperBlocks.clear();\n";
    functionTypes.clear();
    expressions.clear();
    functions.clear();
    relooperBlocks.clear();
  }

  delete (Module*)module;
}

// Function types

BinaryenFunctionTypeRef BinaryenAddFunctionType(BinaryenModuleRef module, const char* name, BinaryenType result, BinaryenType* paramTypes, BinaryenIndex numParams) {
  auto* wasm = (Module*)module;
  auto* ret = new FunctionType;
  if (name) ret->name = name;
  else ret->name = Name::fromInt(wasm->functionTypes.size());
  ret->result = WasmType(result);
  for (BinaryenIndex i = 0; i < numParams; i++) {
    ret->params.push_back(WasmType(paramTypes[i]));
  }

  // Lock. This can be called from multiple threads at once, and is a
  // point where they all access and modify the module.
  static std::mutex BinaryenAddFunctionTypeMutex;
  {
    std::lock_guard<std::mutex> lock(BinaryenAddFunctionTypeMutex);
    wasm->addFunctionType(ret);
  }

  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    BinaryenIndex paramTypes[] = { ";
    for (BinaryenIndex i = 0; i < numParams; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << paramTypes[i];
    }
    if (numParams == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    size_t id = functionTypes.size();
    std::cout << "    functionTypes[" << id << "] = BinaryenAddFunctionType(the_module, ";
    functionTypes[ret] = id;
    traceNameOrNULL(name);
    std::cout << ", " << result << ", paramTypes, " << numParams << ");\n";
    std::cout << "  }\n";
  }

  return ret;
}

BinaryenLiteral BinaryenLiteralInt32(int32_t x) { return toBinaryenLiteral(Literal(x)); }
BinaryenLiteral BinaryenLiteralInt64(int64_t x) { return toBinaryenLiteral(Literal(x)); }
BinaryenLiteral BinaryenLiteralFloat32(float x) { return toBinaryenLiteral(Literal(x)); }
BinaryenLiteral BinaryenLiteralFloat64(double x) { return toBinaryenLiteral(Literal(x)); }
BinaryenLiteral BinaryenLiteralFloat32Bits(int32_t x) { return toBinaryenLiteral(Literal(x).castToF32()); }
BinaryenLiteral BinaryenLiteralFloat64Bits(int64_t x) { return toBinaryenLiteral(Literal(x).castToF64()); }

// Expressions

BinaryenOp BinaryenClzInt32(void) { return ClzInt32; }
BinaryenOp BinaryenCtzInt32(void) { return CtzInt32; }
BinaryenOp BinaryenPopcntInt32(void) { return PopcntInt32; }
BinaryenOp BinaryenNegFloat32(void) { return NegFloat32; }
BinaryenOp BinaryenAbsFloat32(void) { return AbsFloat32; }
BinaryenOp BinaryenCeilFloat32(void) { return CeilFloat32; }
BinaryenOp BinaryenFloorFloat32(void) { return FloorFloat32; }
BinaryenOp BinaryenTruncFloat32(void) { return TruncFloat32; }
BinaryenOp BinaryenNearestFloat32(void) { return NearestFloat32; }
BinaryenOp BinaryenSqrtFloat32(void) { return SqrtFloat32; }
BinaryenOp BinaryenEqZInt32(void) { return EqZInt32; }
BinaryenOp BinaryenClzInt64(void) { return ClzInt64; }
BinaryenOp BinaryenCtzInt64(void) { return CtzInt64; }
BinaryenOp BinaryenPopcntInt64(void) { return PopcntInt64; }
BinaryenOp BinaryenNegFloat64(void) { return NegFloat64; }
BinaryenOp BinaryenAbsFloat64(void) { return AbsFloat64; }
BinaryenOp BinaryenCeilFloat64(void) { return CeilFloat64; }
BinaryenOp BinaryenFloorFloat64(void) { return FloorFloat64; }
BinaryenOp BinaryenTruncFloat64(void) { return TruncFloat64; }
BinaryenOp BinaryenNearestFloat64(void) { return NearestFloat64; }
BinaryenOp BinaryenSqrtFloat64(void) { return SqrtFloat64; }
BinaryenOp BinaryenEqZInt64(void) { return EqZInt64; }
BinaryenOp BinaryenExtendSInt32(void) { return ExtendSInt32; }
BinaryenOp BinaryenExtendUInt32(void) { return ExtendUInt32; }
BinaryenOp BinaryenWrapInt64(void) { return WrapInt64; }
BinaryenOp BinaryenTruncSFloat32ToInt32(void) { return TruncSFloat32ToInt32; }
BinaryenOp BinaryenTruncSFloat32ToInt64(void) { return TruncSFloat32ToInt64; }
BinaryenOp BinaryenTruncUFloat32ToInt32(void) { return TruncUFloat32ToInt32; }
BinaryenOp BinaryenTruncUFloat32ToInt64(void) { return TruncUFloat32ToInt64; }
BinaryenOp BinaryenTruncSFloat64ToInt32(void) { return TruncSFloat64ToInt32; }
BinaryenOp BinaryenTruncSFloat64ToInt64(void) { return TruncSFloat64ToInt64; }
BinaryenOp BinaryenTruncUFloat64ToInt32(void) { return TruncUFloat64ToInt32; }
BinaryenOp BinaryenTruncUFloat64ToInt64(void) { return TruncUFloat64ToInt64; }
BinaryenOp BinaryenReinterpretFloat32(void) { return ReinterpretFloat32; }
BinaryenOp BinaryenReinterpretFloat64(void) { return ReinterpretFloat64; }
BinaryenOp BinaryenConvertSInt32ToFloat32(void) { return ConvertSInt32ToFloat32; }
BinaryenOp BinaryenConvertSInt32ToFloat64(void) { return ConvertSInt32ToFloat64; }
BinaryenOp BinaryenConvertUInt32ToFloat32(void) { return ConvertUInt32ToFloat32; }
BinaryenOp BinaryenConvertUInt32ToFloat64(void) { return ConvertUInt32ToFloat64; }
BinaryenOp BinaryenConvertSInt64ToFloat32(void) { return ConvertSInt64ToFloat32; }
BinaryenOp BinaryenConvertSInt64ToFloat64(void) { return ConvertSInt64ToFloat64; }
BinaryenOp BinaryenConvertUInt64ToFloat32(void) { return ConvertUInt64ToFloat32; }
BinaryenOp BinaryenConvertUInt64ToFloat64(void) { return ConvertUInt64ToFloat64; }
BinaryenOp BinaryenPromoteFloat32(void) { return PromoteFloat32; }
BinaryenOp BinaryenDemoteFloat64(void) { return DemoteFloat64; }
BinaryenOp BinaryenReinterpretInt32(void) { return ReinterpretInt32; }
BinaryenOp BinaryenReinterpretInt64(void) { return ReinterpretInt64; }
BinaryenOp BinaryenAddInt32(void) { return AddInt32; }
BinaryenOp BinaryenSubInt32(void) { return SubInt32; }
BinaryenOp BinaryenMulInt32(void) { return MulInt32; }
BinaryenOp BinaryenDivSInt32(void) { return DivSInt32; }
BinaryenOp BinaryenDivUInt32(void) { return DivUInt32; }
BinaryenOp BinaryenRemSInt32(void) { return RemSInt32; }
BinaryenOp BinaryenRemUInt32(void) { return RemUInt32; }
BinaryenOp BinaryenAndInt32(void) { return AndInt32; }
BinaryenOp BinaryenOrInt32(void) { return OrInt32; }
BinaryenOp BinaryenXorInt32(void) { return XorInt32; }
BinaryenOp BinaryenShlInt32(void) { return ShlInt32; }
BinaryenOp BinaryenShrUInt32(void) { return ShrUInt32; }
BinaryenOp BinaryenShrSInt32(void) { return ShrSInt32; }
BinaryenOp BinaryenRotLInt32(void) { return RotLInt32; }
BinaryenOp BinaryenRotRInt32(void) { return RotRInt32; }
BinaryenOp BinaryenEqInt32(void) { return EqInt32; }
BinaryenOp BinaryenNeInt32(void) { return NeInt32; }
BinaryenOp BinaryenLtSInt32(void) { return LtSInt32; }
BinaryenOp BinaryenLtUInt32(void) { return LtUInt32; }
BinaryenOp BinaryenLeSInt32(void) { return LeSInt32; }
BinaryenOp BinaryenLeUInt32(void) { return LeUInt32; }
BinaryenOp BinaryenGtSInt32(void) { return GtSInt32; }
BinaryenOp BinaryenGtUInt32(void) { return GtUInt32; }
BinaryenOp BinaryenGeSInt32(void) { return GeSInt32; }
BinaryenOp BinaryenGeUInt32(void) { return GeUInt32; }
BinaryenOp BinaryenAddInt64(void) { return AddInt64; }
BinaryenOp BinaryenSubInt64(void) { return SubInt64; }
BinaryenOp BinaryenMulInt64(void) { return MulInt64; }
BinaryenOp BinaryenDivSInt64(void) { return DivSInt64; }
BinaryenOp BinaryenDivUInt64(void) { return DivUInt64; }
BinaryenOp BinaryenRemSInt64(void) { return RemSInt64; }
BinaryenOp BinaryenRemUInt64(void) { return RemUInt64; }
BinaryenOp BinaryenAndInt64(void) { return AndInt64; }
BinaryenOp BinaryenOrInt64(void) { return OrInt64; }
BinaryenOp BinaryenXorInt64(void) { return XorInt64; }
BinaryenOp BinaryenShlInt64(void) { return ShlInt64; }
BinaryenOp BinaryenShrUInt64(void) { return ShrUInt64; }
BinaryenOp BinaryenShrSInt64(void) { return ShrSInt64; }
BinaryenOp BinaryenRotLInt64(void) { return RotLInt64; }
BinaryenOp BinaryenRotRInt64(void) { return RotRInt64; }
BinaryenOp BinaryenEqInt64(void) { return EqInt64; }
BinaryenOp BinaryenNeInt64(void) { return NeInt64; }
BinaryenOp BinaryenLtSInt64(void) { return LtSInt64; }
BinaryenOp BinaryenLtUInt64(void) { return LtUInt64; }
BinaryenOp BinaryenLeSInt64(void) { return LeSInt64; }
BinaryenOp BinaryenLeUInt64(void) { return LeUInt64; }
BinaryenOp BinaryenGtSInt64(void) { return GtSInt64; }
BinaryenOp BinaryenGtUInt64(void) { return GtUInt64; }
BinaryenOp BinaryenGeSInt64(void) { return GeSInt64; }
BinaryenOp BinaryenGeUInt64(void) { return GeUInt64; }
BinaryenOp BinaryenAddFloat32(void) { return AddFloat32; }
BinaryenOp BinaryenSubFloat32(void) { return SubFloat32; }
BinaryenOp BinaryenMulFloat32(void) { return MulFloat32; }
BinaryenOp BinaryenDivFloat32(void) { return DivFloat32; }
BinaryenOp BinaryenCopySignFloat32(void) { return CopySignFloat32; }
BinaryenOp BinaryenMinFloat32(void) { return MinFloat32; }
BinaryenOp BinaryenMaxFloat32(void) { return MaxFloat32; }
BinaryenOp BinaryenEqFloat32(void) { return EqFloat32; }
BinaryenOp BinaryenNeFloat32(void) { return NeFloat32; }
BinaryenOp BinaryenLtFloat32(void) { return LtFloat32; }
BinaryenOp BinaryenLeFloat32(void) { return LeFloat32; }
BinaryenOp BinaryenGtFloat32(void) { return GtFloat32; }
BinaryenOp BinaryenGeFloat32(void) { return GeFloat32; }
BinaryenOp BinaryenAddFloat64(void) { return AddFloat64; }
BinaryenOp BinaryenSubFloat64(void) { return SubFloat64; }
BinaryenOp BinaryenMulFloat64(void) { return MulFloat64; }
BinaryenOp BinaryenDivFloat64(void) { return DivFloat64; }
BinaryenOp BinaryenCopySignFloat64(void) { return CopySignFloat64; }
BinaryenOp BinaryenMinFloat64(void) { return MinFloat64; }
BinaryenOp BinaryenMaxFloat64(void) { return MaxFloat64; }
BinaryenOp BinaryenEqFloat64(void) { return EqFloat64; }
BinaryenOp BinaryenNeFloat64(void) { return NeFloat64; }
BinaryenOp BinaryenLtFloat64(void) { return LtFloat64; }
BinaryenOp BinaryenLeFloat64(void) { return LeFloat64; }
BinaryenOp BinaryenGtFloat64(void) { return GtFloat64; }
BinaryenOp BinaryenGeFloat64(void) { return GeFloat64; }
BinaryenOp BinaryenPageSize(void) { return PageSize; }
BinaryenOp BinaryenCurrentMemory(void) { return CurrentMemory; }
BinaryenOp BinaryenGrowMemory(void) { return GrowMemory; }
BinaryenOp BinaryenHasFeature(void) { return HasFeature; }

BinaryenExpressionRef BinaryenBlock(BinaryenModuleRef module, const char* name, BinaryenExpressionRef* children, BinaryenIndex numChildren) {
  auto* ret = ((Module*)module)->allocator.alloc<Block>();
  if (name) ret->name = name;
  for (BinaryenIndex i = 0; i < numChildren; i++) {
    ret->list.push_back((Expression*)children[i]);
  }
  ret->finalize();

  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    BinaryenExpressionRef children[] = { ";
    for (BinaryenIndex i = 0; i < numChildren; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << "expressions[" << expressions[children[i]] << "]";
    }
    if (numChildren == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    auto id = noteExpression(ret);
    std::cout << "    expressions[" << id << "] = BinaryenBlock(the_module, ";
    traceNameOrNULL(name);
    std::cout << ", children, " << numChildren << ");\n";
    std::cout << "  }\n";
  }

  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenIf(BinaryenModuleRef module, BinaryenExpressionRef condition, BinaryenExpressionRef ifTrue, BinaryenExpressionRef ifFalse) {
  auto* ret = ((Module*)module)->allocator.alloc<If>();
  ret->condition = (Expression*)condition;
  ret->ifTrue = (Expression*)ifTrue;
  ret->ifFalse = (Expression*)ifFalse;
  ret->finalize();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "    expressions[" << id << "] = BinaryenIf(the_module, expressions[" << expressions[condition] << "], expressions[" << expressions[ifTrue] << "], expressions[" << expressions[ifFalse] << "]);\n";
  }

  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenLoop(BinaryenModuleRef module, const char* name, BinaryenExpressionRef body) {
  auto* ret = Builder(*((Module*)module)).makeLoop(name ? Name(name) : Name(), (Expression*)body);

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "    expressions[" << id << "] = BinaryenLoop(the_module, ";
    traceNameOrNULL(name);
    std::cout << ", expressions[" << expressions[body] << "]);\n";
  }

  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenBreak(BinaryenModuleRef module, const char* name, BinaryenExpressionRef condition, BinaryenExpressionRef value) {
  auto* ret = Builder(*((Module*)module)).makeBreak(name, (Expression*)value, (Expression*)condition);

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "    expressions[" << id << "] = BinaryenBreak(the_module, \"" << name << "\", expressions[" << expressions[condition] << "], expressions[" << expressions[value] << "]);\n";
  }

  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenSwitch(BinaryenModuleRef module, const char **names, BinaryenIndex numNames, const char* defaultName, BinaryenExpressionRef condition, BinaryenExpressionRef value) {
  auto* ret = ((Module*)module)->allocator.alloc<Switch>();

  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    const char* names[] = { ";
    for (BinaryenIndex i = 0; i < numNames; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << "\"" << names[i] << "\"";
    }
    if (numNames == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    auto id = noteExpression(ret);
    std::cout << "    expressions[" << id << "] = BinaryenSwitch(the_module, names, " << numNames << ", \"" << defaultName << "\", expressions[" << expressions[condition] << "], expressions[" << expressions[value] << "]);\n";
    std::cout << "  }\n";
  }

  for (BinaryenIndex i = 0; i < numNames; i++) {
    ret->targets.push_back(names[i]);
  }
  ret->default_ = defaultName;
  ret->condition = (Expression*)condition;
  ret->value = (Expression*)value;
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenCall(BinaryenModuleRef module, const char *target, BinaryenExpressionRef* operands, BinaryenIndex numOperands, BinaryenType returnType) {
  auto* ret = ((Module*)module)->allocator.alloc<Call>();

  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    BinaryenExpressionRef operands[] = { ";
    for (BinaryenIndex i = 0; i < numOperands; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << "expressions[" << expressions[operands[i]] << "]";
    }
    if (numOperands == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    auto id = noteExpression(ret);
    std::cout << "    expressions[" << id << "] = BinaryenCall(the_module, \"" << target << "\", operands, " << numOperands << ", " << returnType << ");\n";
    std::cout << "  }\n";
  }

  ret->target = target;
  for (BinaryenIndex i = 0; i < numOperands; i++) {
    ret->operands.push_back((Expression*)operands[i]);
  }
  ret->type = WasmType(returnType);
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenCallImport(BinaryenModuleRef module, const char *target, BinaryenExpressionRef* operands, BinaryenIndex numOperands, BinaryenType returnType) {
  auto* ret = ((Module*)module)->allocator.alloc<CallImport>();

  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    BinaryenExpressionRef operands[] = { ";
    for (BinaryenIndex i = 0; i < numOperands; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << "expressions[" << expressions[operands[i]] << "]";
    }
    if (numOperands == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    auto id = noteExpression(ret);
    std::cout << "    expressions[" << id << "] = BinaryenCallImport(the_module, \"" << target << "\", operands, " << numOperands << ", " << returnType << ");\n";
    std::cout << "  }\n";
  }

  ret->target = target;
  for (BinaryenIndex i = 0; i < numOperands; i++) {
    ret->operands.push_back((Expression*)operands[i]);
  }
  ret->type = WasmType(returnType);
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenCallIndirect(BinaryenModuleRef module, BinaryenExpressionRef target, BinaryenExpressionRef* operands, BinaryenIndex numOperands, const char* type) {
  auto* wasm = (Module*)module;
  auto* ret = wasm->allocator.alloc<CallIndirect>();

  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    BinaryenExpressionRef operands[] = { ";
    for (BinaryenIndex i = 0; i < numOperands; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << "expressions[" << expressions[operands[i]] << "]";
    }
    if (numOperands == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    auto id = noteExpression(ret);
    std::cout << "    expressions[" << id << "] = BinaryenCallIndirect(the_module, expressions[" << expressions[target] << "], operands, " << numOperands << ", \"" << type << "\");\n";
    std::cout << "  }\n";
  }

  ret->target = (Expression*)target;
  for (BinaryenIndex i = 0; i < numOperands; i++) {
    ret->operands.push_back((Expression*)operands[i]);
  }
  ret->fullType = type;
  ret->type = wasm->getFunctionType(ret->fullType)->result;
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenGetLocal(BinaryenModuleRef module, BinaryenIndex index, BinaryenType type) {
  auto* ret = ((Module*)module)->allocator.alloc<GetLocal>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenGetLocal(the_module, " << index << ", " << type << ");\n";
  }

  ret->index = index;
  ret->type = WasmType(type);
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenSetLocal(BinaryenModuleRef module, BinaryenIndex index, BinaryenExpressionRef value) {
  auto* ret = ((Module*)module)->allocator.alloc<SetLocal>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenSetLocal(the_module, " << index << ", expressions[" << expressions[value] << "]);\n";
  }

  ret->index = index;
  ret->value = (Expression*)value;
  ret->setTee(false);
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenTeeLocal(BinaryenModuleRef module, BinaryenIndex index, BinaryenExpressionRef value) {
  auto* ret = ((Module*)module)->allocator.alloc<SetLocal>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenTeeLocal(the_module, " << index << ", expressions[" << expressions[value] << "]);\n";
  }

  ret->index = index;
  ret->value = (Expression*)value;
  ret->setTee(true);
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenLoad(BinaryenModuleRef module, uint32_t bytes, int8_t signed_, uint32_t offset, uint32_t align, BinaryenType type, BinaryenExpressionRef ptr) {
  auto* ret = ((Module*)module)->allocator.alloc<Load>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenLoad(the_module, " << bytes << ", " << int(signed_) << ", " << offset << ", " << align << ", " << type << ", expressions[" << expressions[ptr] << "]);\n";
  }

  ret->bytes = bytes;
  ret->signed_ = !!signed_;
  ret->offset = offset;
  ret->align = align ? align : bytes;
  ret->type = WasmType(type);
  ret->ptr = (Expression*)ptr;
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenStore(BinaryenModuleRef module, uint32_t bytes, uint32_t offset, uint32_t align, BinaryenExpressionRef ptr, BinaryenExpressionRef value, BinaryenType type) {
  auto* ret = ((Module*)module)->allocator.alloc<Store>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenStore(the_module, " << bytes << ", " << offset << ", " << align << ", expressions[" << expressions[ptr] << "], expressions[" << expressions[value] << "], " << type << ");\n";
  }

  ret->bytes = bytes;
  ret->offset = offset;
  ret->align = align ? align : bytes;
  ret->ptr = (Expression*)ptr;
  ret->value = (Expression*)value;
  ret->valueType = WasmType(type);
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenConst(BinaryenModuleRef module, BinaryenLiteral value) {
  auto* ret = Builder(*((Module*)module)).makeConst(fromBinaryenLiteral(value));
  if (tracing) {
    auto id = noteExpression(ret);
    switch (value.type) {
      case WasmType::i32: std::cout << "  expressions[" << id << "] = BinaryenConst(the_module, BinaryenLiteralInt32(" << value.i32 << "));\n"; break;
      case WasmType::i64: std::cout << "  expressions[" << id << "] = BinaryenConst(the_module, BinaryenLiteralInt64(" << value.i64 << "));\n"; break;
      case WasmType::f32: {
        std::cout << "  expressions[" << id << "] = BinaryenConst(the_module, BinaryenLiteralFloat32(";
        if (std::isnan(value.f32)) std::cout << "NAN";
        else std::cout << value.f32;
        std::cout << "));\n";
        break;
      }
      case WasmType::f64: {
        std::cout << "  expressions[" << id << "] = BinaryenConst(the_module, BinaryenLiteralFloat64(";
        if (std::isnan(value.f64)) std::cout << "NAN";
        else std::cout << value.f64;
        std::cout << "));\n";
        break;
      }
      default: WASM_UNREACHABLE();
    }
  }
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenUnary(BinaryenModuleRef module, BinaryenOp op, BinaryenExpressionRef value) {
  auto* ret = Builder(*((Module*)module)).makeUnary(UnaryOp(op), (Expression*)value);

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenUnary(the_module, " << op << ", expressions[" << expressions[value] << "]);\n";
  }

  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenBinary(BinaryenModuleRef module, BinaryenOp op, BinaryenExpressionRef left, BinaryenExpressionRef right) {
  auto* ret = Builder(*((Module*)module)).makeBinary(BinaryOp(op), (Expression*)left, (Expression*)right);

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenBinary(the_module, " << op << ", expressions[" << expressions[left] << "], expressions[" << expressions[right] << "]);\n";
  }

  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenSelect(BinaryenModuleRef module, BinaryenExpressionRef condition, BinaryenExpressionRef ifTrue, BinaryenExpressionRef ifFalse) {
  auto* ret = ((Module*)module)->allocator.alloc<Select>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenSelect(the_module, expressions[" << expressions[condition] << "], expressions[" << expressions[ifTrue] << "], expressions[" << expressions[ifFalse] << "]);\n";
  }

  ret->condition = (Expression*)condition;
  ret->ifTrue = (Expression*)ifTrue;
  ret->ifFalse = (Expression*)ifFalse;
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenDrop(BinaryenModuleRef module, BinaryenExpressionRef value) {
  auto* ret = ((Module*)module)->allocator.alloc<Drop>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenDrop(the_module, expressions[" << expressions[value] << "]);\n";
  }

  ret->value = (Expression*)value;
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenReturn(BinaryenModuleRef module, BinaryenExpressionRef value) {
  auto* ret = Builder(*((Module*)module)).makeReturn((Expression*)value);
 
  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenReturn(the_module, expressions[" << expressions[value] << "]);\n";
  }

 return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenHost(BinaryenModuleRef module, BinaryenOp op, const char* name, BinaryenExpressionRef* operands, BinaryenIndex numOperands) {
  if (tracing) {
    std::cout << "  TODO: host...\n";
  }

  auto* ret = ((Module*)module)->allocator.alloc<Host>();
  ret->op = HostOp(op);
  if (name) ret->nameOperand = name;
  for (BinaryenIndex i = 0; i < numOperands; i++) {
    ret->operands.push_back((Expression*)operands[i]);
  }
  ret->finalize();
  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenNop(BinaryenModuleRef module) {
  auto* ret = ((Module*)module)->allocator.alloc<Nop>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenNop(the_module);\n";
  }

  return static_cast<Expression*>(ret);
}
BinaryenExpressionRef BinaryenUnreachable(BinaryenModuleRef module) {
  auto* ret = ((Module*)module)->allocator.alloc<Unreachable>();

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = BinaryenUnreachable(the_module);\n";
  }

  return static_cast<Expression*>(ret);
}

void BinaryenExpressionPrint(BinaryenExpressionRef expr) {
  if (tracing) {
    std::cout << "  BinaryenExpressionPrint(expressions[" << expressions[expr] << "]);\n";
  }

  WasmPrinter::printExpression((Expression*)expr, std::cout);
  std::cout << '\n';
}

// Functions

BinaryenFunctionRef BinaryenAddFunction(BinaryenModuleRef module, const char* name, BinaryenFunctionTypeRef type, BinaryenType* varTypes, BinaryenIndex numVarTypes, BinaryenExpressionRef body) {
  auto* wasm = (Module*)module;
  auto* ret = new Function;

  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    BinaryenType varTypes[] = { ";
    for (BinaryenIndex i = 0; i < numVarTypes; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << varTypes[i];
    }
    if (numVarTypes == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    auto id = functions.size();
    functions[ret] = id;
    std::cout << "    functions[" << id << "] = BinaryenAddFunction(the_module, \"" << name << "\", functionTypes[" << functionTypes[type] << "], varTypes, " << numVarTypes << ", expressions[" << expressions[body] << "]);\n";
    std::cout << "  }\n";
  }

  ret->name = name;
  ret->type = ((FunctionType*)type)->name;
  auto* functionType = wasm->getFunctionType(ret->type);
  ret->result = functionType->result;
  ret->params = functionType->params;
  for (BinaryenIndex i = 0; i < numVarTypes; i++) {
    ret->vars.push_back(WasmType(varTypes[i]));
  }
  ret->body = (Expression*)body;

  // Lock. This can be called from multiple threads at once, and is a
  // point where they all access and modify the module.
  static std::mutex BinaryenAddFunctionMutex;
  {
    std::lock_guard<std::mutex> lock(BinaryenAddFunctionMutex);
    wasm->addFunction(ret);
  }

  return ret;
}

// Imports

BinaryenImportRef BinaryenAddImport(BinaryenModuleRef module, const char* internalName, const char* externalModuleName, const char *externalBaseName, BinaryenFunctionTypeRef type) {
  if (tracing) {
    std::cout << "  BinaryenAddImport(the_module, \"" << internalName << "\", \"" << externalModuleName << "\", \"" << externalBaseName << "\", functionTypes[" << functionTypes[type] << "]);\n";
  }

  auto* wasm = (Module*)module;
  auto* ret = new Import();
  ret->name = internalName;
  ret->module = externalModuleName;
  ret->base = externalBaseName;
  ret->functionType = ((FunctionType*)type)->name;
  ret->kind = ExternalKind::Function;
  wasm->addImport(ret);
  return ret;
}

// Exports

BinaryenExportRef BinaryenAddExport(BinaryenModuleRef module, const char* internalName, const char* externalName) {
  if (tracing) {
    std::cout << "  BinaryenAddExport(the_module, \"" << internalName << "\", \"" << externalName << "\");\n";
  }

  auto* wasm = (Module*)module;
  auto* ret = new Export();
  ret->value = internalName;
  ret->name = externalName;
  wasm->addExport(ret);
  return ret;
}

// Function table. One per module

void BinaryenSetFunctionTable(BinaryenModuleRef module, BinaryenFunctionRef* funcs, BinaryenIndex numFuncs) {
  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    BinaryenFunctionRef funcs[] = { ";
    for (BinaryenIndex i = 0; i < numFuncs; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << "functions[" << functions[funcs[i]] << "]";
    }
    if (numFuncs == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    std::cout << "    BinaryenSetFunctionTable(the_module, funcs, " << numFuncs << ");\n";
    std::cout << "  }\n";
  }

  auto* wasm = (Module*)module;
  wasm->table.exists = true;
  Table::Segment segment(wasm->allocator.alloc<Const>()->set(Literal(int32_t(0))));
  for (BinaryenIndex i = 0; i < numFuncs; i++) {
    segment.data.push_back(((Function*)funcs[i])->name);
  }
  wasm->table.segments.push_back(segment);
  wasm->table.initial = wasm->table.max = numFuncs;
}

// Memory. One per module

void BinaryenSetMemory(BinaryenModuleRef module, BinaryenIndex initial, BinaryenIndex maximum, const char* exportName, const char **segments, BinaryenExpressionRef* segmentOffsets, BinaryenIndex* segmentSizes, BinaryenIndex numSegments) {
  if (tracing) {
    std::cout << "  {\n";
    for (BinaryenIndex i = 0; i < numSegments; i++) {
      std::cout << "    const char segment" << i << "[] = { ";
      for (BinaryenIndex j = 0; j < segmentSizes[i]; j++) {
        if (j > 0) std::cout << ", ";
        std::cout << int(segments[i][j]);
      }
      std::cout << " };\n";
    }
    std::cout << "    const char* segments[] = { ";
    for (BinaryenIndex i = 0; i < numSegments; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << "segment" << i;
    }
    if (numSegments == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    std::cout << "    BinaryenExpressionRef segmentOffsets[] = { ";
    for (BinaryenIndex i = 0; i < numSegments; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << "expressions[" << expressions[segmentOffsets[i]] << "]";
    }
    if (numSegments == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    std::cout << "    BinaryenIndex segmentSizes[] = { ";
    for (BinaryenIndex i = 0; i < numSegments; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << segmentSizes[i];
    }
    if (numSegments == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    std::cout << "    BinaryenSetMemory(the_module, " << initial << ", " << maximum << ", ";
    traceNameOrNULL(exportName);
    std::cout << ", segments, segmentOffsets, segmentSizes, " << numSegments << ");\n";
    std::cout << "  }\n";
  }

  auto* wasm = (Module*)module;
  wasm->memory.initial = initial;
  wasm->memory.max = maximum;
  wasm->memory.exists = true;
  if (exportName) {
    auto memoryExport = make_unique<Export>();
    memoryExport->name = exportName;
    memoryExport->value = Name::fromInt(0);
    memoryExport->kind = ExternalKind::Memory;
    wasm->addExport(memoryExport.release());
  }
  for (BinaryenIndex i = 0; i < numSegments; i++) {
    wasm->memory.segments.emplace_back((Expression*)segmentOffsets[i], segments[i], segmentSizes[i]);
  }
}

// Start function. One per module

void BinaryenSetStart(BinaryenModuleRef module, BinaryenFunctionRef start) {
  if (tracing) {
    std::cout << "  BinaryenSetStart(the_module, functions[" << functions[start] << "]);\n";
  }

  auto* wasm = (Module*)module;
  wasm->addStart(((Function*)start)->name);
}

//
// ========== Module Operations ==========
//

void BinaryenModulePrint(BinaryenModuleRef module) {
  if (tracing) {
    std::cout << "  BinaryenModulePrint(the_module);\n";
  }

  WasmPrinter::printModule((Module*)module);
}

int BinaryenModuleValidate(BinaryenModuleRef module) {
  if (tracing) {
    std::cout << "  BinaryenModuleValidate(the_module);\n";
  }

  Module* wasm = (Module*)module;
  return WasmValidator().validate(*wasm) ? 1 : 0;
}

void BinaryenModuleOptimize(BinaryenModuleRef module) {
  if (tracing) {
    std::cout << "  BinaryenModuleOptimize(the_module);\n";
  }

  Module* wasm = (Module*)module;
  PassRunner passRunner(wasm);
  passRunner.addDefaultOptimizationPasses();
  passRunner.run();
}

void BinaryenModuleAutoDrop(BinaryenModuleRef module) {
  if (tracing) {
    std::cout << "  BinaryenModuleAutoDrop(the_module);\n";
  }

  Module* wasm = (Module*)module;
  PassRunner passRunner(wasm);
  passRunner.add<AutoDrop>();
  passRunner.run();
}

size_t BinaryenModuleWrite(BinaryenModuleRef module, char* output, size_t outputSize) {
  if (tracing) {
    std::cout << "  // BinaryenModuleWrite\n";
  }

  Module* wasm = (Module*)module;
  BufferWithRandomAccess buffer(false);
  WasmBinaryWriter writer(wasm, buffer, false);
  writer.write();
  size_t bytes = std::min(buffer.size(), outputSize);
  std::copy_n(buffer.begin(), bytes, output);
  return bytes;
}

BinaryenModuleRef BinaryenModuleRead(char* input, size_t inputSize) {
  if (tracing) {
    std::cout << "  // BinaryenModuleRead\n";
  }

  auto* wasm = new Module;
  std::vector<char> buffer(false);
  buffer.resize(inputSize);
  std::copy_n(input, inputSize, buffer.begin());
  try {
    WasmBinaryBuilder parser(*wasm, buffer, false);
    parser.read();
  } catch (ParseException& p) {
    p.dump(std::cerr);
    Fatal() << "error in parsing wasm binary";
  }
  return wasm;
}

void BinaryenModuleInterpret(BinaryenModuleRef module) {
  if (tracing) {
    std::cout << "  BinaryenModuleInterpret(the_module);\n";
  }

  Module* wasm = (Module*)module;
  ShellExternalInterface interface;
  ModuleInstance instance(*wasm, &interface);
}

//
// ========== CFG / Relooper ==========
//

RelooperRef RelooperCreate(void) {
  if (tracing) {
    std::cout << "  the_relooper = RelooperCreate();\n";
  }

  return RelooperRef(new CFG::Relooper());
}

RelooperBlockRef RelooperAddBlock(RelooperRef relooper, BinaryenExpressionRef code) {
  auto* R = (CFG::Relooper*)relooper;
  auto* ret = new CFG::Block((Expression*)code);

  if (tracing) {
    auto id = relooperBlocks.size();
    relooperBlocks[ret] = id;
    std::cout << "  relooperBlocks[" << id << "] = RelooperAddBlock(the_relooper, expressions[" << expressions[code] << "]);\n";
  }

  R->AddBlock(ret);
  return RelooperRef(ret);
}

void RelooperAddBranch(RelooperBlockRef from, RelooperBlockRef to, BinaryenExpressionRef condition, BinaryenExpressionRef code) {
  if (tracing) {
    std::cout << "  RelooperAddBranch(relooperBlocks[" << relooperBlocks[from] << "], relooperBlocks[" << relooperBlocks[to] << "], expressions[" << expressions[condition] << "], expressions[" << expressions[code] << "]);\n";
  }

  auto* fromBlock = (CFG::Block*)from;
  auto* toBlock = (CFG::Block*)to;
  fromBlock->AddBranchTo(toBlock, (Expression*)condition, (Expression*)code);
}

RelooperBlockRef RelooperAddBlockWithSwitch(RelooperRef relooper, BinaryenExpressionRef code, BinaryenExpressionRef condition) {
  auto* R = (CFG::Relooper*)relooper;
  auto* ret = new CFG::Block((Expression*)code, (Expression*)condition);

  if (tracing) {
    std::cout << "  relooperBlocks[" << relooperBlocks[ret] << "] = RelooperAddBlockWithSwitch(the_relooper, expressions[" << expressions[code] << "], expressions[" << expressions[condition] << "]);\n";
  }

  R->AddBlock(ret);
  return RelooperRef(ret);
}

void RelooperAddBranchForSwitch(RelooperBlockRef from, RelooperBlockRef to, BinaryenIndex* indexes, BinaryenIndex numIndexes, BinaryenExpressionRef code) {
  if (tracing) {
    std::cout << "  {\n";
    std::cout << "    BinaryenIndex indexes[] = { ";
    for (BinaryenIndex i = 0; i < numIndexes; i++) {
      if (i > 0) std::cout << ", ";
      std::cout << indexes[i];
    }
    if (numIndexes == 0) std::cout << "0"; // ensure the array is not empty, otherwise a compiler error on VS
    std::cout << " };\n";
    std::cout << "    RelooperAddBranchForSwitch(relooperBlocks[" << relooperBlocks[from] << "], relooperBlocks[" << relooperBlocks[to] << "], indexes, " << numIndexes << ", expressions[" << expressions[code] << "]);\n";
    std::cout << "  }\n";
  }

  auto* fromBlock = (CFG::Block*)from;
  auto* toBlock = (CFG::Block*)to;
  std::vector<Index> values;
  for (Index i = 0; i < numIndexes; i++) {
    values.push_back(indexes[i]);
  }
  fromBlock->AddSwitchBranchTo(toBlock, std::move(values), (Expression*)code);
}

BinaryenExpressionRef RelooperRenderAndDispose(RelooperRef relooper, RelooperBlockRef entry, BinaryenIndex labelHelper, BinaryenModuleRef module) {
  auto* R = (CFG::Relooper*)relooper;
  R->Calculate((CFG::Block*)entry);
  CFG::RelooperBuilder builder(*(Module*)module, labelHelper);
  auto* ret = R->Render(builder);

  if (tracing) {
    auto id = noteExpression(ret);
    std::cout << "  expressions[" << id << "] = RelooperRenderAndDispose(the_relooper, relooperBlocks[" << relooperBlocks[entry] << "], " << labelHelper << ", the_module);\n";
    relooperBlocks.clear();
  }

  delete R;
  return BinaryenExpressionRef(ret);
}

//
// ========= Other APIs =========
//

void BinaryenSetAPITracing(int on) {
  tracing = on;

  if (tracing) {
    std::cout << "// beginning a Binaryen API trace\n"
                 "#include <math.h>\n"
                 "#include <map>\n"
                 "#include \"src/binaryen-c.h\"\n"
                 "int main() {\n"
                 "  std::map<size_t, BinaryenFunctionTypeRef> functionTypes;\n"
                 "  std::map<size_t, BinaryenExpressionRef> expressions;\n"
                 "  std::map<size_t, BinaryenFunctionRef> functions;\n"
                 "  std::map<size_t, RelooperBlockRef> relooperBlocks;\n"
                 "  BinaryenModuleRef the_module = NULL;\n"
                 "  RelooperRef the_relooper = NULL;\n";
  } else {
    std::cout << "  return 0;\n";
    std::cout << "}\n";
  }
}

} // extern "C"