summaryrefslogtreecommitdiff
path: root/src/binaryen-c.h
blob: 6bd61ed533533d1f4eb73a437fc7cff3f6fd7c4f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/*
 * Copyright 2016 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//================
// Binaryen C API
//
// The first part of the API lets you create modules and their parts.
//
// The second part of the API lets you perform operations on modules.
//
// The third part of the API lets you provide a general control-flow
//   graph (CFG) as input.
//
// The final part of the API contains miscellaneous utilities like
//   debugging/tracing for the API itself.
//
// ---------------
//
// Thread safety: You can create Expressions in parallel, as they do not
//                refer to global state. BinaryenAddFunction and
//                BinaryenAddFunctionType are also thread-safe, which means
//                that you can create functions and their contents in multiple
//                threads. This is important since functions are where the
//                majority of the work is done.
//                Other methods - creating imports, exports, etc. - are
//                not currently thread-safe (as there is typically no need
//                to parallelize them).
//
//================

#ifndef wasm_binaryen_c_h
#define wasm_binaryen_c_h

#include <stddef.h>
#include <stdint.h>

#include "compiler-support.h"

#ifdef __cplusplus
extern "C" {
#endif

//
// ========== Module Creation ==========
//

// BinaryenIndex
//
// Used for internal indexes and list sizes.

typedef uint32_t BinaryenIndex;

// Core types (call to get the value of each; you can cache them, they
// never change)

typedef uint32_t BinaryenType;

BinaryenType BinaryenNone(void);
BinaryenType BinaryenInt32(void);
BinaryenType BinaryenInt64(void);
BinaryenType BinaryenFloat32(void);
BinaryenType BinaryenFloat64(void);

// Not a real type. Used as the last parameter to BinaryenBlock to let
// the API figure out the type instead of providing one.
BinaryenType BinaryenUndefined(void);

// Expression ids (call to get the value of each; you can cache them)

typedef uint32_t BinaryenExpressionId;

BinaryenExpressionId BinaryenInvalidId(void);
BinaryenExpressionId BinaryenBlockId(void);
BinaryenExpressionId BinaryenIfId(void);
BinaryenExpressionId BinaryenLoopId(void);
BinaryenExpressionId BinaryenBreakId(void);
BinaryenExpressionId BinaryenSwitchId(void);
BinaryenExpressionId BinaryenCallId(void);
BinaryenExpressionId BinaryenCallImportId(void);
BinaryenExpressionId BinaryenCallIndirectId(void);
BinaryenExpressionId BinaryenGetLocalId(void);
BinaryenExpressionId BinaryenSetLocalId(void);
BinaryenExpressionId BinaryenGetGlobalId(void);
BinaryenExpressionId BinaryenSetGlobalId(void);
BinaryenExpressionId BinaryenLoadId(void);
BinaryenExpressionId BinaryenStoreId(void);
BinaryenExpressionId BinaryenConstId(void);
BinaryenExpressionId BinaryenUnaryId(void);
BinaryenExpressionId BinaryenBinaryId(void);
BinaryenExpressionId BinaryenSelectId(void);
BinaryenExpressionId BinaryenDropId(void);
BinaryenExpressionId BinaryenReturnId(void);
BinaryenExpressionId BinaryenHostId(void);
BinaryenExpressionId BinaryenNopId(void);
BinaryenExpressionId BinaryenUnreachableId(void);
BinaryenExpressionId BinaryenAtomicCmpxchgId(void);
BinaryenExpressionId BinaryenAtomicRMWId(void);
BinaryenExpressionId BinaryenAtomicWaitId(void);
BinaryenExpressionId BinaryenAtomicWakeId(void);

// External kinds (call to get the value of each; you can cache them)

typedef uint32_t BinaryenExternalKind;

BinaryenExternalKind BinaryenExternalFunction(void);
BinaryenExternalKind BinaryenExternalTable(void);
BinaryenExternalKind BinaryenExternalMemory(void);
BinaryenExternalKind BinaryenExternalGlobal(void);

// Modules
//
// Modules contain lists of functions, imports, exports, function types. The
// Add* methods create them on a module. The module owns them and will free their
// memory when the module is disposed of.
//
// Expressions are also allocated inside modules, and freed with the module. They
// are not created by Add* methods, since they are not added directly on the
// module, instead, they are arguments to other expressions (and then they are
// the children of that AST node), or to a function (and then they are the body
// of that function).
//
// A module can also contain a function table for indirect calls, a memory,
// and a start method.

typedef void* BinaryenModuleRef;

BinaryenModuleRef BinaryenModuleCreate(void);
void BinaryenModuleDispose(BinaryenModuleRef module);

// Function types

typedef void* BinaryenFunctionTypeRef;

// Add a new function type. This is thread-safe.
// Note: name can be NULL, in which case we auto-generate a name
BinaryenFunctionTypeRef BinaryenAddFunctionType(BinaryenModuleRef module, const char* name, BinaryenType result, BinaryenType* paramTypes, BinaryenIndex numParams);

// Literals. These are passed by value.

struct BinaryenLiteral {
  int32_t type;
  union {
    int32_t i32;
    int64_t i64;
    float f32;
    double f64;
  };
};

struct BinaryenLiteral BinaryenLiteralInt32(int32_t x);
struct BinaryenLiteral BinaryenLiteralInt64(int64_t x);
struct BinaryenLiteral BinaryenLiteralFloat32(float x);
struct BinaryenLiteral BinaryenLiteralFloat64(double x);
struct BinaryenLiteral BinaryenLiteralFloat32Bits(int32_t x);
struct BinaryenLiteral BinaryenLiteralFloat64Bits(int64_t x);

// Expressions
//
// Some expressions have a BinaryenOp, which is the more
// specific operation/opcode.
//
// Some expressions have optional parameters, like Return may not
// return a value. You can supply a NULL pointer in those cases.
//
// For more information, see wasm.h

typedef int32_t BinaryenOp;

BinaryenOp BinaryenClzInt32(void);
BinaryenOp BinaryenCtzInt32(void);
BinaryenOp BinaryenPopcntInt32(void);
BinaryenOp BinaryenNegFloat32(void);
BinaryenOp BinaryenAbsFloat32(void);
BinaryenOp BinaryenCeilFloat32(void);
BinaryenOp BinaryenFloorFloat32(void);
BinaryenOp BinaryenTruncFloat32(void);
BinaryenOp BinaryenNearestFloat32(void);
BinaryenOp BinaryenSqrtFloat32(void);
BinaryenOp BinaryenEqZInt32(void);
BinaryenOp BinaryenClzInt64(void);
BinaryenOp BinaryenCtzInt64(void);
BinaryenOp BinaryenPopcntInt64(void);
BinaryenOp BinaryenNegFloat64(void);
BinaryenOp BinaryenAbsFloat64(void);
BinaryenOp BinaryenCeilFloat64(void);
BinaryenOp BinaryenFloorFloat64(void);
BinaryenOp BinaryenTruncFloat64(void);
BinaryenOp BinaryenNearestFloat64(void);
BinaryenOp BinaryenSqrtFloat64(void);
BinaryenOp BinaryenEqZInt64(void);
BinaryenOp BinaryenExtendSInt32(void);
BinaryenOp BinaryenExtendUInt32(void);
BinaryenOp BinaryenWrapInt64(void);
BinaryenOp BinaryenTruncSFloat32ToInt32(void);
BinaryenOp BinaryenTruncSFloat32ToInt64(void);
BinaryenOp BinaryenTruncUFloat32ToInt32(void);
BinaryenOp BinaryenTruncUFloat32ToInt64(void);
BinaryenOp BinaryenTruncSFloat64ToInt32(void);
BinaryenOp BinaryenTruncSFloat64ToInt64(void);
BinaryenOp BinaryenTruncUFloat64ToInt32(void);
BinaryenOp BinaryenTruncUFloat64ToInt64(void);
BinaryenOp BinaryenReinterpretFloat32(void);
BinaryenOp BinaryenReinterpretFloat64(void);
BinaryenOp BinaryenConvertSInt32ToFloat32(void);
BinaryenOp BinaryenConvertSInt32ToFloat64(void);
BinaryenOp BinaryenConvertUInt32ToFloat32(void);
BinaryenOp BinaryenConvertUInt32ToFloat64(void);
BinaryenOp BinaryenConvertSInt64ToFloat32(void);
BinaryenOp BinaryenConvertSInt64ToFloat64(void);
BinaryenOp BinaryenConvertUInt64ToFloat32(void);
BinaryenOp BinaryenConvertUInt64ToFloat64(void);
BinaryenOp BinaryenPromoteFloat32(void);
BinaryenOp BinaryenDemoteFloat64(void);
BinaryenOp BinaryenReinterpretInt32(void);
BinaryenOp BinaryenReinterpretInt64(void);
BinaryenOp BinaryenAddInt32(void);
BinaryenOp BinaryenSubInt32(void);
BinaryenOp BinaryenMulInt32(void);
BinaryenOp BinaryenDivSInt32(void);
BinaryenOp BinaryenDivUInt32(void);
BinaryenOp BinaryenRemSInt32(void);
BinaryenOp BinaryenRemUInt32(void);
BinaryenOp BinaryenAndInt32(void);
BinaryenOp BinaryenOrInt32(void);
BinaryenOp BinaryenXorInt32(void);
BinaryenOp BinaryenShlInt32(void);
BinaryenOp BinaryenShrUInt32(void);
BinaryenOp BinaryenShrSInt32(void);
BinaryenOp BinaryenRotLInt32(void);
BinaryenOp BinaryenRotRInt32(void);
BinaryenOp BinaryenEqInt32(void);
BinaryenOp BinaryenNeInt32(void);
BinaryenOp BinaryenLtSInt32(void);
BinaryenOp BinaryenLtUInt32(void);
BinaryenOp BinaryenLeSInt32(void);
BinaryenOp BinaryenLeUInt32(void);
BinaryenOp BinaryenGtSInt32(void);
BinaryenOp BinaryenGtUInt32(void);
BinaryenOp BinaryenGeSInt32(void);
BinaryenOp BinaryenGeUInt32(void);
BinaryenOp BinaryenAddInt64(void);
BinaryenOp BinaryenSubInt64(void);
BinaryenOp BinaryenMulInt64(void);
BinaryenOp BinaryenDivSInt64(void);
BinaryenOp BinaryenDivUInt64(void);
BinaryenOp BinaryenRemSInt64(void);
BinaryenOp BinaryenRemUInt64(void);
BinaryenOp BinaryenAndInt64(void);
BinaryenOp BinaryenOrInt64(void);
BinaryenOp BinaryenXorInt64(void);
BinaryenOp BinaryenShlInt64(void);
BinaryenOp BinaryenShrUInt64(void);
BinaryenOp BinaryenShrSInt64(void);
BinaryenOp BinaryenRotLInt64(void);
BinaryenOp BinaryenRotRInt64(void);
BinaryenOp BinaryenEqInt64(void);
BinaryenOp BinaryenNeInt64(void);
BinaryenOp BinaryenLtSInt64(void);
BinaryenOp BinaryenLtUInt64(void);
BinaryenOp BinaryenLeSInt64(void);
BinaryenOp BinaryenLeUInt64(void);
BinaryenOp BinaryenGtSInt64(void);
BinaryenOp BinaryenGtUInt64(void);
BinaryenOp BinaryenGeSInt64(void);
BinaryenOp BinaryenGeUInt64(void);
BinaryenOp BinaryenAddFloat32(void);
BinaryenOp BinaryenSubFloat32(void);
BinaryenOp BinaryenMulFloat32(void);
BinaryenOp BinaryenDivFloat32(void);
BinaryenOp BinaryenCopySignFloat32(void);
BinaryenOp BinaryenMinFloat32(void);
BinaryenOp BinaryenMaxFloat32(void);
BinaryenOp BinaryenEqFloat32(void);
BinaryenOp BinaryenNeFloat32(void);
BinaryenOp BinaryenLtFloat32(void);
BinaryenOp BinaryenLeFloat32(void);
BinaryenOp BinaryenGtFloat32(void);
BinaryenOp BinaryenGeFloat32(void);
BinaryenOp BinaryenAddFloat64(void);
BinaryenOp BinaryenSubFloat64(void);
BinaryenOp BinaryenMulFloat64(void);
BinaryenOp BinaryenDivFloat64(void);
BinaryenOp BinaryenCopySignFloat64(void);
BinaryenOp BinaryenMinFloat64(void);
BinaryenOp BinaryenMaxFloat64(void);
BinaryenOp BinaryenEqFloat64(void);
BinaryenOp BinaryenNeFloat64(void);
BinaryenOp BinaryenLtFloat64(void);
BinaryenOp BinaryenLeFloat64(void);
BinaryenOp BinaryenGtFloat64(void);
BinaryenOp BinaryenGeFloat64(void);
BinaryenOp BinaryenPageSize(void);
BinaryenOp BinaryenCurrentMemory(void);
BinaryenOp BinaryenGrowMemory(void);
BinaryenOp BinaryenHasFeature(void);
BinaryenOp BinaryenAtomicRMWAdd(void);
BinaryenOp BinaryenAtomicRMWSub(void);
BinaryenOp BinaryenAtomicRMWAnd(void);
BinaryenOp BinaryenAtomicRMWOr(void);
BinaryenOp BinaryenAtomicRMWXor(void);
BinaryenOp BinaryenAtomicRMWXchg(void);

typedef void* BinaryenExpressionRef;

// Block: name can be NULL. Specifying BinaryenUndefined() as the 'type'
//        parameter indicates that the block's type shall be figured out
//        automatically instead of explicitly providing it. This conforms
//        to the behavior before the 'type' parameter has been introduced.
BinaryenExpressionRef BinaryenBlock(BinaryenModuleRef module, const char* name, BinaryenExpressionRef* children, BinaryenIndex numChildren, BinaryenType type);
// If: ifFalse can be NULL
BinaryenExpressionRef BinaryenIf(BinaryenModuleRef module, BinaryenExpressionRef condition, BinaryenExpressionRef ifTrue, BinaryenExpressionRef ifFalse);
BinaryenExpressionRef BinaryenLoop(BinaryenModuleRef module, const char* in, BinaryenExpressionRef body);
// Break: value and condition can be NULL
BinaryenExpressionRef BinaryenBreak(BinaryenModuleRef module, const char* name, BinaryenExpressionRef condition, BinaryenExpressionRef value);
// Switch: value can be NULL
BinaryenExpressionRef BinaryenSwitch(BinaryenModuleRef module, const char **names, BinaryenIndex numNames, const char* defaultName, BinaryenExpressionRef condition, BinaryenExpressionRef value);
// Call, CallImport: Note the 'returnType' parameter. You must declare the
//                   type returned by the function being called, as that
//                   function might not have been created yet, so we don't
//                   know what it is.
//                   Also note that WebAssembly does not differentiate
//                   between Call and CallImport, but Binaryen does, so you
//                   must use CallImport if calling an import, and vice versa.
BinaryenExpressionRef BinaryenCall(BinaryenModuleRef module, const char *target, BinaryenExpressionRef* operands, BinaryenIndex numOperands, BinaryenType returnType);
BinaryenExpressionRef BinaryenCallImport(BinaryenModuleRef module, const char *target, BinaryenExpressionRef* operands, BinaryenIndex numOperands, BinaryenType returnType);
BinaryenExpressionRef BinaryenCallIndirect(BinaryenModuleRef module, BinaryenExpressionRef target, BinaryenExpressionRef* operands, BinaryenIndex numOperands, const char* type);
// GetLocal: Note the 'type' parameter. It might seem redundant, since the
//           local at that index must have a type. However, this API lets you
//           build code "top-down": create a node, then its parents, and so
//           on, and finally create the function at the end. (Note that in fact
//           you do not mention a function when creating ExpressionRefs, only
//           a module.) And since GetLocal is a leaf node, we need to be told
//           its type. (Other nodes detect their type either from their
//           type or their opcode, or failing that, their children. But
//           GetLocal has no children, it is where a "stream" of type info
//           begins.)
//           Note also that the index of a local can refer to a param or
//           a var, that is, either a parameter to the function or a variable
//           declared when you call BinaryenAddFunction. See BinaryenAddFunction
//           for more details.
BinaryenExpressionRef BinaryenGetLocal(BinaryenModuleRef module, BinaryenIndex index, BinaryenType type);
BinaryenExpressionRef BinaryenSetLocal(BinaryenModuleRef module, BinaryenIndex index, BinaryenExpressionRef value);
BinaryenExpressionRef BinaryenTeeLocal(BinaryenModuleRef module, BinaryenIndex index, BinaryenExpressionRef value);
BinaryenExpressionRef BinaryenGetGlobal(BinaryenModuleRef module, const char *name, BinaryenType type);
BinaryenExpressionRef BinaryenSetGlobal(BinaryenModuleRef module, const char *name, BinaryenExpressionRef value);
// Load: align can be 0, in which case it will be the natural alignment (equal to bytes)
BinaryenExpressionRef BinaryenLoad(BinaryenModuleRef module, uint32_t bytes, int8_t signed_, uint32_t offset, uint32_t align, BinaryenType type, BinaryenExpressionRef ptr);
// Store: align can be 0, in which case it will be the natural alignment (equal to bytes)
BinaryenExpressionRef BinaryenStore(BinaryenModuleRef module, uint32_t bytes, uint32_t offset, uint32_t align, BinaryenExpressionRef ptr, BinaryenExpressionRef value, BinaryenType type);
BinaryenExpressionRef BinaryenConst(BinaryenModuleRef module, struct BinaryenLiteral value);
BinaryenExpressionRef BinaryenUnary(BinaryenModuleRef module, BinaryenOp op, BinaryenExpressionRef value);
BinaryenExpressionRef BinaryenBinary(BinaryenModuleRef module, BinaryenOp op, BinaryenExpressionRef left, BinaryenExpressionRef right);
BinaryenExpressionRef BinaryenSelect(BinaryenModuleRef module, BinaryenExpressionRef condition, BinaryenExpressionRef ifTrue, BinaryenExpressionRef ifFalse);
BinaryenExpressionRef BinaryenDrop(BinaryenModuleRef module, BinaryenExpressionRef value);
// Return: value can be NULL
BinaryenExpressionRef BinaryenReturn(BinaryenModuleRef module, BinaryenExpressionRef value);
// Host: name may be NULL
BinaryenExpressionRef BinaryenHost(BinaryenModuleRef module, BinaryenOp op, const char* name, BinaryenExpressionRef* operands, BinaryenIndex numOperands);
BinaryenExpressionRef BinaryenNop(BinaryenModuleRef module);
BinaryenExpressionRef BinaryenUnreachable(BinaryenModuleRef module);
BinaryenExpressionRef BinaryenAtomicLoad(BinaryenModuleRef module, uint32_t bytes, uint32_t offset, BinaryenType type, BinaryenExpressionRef ptr);
BinaryenExpressionRef BinaryenAtomicStore(BinaryenModuleRef module, uint32_t bytes, uint32_t offset, BinaryenExpressionRef ptr, BinaryenExpressionRef value, BinaryenType type);
BinaryenExpressionRef BinaryenAtomicRMW(BinaryenModuleRef module, BinaryenOp op, BinaryenIndex bytes, BinaryenIndex offset, BinaryenExpressionRef ptr, BinaryenExpressionRef value, BinaryenType type);
BinaryenExpressionRef BinaryenAtomicCmpxchg(BinaryenModuleRef module, BinaryenIndex bytes, BinaryenIndex offset, BinaryenExpressionRef ptr, BinaryenExpressionRef expected, BinaryenExpressionRef replacement, BinaryenType type);
BinaryenExpressionRef BinaryenAtomicWait(BinaryenModuleRef module, BinaryenExpressionRef ptr, BinaryenExpressionRef expected, BinaryenExpressionRef timeout, BinaryenType type);
BinaryenExpressionRef BinaryenAtomicWake(BinaryenModuleRef module, BinaryenExpressionRef ptr, BinaryenExpressionRef wakeCount);

// Gets the id (kind) of the specified expression.
BinaryenExpressionId BinaryenExpressionGetId(BinaryenExpressionRef expr);
// Gets the type of the specified expression.
BinaryenType BinaryenExpressionGetType(BinaryenExpressionRef expr);
// Print an expression to stdout. Useful for debugging.
void BinaryenExpressionPrint(BinaryenExpressionRef expr);
// Gets the 32-bit integer value of the specified `Const` expression.
int32_t BinaryenConstGetValueI32(BinaryenExpressionRef expr);
// Gets the 64-bit integer value of the specified `Const` expression.
int64_t BinaryenConstGetValueI64(BinaryenExpressionRef expr);
// Gets the low 32-bits of a 64-bit integer value of the specified `Const` expression. Useful where I64 returning exports are illegal, i.e. binaryen.js.
int32_t BinaryenConstGetValueI64Low(BinaryenExpressionRef expr);
// Gets the high 32-bits of a 64-bit integer value of the specified `Const` expression. Useful where I64 returning exports are illegal, i.e. binaryen.js.
int32_t BinaryenConstGetValueI64High(BinaryenExpressionRef expr);
// Gets the 32-bit float value of the specified `Const` expression.
float BinaryenConstGetValueF32(BinaryenExpressionRef expr);
// Gets the 64-bit float value of the specified `Const` expression.
double BinaryenConstGetValueF64(BinaryenExpressionRef expr);

// Functions

typedef void* BinaryenFunctionRef;

// Adds a function to the module. This is thread-safe.
// @varTypes: the types of variables. In WebAssembly, vars share
//            an index space with params. In other words, params come from
//            the function type, and vars are provided in this call, and
//            together they are all the locals. The order is first params
//            and then vars, so if you have one param it will be at index
//            0 (and written $0), and if you also have 2 vars they will be
//            at indexes 1 and 2, etc., that is, they share an index space.
BinaryenFunctionRef BinaryenAddFunction(BinaryenModuleRef module, const char* name, BinaryenFunctionTypeRef type, BinaryenType* varTypes, BinaryenIndex numVarTypes, BinaryenExpressionRef body);

// Gets a function reference by name.
BinaryenFunctionRef BinaryenGetFunction(BinaryenModuleRef module, const char* name);

// Removes a function by name.
void BinaryenRemoveFunction(BinaryenModuleRef module, const char* name);

// Imports

typedef void* BinaryenImportRef;

WASM_DEPRECATED BinaryenImportRef BinaryenAddImport(BinaryenModuleRef module, const char* internalName, const char* externalModuleName, const char *externalBaseName, BinaryenFunctionTypeRef type);
BinaryenImportRef BinaryenAddFunctionImport(BinaryenModuleRef module, const char* internalName, const char* externalModuleName, const char *externalBaseName, BinaryenFunctionTypeRef functionType);
BinaryenImportRef BinaryenAddTableImport(BinaryenModuleRef module, const char* internalName, const char* externalModuleName, const char *externalBaseName);
BinaryenImportRef BinaryenAddMemoryImport(BinaryenModuleRef module, const char* internalName, const char* externalModuleName, const char *externalBaseName);
BinaryenImportRef BinaryenAddGlobalImport(BinaryenModuleRef module, const char* internalName, const char* externalModuleName, const char *externalBaseName, BinaryenType globalType);
void BinaryenRemoveImport(BinaryenModuleRef module, const char* internalName);

// Exports

typedef void* BinaryenExportRef;

WASM_DEPRECATED BinaryenExportRef BinaryenAddExport(BinaryenModuleRef module, const char* internalName, const char* externalName);
BinaryenExportRef BinaryenAddFunctionExport(BinaryenModuleRef module, const char* internalName, const char* externalName);
BinaryenExportRef BinaryenAddTableExport(BinaryenModuleRef module, const char* internalName, const char* externalName);
BinaryenExportRef BinaryenAddMemoryExport(BinaryenModuleRef module, const char* internalName, const char* externalName);
BinaryenExportRef BinaryenAddGlobalExport(BinaryenModuleRef module, const char* internalName, const char* externalName);
void BinaryenRemoveExport(BinaryenModuleRef module, const char* externalName);

// Globals

typedef void* BinaryenGlobalRef;

BinaryenGlobalRef BinaryenAddGlobal(BinaryenModuleRef module, const char* name, BinaryenType type, int8_t mutable_, BinaryenExpressionRef init);

// Function table. One per module

void BinaryenSetFunctionTable(BinaryenModuleRef module, BinaryenFunctionRef* funcs, BinaryenIndex numFuncs);

// Memory. One per module

// Each segment has data in segments, a start offset in segmentOffsets, and a size in segmentSizes.
// exportName can be NULL
void BinaryenSetMemory(BinaryenModuleRef module, BinaryenIndex initial, BinaryenIndex maximum, const char* exportName, const char **segments, BinaryenExpressionRef* segmentOffsets, BinaryenIndex* segmentSizes, BinaryenIndex numSegments);

// Start function. One per module

void BinaryenSetStart(BinaryenModuleRef module, BinaryenFunctionRef start);

//
// ========== Module Operations ==========
//

// Parse a module in s-expression text format
BinaryenModuleRef BinaryenModuleParse(const char* text);

// Print a module to stdout in s-expression text format. Useful for debugging.
void BinaryenModulePrint(BinaryenModuleRef module);

// Print a module to stdout in asm.js syntax.
void BinaryenModulePrintAsmjs(BinaryenModuleRef module);

// Validate a module, showing errors on problems.
//  @return 0 if an error occurred, 1 if validated succesfully
int BinaryenModuleValidate(BinaryenModuleRef module);

// Runs the standard optimization passes on the module.
void BinaryenModuleOptimize(BinaryenModuleRef module);

// Runs the specified passes on the module.
void BinaryenModuleRunPasses(BinaryenModuleRef module, const char **passes, BinaryenIndex numPasses);

// Auto-generate drop() operations where needed. This lets you generate code without
// worrying about where they are needed. (It is more efficient to do it yourself,
// but simpler to use autodrop).
void BinaryenModuleAutoDrop(BinaryenModuleRef module);

// Serialize a module into binary form.
// @return how many bytes were written. This will be less than or equal to outputSize
size_t BinaryenModuleWrite(BinaryenModuleRef module, char* output, size_t outputSize);

// Deserialize a module from binary form.
BinaryenModuleRef BinaryenModuleRead(char* input, size_t inputSize);

// Execute a module in the Binaryen interpreter. This will create an instance of
// the module, run it in the interpreter - which means running the start method -
// and then destroying the instance.
void BinaryenModuleInterpret(BinaryenModuleRef module);

//
// ========== Function Operations ==========
//

// Gets the body of the function.
BinaryenExpressionRef BinaryenFunctionGetBody(BinaryenFunctionRef func);

// Runs the standard optimization passes on the function.
void BinaryenFunctionOptimize(BinaryenFunctionRef func, BinaryenModuleRef module);

// Runs the specified passes on the function.
void BinaryenFunctionRunPasses(BinaryenFunctionRef func, BinaryenModuleRef module, const char **passes, BinaryenIndex numPasses);

//
// ========== CFG / Relooper ==========
//
// General usage is (1) create a relooper, (2) create blocks, (3) add
// branches between them, (4) render the output.
//
// See Relooper.h for more details

typedef void* RelooperRef;
typedef void* RelooperBlockRef;

// Create a relooper instance
RelooperRef RelooperCreate(void);

// Create a basic block that ends with nothing, or with some simple branching
RelooperBlockRef RelooperAddBlock(RelooperRef relooper, BinaryenExpressionRef code);

// Create a branch to another basic block
// The branch can have code on it, that is executed as the branch happens. this is useful for phis. otherwise, code can be NULL
void RelooperAddBranch(RelooperBlockRef from, RelooperBlockRef to, BinaryenExpressionRef condition, BinaryenExpressionRef code);

// Create a basic block that ends a switch on a condition
RelooperBlockRef RelooperAddBlockWithSwitch(RelooperRef relooper, BinaryenExpressionRef code, BinaryenExpressionRef condition);

// Create a switch-style branch to another basic block. The block's switch table will have these indexes going to that target
void RelooperAddBranchForSwitch(RelooperBlockRef from, RelooperBlockRef to, BinaryenIndex* indexes, BinaryenIndex numIndexes, BinaryenExpressionRef code);

// Generate structed wasm control flow from the CFG of blocks and branches that were created
// on this relooper instance. This returns the rendered output, and also disposes of the
// relooper and its blocks and branches, as they are no longer needed.
//   @param labelHelper To render irreducible control flow, we may need a helper variable to
//                      guide us to the right target label. This value should be an index of
//                      an i32 local variable that is free for us to use.
BinaryenExpressionRef RelooperRenderAndDispose(RelooperRef relooper, RelooperBlockRef entry, BinaryenIndex labelHelper, BinaryenModuleRef module);

//
// ========= Other APIs =========
//

// Sets whether API tracing is on or off. It is off by default. When on, each call
// to an API method will print out C code equivalent to it, which is useful for
// auto-generating standalone testcases from projects using the API.
// When calling this to turn on tracing, the prelude of the full program is printed,
// and when calling it to turn it off, the ending of the program is printed, giving
// you the full compilable testcase.
// TODO: compile-time option to enable/disable this feature entirely at build time?
void BinaryenSetAPITracing(int on);

//
// ========= Utilities =========
//

// Note that this function has been added because there is no better alternative
// currently and is scheduled for removal once there is one. It takes the same set
// of parameters as BinaryenAddFunctionType but instead of adding a new function
// signature, it returns a pointer to the existing signature or NULL if there is no
// such signature yet.
BinaryenFunctionTypeRef BinaryenGetFunctionTypeBySignature(BinaryenModuleRef module, BinaryenType result, BinaryenType* paramTypes, BinaryenIndex numParams);

#ifdef __cplusplus
} // extern "C"
#endif

#endif // wasm_binaryen_c_h