1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
|
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "ir/iteration.h"
#include "ir/load-utils.h"
#include "ir/utils.h"
#include "support/hash.h"
#include "support/small_vector.h"
#include "wasm-traversal.h"
#include "wasm.h"
namespace wasm {
// Given a stack of expressions, checks if the topmost is used as a result.
// For example, if the parent is a block and the node is before the last
// position, it is not used.
bool ExpressionAnalyzer::isResultUsed(ExpressionStack& stack, Function* func) {
for (int i = int(stack.size()) - 2; i >= 0; i--) {
auto* curr = stack[i];
auto* above = stack[i + 1];
// only if and block can drop values (pre-drop expression was added) FIXME
if (curr->is<Block>()) {
auto* block = curr->cast<Block>();
for (size_t j = 0; j < block->list.size() - 1; j++) {
if (block->list[j] == above) {
return false;
}
}
assert(block->list.back() == above);
// continue down
} else if (curr->is<If>()) {
auto* iff = curr->cast<If>();
if (above == iff->condition) {
return true;
}
if (!iff->ifFalse) {
return false;
}
assert(above == iff->ifTrue || above == iff->ifFalse);
// continue down
} else {
if (curr->is<Drop>()) {
return false;
}
return true; // all other node types use the result
}
}
// The value might be used, so it depends on if the function returns
return func->sig.results != Type::none;
}
// Checks if a value is dropped.
bool ExpressionAnalyzer::isResultDropped(ExpressionStack& stack) {
for (int i = int(stack.size()) - 2; i >= 0; i--) {
auto* curr = stack[i];
auto* above = stack[i + 1];
if (curr->is<Block>()) {
auto* block = curr->cast<Block>();
for (size_t j = 0; j < block->list.size() - 1; j++) {
if (block->list[j] == above) {
return false;
}
}
assert(block->list.back() == above);
// continue down
} else if (curr->is<If>()) {
auto* iff = curr->cast<If>();
if (above == iff->condition) {
return false;
}
if (!iff->ifFalse) {
return false;
}
assert(above == iff->ifTrue || above == iff->ifFalse);
// continue down
} else {
if (curr->is<Drop>()) {
return true; // dropped
}
return false; // all other node types use the result
}
}
return false;
}
//
// Allows visiting the immediate fields of the expression. This is
// useful for comparisons and hashing.
//
// The passed-in visitor object must implement:
// * visitScopeName - a Name that represents a block or loop scope
// * visitNonScopeName - a non-scope name
// * visitInt - anything that has a short enumeration, including
// opcodes, # of bytes in a load, bools, etc. - must be
// guaranteed to fit in an int32 or less.
// * visitLiteral - a Literal
// * visitType - a Type
// * visitIndex - an Index
// * visitAddress - an Address
//
namespace {
template<typename T> void visitImmediates(Expression* curr, T& visitor) {
struct ImmediateVisitor : public OverriddenVisitor<ImmediateVisitor> {
T& visitor;
ImmediateVisitor(Expression* curr, T& visitor) : visitor(visitor) {
this->visit(curr);
}
void visitBlock(Block* curr) { visitor.visitScopeName(curr->name); }
void visitIf(If* curr) {}
void visitLoop(Loop* curr) { visitor.visitScopeName(curr->name); }
void visitBreak(Break* curr) { visitor.visitScopeName(curr->name); }
void visitSwitch(Switch* curr) {
for (auto target : curr->targets) {
visitor.visitScopeName(target);
}
visitor.visitScopeName(curr->default_);
}
void visitCall(Call* curr) {
visitor.visitNonScopeName(curr->target);
visitor.visitInt(curr->isReturn);
}
void visitCallIndirect(CallIndirect* curr) {
visitor.visitInt(curr->sig.params);
visitor.visitInt(curr->sig.results);
visitor.visitInt(curr->isReturn);
}
void visitLocalGet(LocalGet* curr) { visitor.visitIndex(curr->index); }
void visitLocalSet(LocalSet* curr) { visitor.visitIndex(curr->index); }
void visitGlobalGet(GlobalGet* curr) {
visitor.visitNonScopeName(curr->name);
}
void visitGlobalSet(GlobalSet* curr) {
visitor.visitNonScopeName(curr->name);
}
void visitLoad(Load* curr) {
visitor.visitInt(curr->bytes);
if (curr->type != unreachable && curr->bytes < curr->type.getByteSize()) {
visitor.visitInt(curr->signed_);
}
visitor.visitAddress(curr->offset);
visitor.visitAddress(curr->align);
visitor.visitInt(curr->isAtomic);
}
void visitStore(Store* curr) {
visitor.visitInt(curr->bytes);
visitor.visitAddress(curr->offset);
visitor.visitAddress(curr->align);
visitor.visitInt(curr->isAtomic);
visitor.visitInt(curr->valueType);
}
void visitAtomicRMW(AtomicRMW* curr) {
visitor.visitInt(curr->op);
visitor.visitInt(curr->bytes);
visitor.visitAddress(curr->offset);
}
void visitAtomicCmpxchg(AtomicCmpxchg* curr) {
visitor.visitInt(curr->bytes);
visitor.visitAddress(curr->offset);
}
void visitAtomicWait(AtomicWait* curr) {
visitor.visitAddress(curr->offset);
visitor.visitType(curr->expectedType);
}
void visitAtomicNotify(AtomicNotify* curr) {
visitor.visitAddress(curr->offset);
}
void visitAtomicFence(AtomicFence* curr) { visitor.visitInt(curr->order); }
void visitSIMDExtract(SIMDExtract* curr) {
visitor.visitInt(curr->op);
visitor.visitInt(curr->index);
}
void visitSIMDReplace(SIMDReplace* curr) {
visitor.visitInt(curr->op);
visitor.visitInt(curr->index);
}
void visitSIMDShuffle(SIMDShuffle* curr) {
for (auto x : curr->mask) {
visitor.visitInt(x);
}
}
void visitSIMDTernary(SIMDTernary* curr) { visitor.visitInt(curr->op); }
void visitSIMDShift(SIMDShift* curr) { visitor.visitInt(curr->op); }
void visitSIMDLoad(SIMDLoad* curr) {
visitor.visitInt(curr->op);
visitor.visitAddress(curr->offset);
visitor.visitAddress(curr->align);
}
void visitMemoryInit(MemoryInit* curr) {
visitor.visitIndex(curr->segment);
}
void visitDataDrop(DataDrop* curr) { visitor.visitIndex(curr->segment); }
void visitMemoryCopy(MemoryCopy* curr) {}
void visitMemoryFill(MemoryFill* curr) {}
void visitConst(Const* curr) { visitor.visitLiteral(curr->value); }
void visitUnary(Unary* curr) { visitor.visitInt(curr->op); }
void visitBinary(Binary* curr) { visitor.visitInt(curr->op); }
void visitSelect(Select* curr) {}
void visitDrop(Drop* curr) {}
void visitReturn(Return* curr) {}
void visitHost(Host* curr) {
visitor.visitInt(curr->op);
visitor.visitNonScopeName(curr->nameOperand);
}
void visitTry(Try* curr) {}
void visitThrow(Throw* curr) { visitor.visitNonScopeName(curr->event); }
void visitRethrow(Rethrow* curr) {}
void visitBrOnExn(BrOnExn* curr) {
visitor.visitScopeName(curr->name);
visitor.visitNonScopeName(curr->event);
}
void visitNop(Nop* curr) {}
void visitUnreachable(Unreachable* curr) {}
void visitPush(Push* curr) {}
void visitPop(Pop* curr) {}
} singleton(curr, visitor);
}
} // namespace
bool ExpressionAnalyzer::flexibleEqual(Expression* left,
Expression* right,
ExprComparer comparer) {
struct Comparer {
// for each name on the left, the corresponding name on the right
std::map<Name, Name> rightNames;
std::vector<Expression*> leftStack;
std::vector<Expression*> rightStack;
struct Immediates {
Comparer& parent;
Immediates(Comparer& parent) : parent(parent) {}
SmallVector<Name, 1> scopeNames;
SmallVector<Name, 1> nonScopeNames;
SmallVector<int32_t, 3> ints;
SmallVector<Literal, 1> literals;
SmallVector<Type, 1> types;
SmallVector<Index, 1> indexes;
SmallVector<Address, 2> addresses;
void visitScopeName(Name curr) { scopeNames.push_back(curr); }
void visitNonScopeName(Name curr) { nonScopeNames.push_back(curr); }
void visitInt(int32_t curr) { ints.push_back(curr); }
void visitLiteral(Literal curr) { literals.push_back(curr); }
void visitType(Type curr) { types.push_back(curr); }
void visitIndex(Index curr) { indexes.push_back(curr); }
void visitAddress(Address curr) { addresses.push_back(curr); }
// Comparison is by value, except for names, which must match.
bool operator==(const Immediates& other) {
if (scopeNames.size() != other.scopeNames.size()) {
return false;
}
for (Index i = 0; i < scopeNames.size(); i++) {
auto leftName = scopeNames[i];
auto rightName = other.scopeNames[i];
auto iter = parent.rightNames.find(leftName);
// If it's not found, that means it was defined out of the expression
// being compared, in which case we can just treat it literally - it
// must be exactly identical.
if (iter != parent.rightNames.end()) {
leftName = iter->second;
}
if (leftName != rightName) {
return false;
}
}
if (nonScopeNames != other.nonScopeNames) {
return false;
}
if (ints != other.ints) {
return false;
}
if (literals != other.literals) {
return false;
}
if (types != other.types) {
return false;
}
if (indexes != other.indexes) {
return false;
}
if (addresses != other.addresses) {
return false;
}
return true;
}
bool operator!=(const Immediates& other) { return !(*this == other); }
void clear() {
scopeNames.clear();
nonScopeNames.clear();
ints.clear();
literals.clear();
types.clear();
indexes.clear();
addresses.clear();
}
};
bool noteNames(Name left, Name right) {
if (left.is() != right.is()) {
return false;
}
if (left.is()) {
assert(rightNames.find(left) == rightNames.end());
rightNames[left] = right;
}
return true;
}
bool compare(Expression* left, Expression* right, ExprComparer comparer) {
Immediates leftImmediates(*this), rightImmediates(*this);
// The empty name is the same on both sides.
rightNames[Name()] = Name();
leftStack.push_back(left);
rightStack.push_back(right);
while (leftStack.size() > 0 && rightStack.size() > 0) {
left = leftStack.back();
leftStack.pop_back();
right = rightStack.back();
rightStack.pop_back();
if (!left != !right) {
return false;
}
if (!left) {
continue;
}
if (comparer(left, right)) {
continue; // comparison hook, before all the rest
}
// continue with normal structural comparison
if (left->_id != right->_id) {
return false;
}
// Blocks and loops introduce scoping.
if (auto* block = left->dynCast<Block>()) {
if (!noteNames(block->name, right->cast<Block>()->name)) {
return false;
}
} else if (auto* loop = left->dynCast<Loop>()) {
if (!noteNames(loop->name, right->cast<Loop>()->name)) {
return false;
}
} else {
// For all other nodes, compare their immediate values
visitImmediates(left, leftImmediates);
visitImmediates(right, rightImmediates);
if (leftImmediates != rightImmediates) {
return false;
}
leftImmediates.clear();
rightImmediates.clear();
}
// Add child nodes.
Index counter = 0;
for (auto* child : ChildIterator(left)) {
leftStack.push_back(child);
counter++;
}
for (auto* child : ChildIterator(right)) {
rightStack.push_back(child);
counter--;
}
// The number of child nodes must match (e.g. return has an optional
// one).
if (counter != 0) {
return false;
}
}
if (leftStack.size() > 0 || rightStack.size() > 0) {
return false;
}
return true;
}
};
return Comparer().compare(left, right, comparer);
}
// hash an expression, ignoring superficial details like specific internal names
HashType ExpressionAnalyzer::hash(Expression* curr) {
struct Hasher {
HashType digest = 0;
Index internalCounter = 0;
// for each internal name, its unique id
std::map<Name, Index> internalNames;
ExpressionStack stack;
void noteScopeName(Name curr) {
if (curr.is()) {
internalNames[curr] = internalCounter++;
}
}
Hasher(Expression* curr) {
stack.push_back(curr);
while (stack.size() > 0) {
curr = stack.back();
stack.pop_back();
if (!curr) {
continue;
}
hash(curr->_id);
// we often don't need to hash the type, as it is tied to other values
// we are hashing anyhow, but there are exceptions: for example, a
// local.get's type is determined by the function, so if we are
// hashing only expression fragments, then two from different
// functions may turn out the same even if the type differs. Likewise,
// if we hash between modules, then we need to take int account
// call_imports type, etc. The simplest thing is just to hash the
// type for all of them.
hash(curr->type);
// Blocks and loops introduce scoping.
if (auto* block = curr->dynCast<Block>()) {
noteScopeName(block->name);
} else if (auto* loop = curr->dynCast<Loop>()) {
noteScopeName(loop->name);
} else {
// For all other nodes, compare their immediate values
visitImmediates(curr, *this);
}
// Hash children
Index counter = 0;
for (auto* child : ChildIterator(curr)) {
stack.push_back(child);
counter++;
}
// Sometimes children are optional, e.g. return, so we must hash
// their number as well.
hash(counter);
}
}
void hash(HashType hash) { digest = rehash(digest, hash); }
void hash64(uint64_t hash) {
digest = rehash(rehash(digest, HashType(hash >> 32)), HashType(hash));
}
void visitScopeName(Name curr) {
// Names are relative, we give the same hash for
// (block $x (br $x))
// (block $y (br $y))
static_assert(sizeof(Index) == sizeof(int32_t),
"wasm64 will need changes here");
assert(internalNames.find(curr) != internalNames.end());
return hash(internalNames[curr]);
}
void visitNonScopeName(Name curr) { return hash64(uint64_t(curr.str)); }
void visitInt(int32_t curr) { hash(curr); }
void visitLiteral(Literal curr) { hash(std::hash<Literal>()(curr)); }
void visitType(Type curr) { hash(int32_t(curr)); }
void visitIndex(Index curr) {
static_assert(sizeof(Index) == sizeof(int32_t),
"wasm64 will need changes here");
hash(int32_t(curr));
}
void visitAddress(Address curr) {
static_assert(sizeof(Address) == sizeof(int32_t),
"wasm64 will need changes here");
hash(int32_t(curr));
}
};
return Hasher(curr).digest;
}
} // namespace wasm
|