1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
|
/*
* Copyright 2017 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iterator>
#include "cfg/cfg-traversal.h"
#include "ir/find_all.h"
#include "ir/local-graph.h"
#include "support/unique_deferring_queue.h"
#include "wasm-builder.h"
namespace wasm {
namespace {
// Information about a basic block.
struct Info {
// actions occurring in this block: local.gets and local.sets
std::vector<Expression*> actions;
// for each index, the last local.set for it
std::unordered_map<Index, LocalSet*> lastSets;
void dump(Function* func) {
std::cout << " info: " << actions.size() << " actions\n";
}
};
} // anonymous namespace
// flow helper class. flows the gets to their sets
struct LocalGraphFlower
: public CFGWalker<LocalGraphFlower,
UnifiedExpressionVisitor<LocalGraphFlower>,
Info> {
LocalGraph::GetSetsMap& getSetsMap;
LocalGraph::Locations& locations;
Function* func;
std::optional<Expression::Id> queryClass;
LocalGraphFlower(LocalGraph::GetSetsMap& getSetsMap,
LocalGraph::Locations& locations,
Function* func,
Module* module,
std::optional<Expression::Id> queryClass = std::nullopt)
: getSetsMap(getSetsMap), locations(locations), func(func),
queryClass(queryClass) {
setFunction(func);
setModule(module);
// create the CFG by walking the IR
CFGWalker<LocalGraphFlower,
UnifiedExpressionVisitor<LocalGraphFlower>,
Info>::doWalkFunction(func);
}
BasicBlock* makeBasicBlock() { return new BasicBlock(); }
// Branches outside of the function can be ignored, as we only look at locals
// which vanish when we leave.
bool ignoreBranchesOutsideOfFunc = true;
// cfg traversal work
void visitExpression(Expression* curr) {
// If in unreachable code, skip.
if (!currBasicBlock) {
return;
}
// If this is a relevant action (a get or set, or there is a query class
// and this is an instance of it) then note it.
if (curr->is<LocalGet>() || curr->is<LocalSet>() ||
(queryClass && curr->_id == *queryClass)) {
currBasicBlock->contents.actions.emplace_back(curr);
locations[curr] = getCurrentPointer();
if (auto* set = curr->dynCast<LocalSet>()) {
currBasicBlock->contents.lastSets[set->index] = set;
}
}
}
// Each time we flow a get (or set of gets) to find its sets, we mark a
// different iteration number. This lets us memoize the current iteration on
// blocks as we pass them, allowing us to quickly skip them in that iteration
// (another option would be a set of blocks we've visited, but storing the
// iteration number on blocks is faster since we are already processing that
// FlowBlock already, meaning it is likely in cache, and avoids a set lookup).
size_t currentIteration = 0;
// This block struct is optimized for this flow process (Minimal
// information, iteration index).
struct FlowBlock {
// See currentIteration, above.
size_t lastTraversedIteration;
static const size_t NULL_ITERATION = -1;
// TODO: this could be by local index?
std::vector<Expression*> actions;
std::vector<FlowBlock*> in;
// Sor each index, the last local.set for it
// The unordered_map from BasicBlock.Info is converted into a vector
// This speeds up search as there are usually few sets in a block, so just
// scanning them linearly is efficient, avoiding hash computations (while
// in Info, it's convenient to have a map so we can assign them easily,
// where the last one seen overwrites the previous; and, we do that O(1)).
// TODO: If we also stored gets here then we could use the sets for a get
// we already computed, for a get that we are computing, and stop that
// part of the flow.
std::vector<std::pair<Index, LocalSet*>> lastSets;
};
// All the flow blocks.
std::vector<FlowBlock> flowBlocks;
// A mapping of basic blocks to flow blocks.
std::unordered_map<BasicBlock*, FlowBlock*> basicToFlowMap;
// The flow block corresponding to the function entry block.
FlowBlock* entryFlowBlock = nullptr;
// We note which local indexes have local.sets, as that can help us
// optimize later (if there are none at all, we do not need to flow).
std::vector<bool> hasSet;
// Fill in flowBlocks and basicToFlowMap.
void prepareFlowBlocks() {
auto numLocals = func->getNumLocals();
// Convert input blocks (basicBlocks) into more efficient flow blocks to
// improve memory access.
flowBlocks.resize(basicBlocks.size());
hasSet.resize(numLocals, false);
// Init mapping between basicblocks and flowBlocks
for (Index i = 0; i < basicBlocks.size(); ++i) {
auto* block = basicBlocks[i].get();
basicToFlowMap[block] = &flowBlocks[i];
}
for (Index i = 0; i < flowBlocks.size(); ++i) {
auto& block = basicBlocks[i];
auto& flowBlock = flowBlocks[i];
// Get the equivalent block to entry in the flow list
if (block.get() == entry) {
entryFlowBlock = &flowBlock;
}
flowBlock.lastTraversedIteration = FlowBlock::NULL_ITERATION;
flowBlock.actions.swap(block->contents.actions);
// Map in block to flow blocks
auto& in = block->in;
flowBlock.in.resize(in.size());
std::transform(in.begin(),
in.end(),
flowBlock.in.begin(),
[&](BasicBlock* block) { return basicToFlowMap[block]; });
// Convert unordered_map to vector.
flowBlock.lastSets.reserve(block->contents.lastSets.size());
for (auto set : block->contents.lastSets) {
flowBlock.lastSets.emplace_back(set);
hasSet[set.first] = true;
}
}
assert(entryFlowBlock != nullptr);
}
// Flow all the data. This is done in eager (i.e., non-lazy) mode.
void flow() {
prepareFlowBlocks();
auto numLocals = func->getNumLocals();
for (auto& block : flowBlocks) {
#ifdef LOCAL_GRAPH_DEBUG
std::cout << "basic block " << &block << " :\n";
for (auto& action : block.actions) {
std::cout << " action: " << *action << '\n';
}
for (auto& val : block.lastSets) {
std::cout << " last set " << val.second << '\n';
}
#endif
// Track all gets in this block, by index.
std::vector<std::vector<LocalGet*>> allGets(numLocals);
// go through the block, finding each get and adding it to its index,
// and seeing how sets affect that
auto& actions = block.actions;
// move towards the front, handling things as we go
for (int i = int(actions.size()) - 1; i >= 0; i--) {
auto* action = actions[i];
if (auto* get = action->dynCast<LocalGet>()) {
allGets[get->index].push_back(get);
} else if (auto* set = action->dynCast<LocalSet>()) {
// This set is the only set for all those gets.
auto& gets = allGets[set->index];
for (auto* get : gets) {
getSetsMap[get].insert(set);
}
gets.clear();
}
}
// If anything is left, we must flow it back through other blocks. we
// can do that for all gets as a whole, they will get the same results.
for (Index index = 0; index < numLocals; index++) {
auto& gets = allGets[index];
if (gets.empty()) {
continue;
}
if (!hasSet[index]) {
// This local index has no sets, so we know all gets will end up
// reaching the entry block. Do that here as an optimization to avoid
// flowing through the (potentially very many) blocks in the function.
//
// Note that we may be in unreachable code, and if so, we might add
// the entry values when they are not actually relevant. That is, we
// are not precise in the case of unreachable code. This can be
// confusing when debugging, but it does not have any downside for
// optimization (since unreachable code should be removed anyhow).
for (auto* get : gets) {
getSetsMap[get].insert(nullptr);
}
continue;
}
flowBackFromStartOfBlock(&block, index, gets);
}
}
}
// Given a flow block and a set of gets all of the same index, begin at the
// start of the block and flow backwards to find the sets affecting them. This
// does not look into |block| itself (unless we are in a loop, and reach it
// again), that is, it is a utility that is called when we are ready to do a
// cross-block flow.
//
// All the sets we find are applied to all the gets we are given.
void flowBackFromStartOfBlock(FlowBlock* block,
Index index,
const std::vector<LocalGet*>& gets) {
std::vector<FlowBlock*> work; // TODO: UniqueDeferredQueue
work.push_back(block);
// Note that we may need to revisit the later parts of this initial
// block, if we are in a loop, so don't mark it as seen.
while (!work.empty()) {
auto* curr = work.back();
work.pop_back();
// We have gone through this block; now we must handle flowing to
// the inputs.
if (curr->in.empty()) {
if (curr == entryFlowBlock) {
// These receive a param or zero init value.
for (auto* get : gets) {
getSetsMap[get].insert(nullptr);
}
}
} else {
for (auto* pred : curr->in) {
if (pred->lastTraversedIteration == currentIteration) {
// We've already seen pred in this iteration.
continue;
}
pred->lastTraversedIteration = currentIteration;
auto lastSet = std::find_if(pred->lastSets.begin(),
pred->lastSets.end(),
[&](std::pair<Index, LocalSet*>& value) {
return value.first == index;
});
if (lastSet != pred->lastSets.end()) {
// There is a set here, apply it, and stop the flow.
// TODO: If we find a computed get, apply its sets and stop? That
// could help but it requires more info on FlowBlock.
for (auto* get : gets) {
getSetsMap[get].insert(lastSet->second);
}
} else {
// Keep on flowing.
work.push_back(pred);
}
}
}
}
// Bump the current iteration for the next time we are called.
currentIteration++;
}
// When the LocalGraph is in lazy mode we do not compute all of getSetsMap
// initially, but instead fill in these data structures that let us do so
// later for individual gets. Specifically we need to find the location of a
// local.get in the CFG.
using BlockLocation = std::pair<FlowBlock*, Index>;
std::unordered_map<LocalGet*, BlockLocation> getLocations;
// In lazy mode we also need to categorize gets and sets by their index.
std::vector<std::vector<LocalGet*>> getsByIndex;
std::vector<std::vector<LocalSet*>> setsByIndex;
// Prepare for all later lazy work.
void prepareLaziness() {
prepareFlowBlocks();
// Set up getLocations, getsByIndex, and setsByIndex.
auto numLocals = func->getNumLocals();
getsByIndex.resize(numLocals);
setsByIndex.resize(numLocals);
for (auto& block : flowBlocks) {
const auto& actions = block.actions;
for (Index i = 0; i < actions.size(); i++) {
if (auto* get = actions[i]->dynCast<LocalGet>()) {
getLocations[get] = BlockLocation{&block, i};
getsByIndex[get->index].push_back(get);
} else if (auto* set = actions[i]->dynCast<LocalSet>()) {
setsByIndex[set->index].push_back(set);
}
}
}
}
// Flow a specific get to its sets. This is done in lazy mode.
void computeGetSets(LocalGet* get) {
auto index = get->index;
// We must never repeat work.
assert(!getSetsMap.count(get));
// Regardless of what we do below, ensure an entry for this get, so that we
// know we computed it.
auto& sets = getSetsMap[get];
auto [block, blockIndex] = getLocations[get];
if (!block) {
// We did not find location info for this get, which means it is
// unreachable.
return;
}
// We must have the get at that location.
assert(blockIndex < block->actions.size());
assert(block->actions[blockIndex] == get);
if (!hasSet[index]) {
// As in flow(), when there is no local.set for an index we can just mark
// the default value as the only writer.
sets.insert(nullptr);
return;
}
// Go backwards in this flow block, from the get. If we see other gets that
// have not been computed then we can accumulate them as well, as the
// results we compute apply to them too.
std::vector<LocalGet*> gets = {get};
while (blockIndex > 0) {
blockIndex--;
auto* curr = block->actions[blockIndex];
if (auto* otherGet = curr->dynCast<LocalGet>()) {
if (otherGet->index == index) {
// This is another get of the same index. If we've already computed
// it, then we can just use that, as they must have the same sets.
auto iter = getSetsMap.find(otherGet);
if (iter != getSetsMap.end()) {
auto& otherSets = iter->second;
for (auto* get : gets) {
getSetsMap[get] = otherSets;
}
return;
}
// This is a get of the same index, but which has not been computed.
// It will have the same sets as us.
gets.push_back(otherGet);
}
} else if (auto* set = curr->dynCast<LocalSet>()) {
// This is a set.
if (set->index == index) {
// This is the only set writing to our gets.
for (auto* get : gets) {
getSetsMap[get].insert(set);
}
return;
}
}
}
// We must do an inter-block flow.
flowBackFromStartOfBlock(block, index, gets);
}
void computeSetInfluences(LocalSet* set,
LocalGraphBase::SetInfluencesMap& setInfluences) {
auto index = set->index;
// We must never repeat work.
assert(!setInfluences.count(set));
// In theory we could flow the set forward, but to keep things simple we
// reuse the logic for flowing gets backwards: We flow all the gets of the
// set's index, thus fully computing that index and all its sets, including
// this one. This is not 100% lazy, but still avoids extra work by never
// doing work for local indexes we don't care about.
for (auto* get : getsByIndex[index]) {
// Don't repeat work.
if (!getSetsMap.count(get)) {
computeGetSets(get);
}
}
// Ensure empty entries for each set of this index, to mark them as
// computed.
for (auto* set : setsByIndex[index]) {
setInfluences[set];
}
// Also ensure |set| itself, that we were originally asked about. It may be
// in unreachable code, which means it is not listed in setsByIndex.
setInfluences[set];
// Apply the info from the gets to the sets.
for (auto* get : getsByIndex[index]) {
for (auto* set : getSetsMap[get]) {
setInfluences[set].insert(get);
}
}
}
// Given a bunch of gets, see if any of them are reached by the given set
// despite the obstacle expression stopping the flow whenever it is reached.
// That is, the obstacle is considered as if it was a set of the same index,
// which would trample the value and stop the set from influencing it.
LocalGraphBase::SetInfluences
getSetInfluencesGivenObstacle(LocalSet* set,
const LocalGraphBase::SetInfluences& gets,
Expression* obstacle) {
LocalGraphBase::SetInfluences ret;
// Normally flowing backwards is faster, as we start from actual gets (and
// so we avoid flowing past all the gets to large swaths of the program that
// we don't care about; and in reverse, we might go all the way to the
// entry in a wasteful manner, but most gets have an actual set, and do not
// read the default value). The situation here is a bit different, though,
// in that we might expect that going forward from the set would quickly
// reach the obstacle and stop. Still, a single branch away would cause us
// to scan lots of blocks potentially, and might not be that rare in
// general, so go backwards. (Many uninteresting branches away, that reach
// no relevant gets, are common when exceptions are enabled, as every call
// gets a branch.)
for (auto* get : gets) {
auto [block, index] = getLocations[get];
if (!block) {
// We did not find location info for this get, which means it is
// unreachable.
continue;
}
// Use a work queue of block locations to scan backwards from.
// Specifically we must scan the first index above it (i.e., the original
// location has a local.get there, so we start one before it).
UniqueNonrepeatingDeferredQueue<BlockLocation> work;
work.push(BlockLocation{block, index});
auto foundSet = false;
// Flow while there is stuff to flow, and while we haven't found the set
// (once we find it, we add the get and can move on to the next get).
while (!work.empty() && !foundSet) {
auto [block, index] = work.pop();
// Scan backwards through this block.
while (1) {
// If we finished scanning this block (we reached the top), flow to
// predecessors.
if (index == 0) {
for (auto* pred : block->in) {
// We will scan pred from its very end.
work.push(BlockLocation{pred, Index(pred->actions.size())});
}
break;
}
// Continue onwards.
index--;
auto* action = block->actions[index];
if (auto* otherSet = action->dynCast<LocalSet>()) {
if (otherSet == set) {
// We arrived at the set: add this get and stop flowing it.
ret.insert(get);
foundSet = true;
break;
}
if (otherSet->index == set->index) {
// This is another set of the same index, which halts the flow.
break;
}
} else if (action == obstacle) {
// We ran into the obstacle. Halt this flow.
break;
}
// TODO: If the action is one of the gets we are scanning, then
// either we have processed it already, or will do so later, and we
// can halt. As an optimization, we could check if we've processed
// it already and act accordingly.
}
}
}
return ret;
}
};
// LocalGraph implementation
LocalGraph::LocalGraph(Function* func, Module* module)
: LocalGraphBase(func, module) {
// See comment on the declaration of this field for why we use a raw
// allocation.
LocalGraphFlower flower(getSetsMap, locations, func, module);
flower.flow();
#ifdef LOCAL_GRAPH_DEBUG
std::cout << "LocalGraph::dump\n";
for (auto& [get, sets] : getSetsMap) {
std::cout << "GET\n" << get << " is influenced by\n";
for (auto* set : sets) {
std::cout << set << '\n';
}
}
std::cout << "total locations: " << locations.size() << '\n';
#endif
}
bool LocalGraph::equivalent(LocalGet* a, LocalGet* b) {
auto& aSets = getSets(a);
auto& bSets = getSets(b);
// The simple case of one set dominating two gets easily proves that they must
// have the same value. (Note that we can infer dominance from the fact that
// there is a single set: if the set did not dominate one of the gets then
// there would definitely be another set for that get, the zero initialization
// at the function entry, if nothing else.)
if (aSets.size() != 1 || bSets.size() != 1) {
// TODO: use a LinearExecutionWalker to find trivially equal gets in basic
// blocks. that plus the above should handle 80% of cases.
// TODO: handle chains, merges and other situations
return false;
}
auto* aSet = *aSets.begin();
auto* bSet = *bSets.begin();
if (aSet != bSet) {
return false;
}
if (!aSet) {
// They are both nullptr, indicating the implicit value for a parameter
// or the zero for a local.
if (func->isParam(a->index)) {
// For parameters to be equivalent they must have the exact same
// index.
return a->index == b->index;
} else {
// As locals, they are both of value zero, but must have the right
// type as well.
return func->getLocalType(a->index) == func->getLocalType(b->index);
}
} else {
// They are both the same actual set.
return true;
}
}
void LocalGraph::computeSetInfluences() {
for (auto& [curr, _] : locations) {
if (auto* get = curr->dynCast<LocalGet>()) {
for (auto* set : getSetsMap[get]) {
setInfluences[set].insert(get);
}
}
}
}
static void
doComputeGetInfluences(const LocalGraphBase::Locations& locations,
LocalGraphBase::GetInfluencesMap& getInfluences) {
for (auto& [curr, _] : locations) {
if (auto* set = curr->dynCast<LocalSet>()) {
FindAll<LocalGet> findAll(set->value);
for (auto* get : findAll.list) {
getInfluences[get].insert(set);
}
}
}
}
void LocalGraph::computeGetInfluences() {
doComputeGetInfluences(locations, getInfluences);
}
void LocalGraph::computeSSAIndexes() {
std::unordered_map<Index, std::set<LocalSet*>> indexSets;
for (auto& [get, sets] : getSetsMap) {
for (auto* set : sets) {
indexSets[get->index].insert(set);
}
}
for (auto& [curr, _] : locations) {
if (auto* set = curr->dynCast<LocalSet>()) {
auto& sets = indexSets[set->index];
if (sets.size() == 1 && *sets.begin() != curr) {
// While it has just one set, it is not the right one (us),
// so mark it invalid.
sets.clear();
}
}
}
for (auto& [index, sets] : indexSets) {
if (sets.size() == 1) {
SSAIndexes.insert(index);
}
}
}
bool LocalGraph::isSSA(Index x) { return SSAIndexes.count(x); }
// LazyLocalGraph
LazyLocalGraph::LazyLocalGraph(Function* func,
Module* module,
std::optional<Expression::Id> queryClass)
: LocalGraphBase(func, module), queryClass(queryClass) {}
void LazyLocalGraph::makeFlower() const {
// |locations| is set here and filled in by |flower|.
assert(!locations);
locations.emplace();
flower = std::make_unique<LocalGraphFlower>(
getSetsMap, *locations, func, module, queryClass);
flower->prepareLaziness();
#ifdef LOCAL_GRAPH_DEBUG
std::cout << "LazyLocalGraph::dump\n";
for (auto& [get, sets] : getSetsMap) {
std::cout << "GET\n" << get << " is influenced by\n";
for (auto* set : sets) {
std::cout << set << '\n';
}
}
std::cout << "total locations: " << locations.size() << '\n';
#endif
}
LazyLocalGraph::~LazyLocalGraph() {
// We must declare a destructor here in the cpp file, even though it is empty
// and pointless, due to some C++ issue with our having a unique_ptr to a
// forward-declared class (LocalGraphFlower).
// https://stackoverflow.com/questions/13414652/forward-declaration-with-unique-ptr#comment110005453_13414884
}
void LazyLocalGraph::computeGetSets(LocalGet* get) const {
// We must never repeat work.
assert(!getSetsMap.count(get));
if (!flower) {
makeFlower();
}
flower->computeGetSets(get);
}
void LazyLocalGraph::computeSetInfluences(LocalSet* set) const {
// We must never repeat work.
assert(!setInfluences.count(set));
if (!flower) {
makeFlower();
}
flower->computeSetInfluences(set, setInfluences);
}
void LazyLocalGraph::computeGetInfluences() const {
// We must never repeat work.
assert(!getInfluences);
// We do not need any flow for this, but we do need |locations| to be filled
// in.
getLocations();
assert(locations);
getInfluences.emplace();
doComputeGetInfluences(*locations, *getInfluences);
}
bool LazyLocalGraph::computeSSA(Index index) const {
// We must never repeat work.
assert(!SSAIndexes.count(index));
if (!flower) {
makeFlower();
}
// Similar logic to LocalGraph::computeSSAIndexes(), but optimized for the
// case of a single index.
// All the sets for this index that we've seen. We'll add all relevant ones,
// and exit if we see more than one.
SmallUnorderedSet<LocalSet*, 2> sets;
for (auto* set : flower->setsByIndex[index]) {
sets.insert(set);
if (sets.size() > 1) {
return SSAIndexes[index] = false;
}
}
for (auto* get : flower->getsByIndex[index]) {
for (auto* set : getSets(get)) {
sets.insert(set);
if (sets.size() > 1) {
return SSAIndexes[index] = false;
}
}
}
// Finally, check that we have 1 and not 0 sets.
return SSAIndexes[index] = (sets.size() == 1);
}
void LazyLocalGraph::computeLocations() const {
// We must never repeat work.
assert(!locations);
// |flower| fills in |locations| as it scans the function.
//
// In theory we could be even lazier here, but it is nice that flower will
// fill in the locations as it goes, avoiding an additional pass. And, in
// practice, if we ask for locations then we likely need other things anyhow.
if (!flower) {
makeFlower();
}
}
LocalGraphBase::SetInfluences LazyLocalGraph::canMoveSet(LocalSet* set,
Expression* to) {
// We must have been initialized with the proper query class, so that we
// prepared the flower (if it was computed before) with that class in the
// graph.
assert(queryClass && to->_id == *queryClass);
if (!flower) {
makeFlower();
}
// To compute this property, we'll do a flow from the gets that the set
// originally reaches. No other get is relevant.
auto originalGets = getSetInfluences(set);
// To see which gets pose a problem, see which gets are still influenced by
// the set, if we consider |to| to be another set of that index, that is, an
// obstacle on the way, that tramples that local index's value. Any such
// influenced get is a problem, for example:
//
// 1. set
// 2. get
// 3. call
// 4. get
//
// The set can still influence the get on line 2, if we consider the call to
// be an obstacle. Looking at it another way, any get that is no longer
// influenced, given the obstacle, is a get that is only influenced by the
// obstacle itself, meaning that moving the set to the obstacle is valid. This
// is a slight simplification, though, since other sets may be involved:
//
// if (..) {
// x = ..;
// a(x)
// b();
// c(x);
// }
// d(x);
//
// Say we consider moving the set of x to b(). a(x) uses x in a manner that
// will notice that, but not c(x) or d(x). c(x) is dominated by the set, but
// d(x) is not. That is, moving the set to b() leaves the set's influence
// unchanged on c(x), where that influence is full, and also on d(x), where it
// is only partial (shared with whatever value is present in x before the if).
// (But moving the set to b() does alter the set's influence on a(x)).
return flower->getSetInfluencesGivenObstacle(set, originalGets, to);
}
} // namespace wasm
|