summaryrefslogtreecommitdiff
path: root/src/ir/module-splitting.cpp
blob: a7ee96fa28fbf19a875cae760298d5cf3288be2d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
/*
 * Copyright 2020 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

// The process of module splitting involves these steps:
//
//   1. Create the new secondary module.
//
//   2. Export globals, tags, tables, and memories from the primary module and
//      import them in the secondary module.
//
//   3. Move the deferred functions from the primary to the secondary module.
//
//   4. For any secondary function exported from the primary module, export in
//      its place a trampoline function that makes an indirect call to its
//      placeholder function (and eventually to the original secondary
//      function), allocating a new table slot for the placeholder if necessary.
//
//   5. Rewrite direct calls from primary functions to secondary functions to be
//      indirect calls to their placeholder functions (and eventually to their
//      original secondary functions), allocating new table slots for the
//      placeholders if necessary.
//
//   6. For each primary function directly called from a secondary function,
//      export the primary function if it is not already exported and import it
//      into the secondary module.
//
//   7. Replace all references to secondary functions in the primary module's
//      table segments with references to imported placeholder functions.
//
//   8. Create new active table segments in the secondary module that will
//      replace all the placeholder function references in the table with
//      references to their corresponding secondary functions upon
//      instantiation.
//
// Functions can be used or referenced three ways in a WebAssembly module: they
// can be exported, called, or placed in a table. The above procedure introduces
// a layer of indirection to each of those mechanisms that removes all
// references to secondary functions from the primary module but restores the
// original program's semantics once the secondary module is instantiated. As
// more mechanisms that reference functions are added in the future, such as
// ref.func instructions, they will have to be modified to use a similar layer
// of indirection.
//
// The code as currently written makes a couple assumptions about the module
// that is being split:
//
//   1. It assumes that mutable-globals is allowed. This could be worked around
//      by introducing wrapper functions for globals and rewriting secondary
//      code that accesses them, but now that mutable-globals is shipped on all
//      browsers, hopefully that extra complexity won't be necessary.
//
//   2. It assumes that either all table segment offsets are constants or there
//      is exactly one segment that may have a non-constant offset. It also
//      assumes that all segments are active segments (although Binaryen does
//      not yet support passive table segments anyway).

#include "ir/module-splitting.h"
#include "asmjs/shared-constants.h"
#include "ir/element-utils.h"
#include "ir/export-utils.h"
#include "ir/manipulation.h"
#include "ir/module-utils.h"
#include "ir/names.h"
#include "pass.h"
#include "support/insert_ordered.h"
#include "wasm-builder.h"
#include "wasm.h"

namespace wasm::ModuleSplitting {

namespace {

static const Name LOAD_SECONDARY_STATUS = "load_secondary_module_status";

template<class F> void forEachElement(Module& module, F f) {
  ModuleUtils::iterActiveElementSegments(module, [&](ElementSegment* segment) {
    Name base = "";
    Index offset = 0;
    if (auto* c = segment->offset->dynCast<Const>()) {
      offset = c->value.geti32();
    } else if (auto* g = segment->offset->dynCast<GlobalGet>()) {
      base = g->name;
    }
    for (Index i = 0; i < segment->data.size(); ++i) {
      f(segment->table, base, offset + i, segment->data[i]);
    }
  });
}

struct TableSlotManager {
  struct Slot {
    Name tableName;

    // If `global` is empty, then this slot is at a statically known index.
    Name global;
    Index index = 0;

    // Generate code to compute the index of this table slot
    Expression* makeExpr(Module& module);
  };
  Module& module;
  Table* activeTable = nullptr;
  ElementSegment* activeSegment = nullptr;
  Slot activeBase;
  std::map<Name, Slot> funcIndices;
  std::vector<ElementSegment*> activeTableSegments;

  TableSlotManager(Module& module);

  Table* makeTable();
  ElementSegment* makeElementSegment();

  // Returns the table index for `func`, allocating a new index if necessary.
  Slot getSlot(Name func, HeapType type);
  void addSlot(Name func, Slot slot);
};

Expression* TableSlotManager::Slot::makeExpr(Module& module) {
  Builder builder(module);
  auto makeIndex = [&]() { return builder.makeConst(int32_t(index)); };
  if (global.size()) {
    Expression* getBase = builder.makeGlobalGet(global, Type::i32);
    return index == 0 ? getBase
                      : builder.makeBinary(AddInt32, getBase, makeIndex());
  } else {
    return makeIndex();
  }
}

void TableSlotManager::addSlot(Name func, Slot slot) {
  // Ignore functions that already have slots.
  funcIndices.insert({func, slot});
}

TableSlotManager::TableSlotManager(Module& module) : module(module) {
  // If possible, just create a new table to manage all primary-to-secondary
  // calls lazily. Do not re-use slots for functions that will already be in
  // existing tables, since that is not correct in the face of table mutations.
  // However, do not do this for emscripten; its loader code (and dynamic
  // loading in particular) do not support this yet.
  // TODO: Reduce overhead by creating a separate table for each function type
  // if WasmGC is enabled.
  Export* emscriptenTableExport =
    module.getExportOrNull("__indirect_function_table");
  Table* singletonTable =
    module.tables.size() == 1 ? module.tables[0].get() : nullptr;
  bool emscriptenTableImport =
    singletonTable && singletonTable->imported() &&
    singletonTable->module == "env" &&
    singletonTable->base == "__indirect_function_table";

  if (module.features.hasReferenceTypes() && !emscriptenTableExport &&
      !emscriptenTableImport) {
    return;
  }

  // TODO: Reject or handle passive element segments
  auto funcref = Type(HeapType::func, Nullable);
  auto it = std::find_if(
    module.tables.begin(),
    module.tables.end(),
    [&](std::unique_ptr<Table>& table) { return table->type == funcref; });
  if (it == module.tables.end()) {
    // There is no indirect function table, so we will create one lazily.
    return;
  }

  activeTable = it->get();
  ModuleUtils::iterTableSegments(
    module, activeTable->name, [&](ElementSegment* segment) {
      activeTableSegments.push_back(segment);
    });

  if (activeTableSegments.empty()) {
    // There are no active segments, so we will lazily create one and start
    // filling it at index 0.
    activeBase = {activeTable->name, "", 0};
  } else if (activeTableSegments.size() == 1 &&
             activeTableSegments[0]->type == funcref &&
             !activeTableSegments[0]->offset->is<Const>()) {
    // If there is exactly one table segment and that segment has a non-constant
    // offset, append new items to the end of that segment. In all other cases,
    // append new items at constant offsets after all existing items at constant
    // offsets.
    assert(activeTableSegments[0]->offset->is<GlobalGet>() &&
           "Unexpected initializer instruction");
    activeSegment = activeTableSegments[0];
    activeBase = {activeTable->name,
                  activeTableSegments[0]->offset->cast<GlobalGet>()->name,
                  0};
  } else {
    // Finds the segment with the highest occupied table slot so that new items
    // can be inserted contiguously at the end of it without accidentally
    // overwriting any other items. TODO: be more clever about filling gaps in
    // the table, if that is ever useful.
    Index maxIndex = 0;
    for (auto& segment : activeTableSegments) {
      assert(segment->offset->is<Const>() &&
             "Unexpected non-const segment offset with multiple segments");
      Index segmentBase = segment->offset->cast<Const>()->value.geti32();
      if (segmentBase + segment->data.size() >= maxIndex) {
        maxIndex = segmentBase + segment->data.size();
        activeSegment = segment;
        activeBase = {activeTable->name, "", segmentBase};
      }
    }
  }

  // Initialize funcIndices with the functions already in the table.
  forEachElement(module,
                 [&](Name table, Name base, Index offset, Expression* elem) {
                   if (auto* func = elem->dynCast<RefFunc>()) {
                     addSlot(func->func, {table, base, offset});
                   }
                 });
}

Table* TableSlotManager::makeTable() {
  return module.addTable(
    Builder::makeTable(Names::getValidTableName(module, Name::fromInt(0))));
}

ElementSegment* TableSlotManager::makeElementSegment() {
  return module.addElementSegment(Builder::makeElementSegment(
    Names::getValidElementSegmentName(module, Name::fromInt(0)),
    activeTable->name,
    Builder(module).makeConst(int32_t(0))));
}

TableSlotManager::Slot TableSlotManager::getSlot(Name func, HeapType type) {
  auto slotIt = funcIndices.find(func);
  if (slotIt != funcIndices.end()) {
    return slotIt->second;
  }

  // If there are no segments yet, allocate one.
  if (activeSegment == nullptr) {
    if (activeTable == nullptr) {
      activeTable = makeTable();
      activeBase = {activeTable->name, "", 0};
    }

    // None of the existing segments should refer to the active table
    assert(std::all_of(module.elementSegments.begin(),
                       module.elementSegments.end(),
                       [&](std::unique_ptr<ElementSegment>& segment) {
                         return segment->table != activeTable->name;
                       }));

    activeSegment = makeElementSegment();
  }

  Slot newSlot = {activeBase.tableName,
                  activeBase.global,
                  activeBase.index + Index(activeSegment->data.size())};

  Builder builder(module);
  activeSegment->data.push_back(builder.makeRefFunc(func, type));

  addSlot(func, newSlot);
  if (activeTable->initial <= newSlot.index) {
    activeTable->initial = newSlot.index + 1;
    // TODO: handle the active table not being the dylink table (#3823)
    if (module.dylinkSection) {
      module.dylinkSection->tableSize = activeTable->initial;
    }
  }
  if (activeTable->max <= newSlot.index) {
    activeTable->max = newSlot.index + 1;
  }
  return newSlot;
}

struct ModuleSplitter {
  const Config& config;
  std::unique_ptr<Module> secondaryPtr;

  Module& primary;
  Module& secondary;

  const std::pair<std::set<Name>, std::set<Name>> classifiedFuncs;
  const std::set<Name>& primaryFuncs;
  const std::set<Name>& secondaryFuncs;

  TableSlotManager tableManager;

  Names::MinifiedNameGenerator minified;

  // Map from internal function names to (one of) their corresponding export
  // names.
  std::map<Name, Name> exportedPrimaryFuncs;

  // Map placeholder indices to the names of the functions they replace.
  std::map<size_t, Name> placeholderMap;

  // Internal name of the LOAD_SECONDARY_MODULE function.
  Name internalLoadSecondaryModule;

  // Initialization helpers
  static std::unique_ptr<Module> initSecondary(const Module& primary);
  static std::pair<std::set<Name>, std::set<Name>>
  classifyFunctions(Module& primary, const Config& config);
  static std::map<Name, Name> initExportedPrimaryFuncs(const Module& primary);

  // Other helpers
  void exportImportFunction(Name func);
  Expression* maybeLoadSecondary(Builder& builder, Expression* callIndirect);

  // Main splitting steps
  void setupJSPI();
  void moveSecondaryFunctions();
  void thunkExportedSecondaryFunctions();
  void indirectCallsToSecondaryFunctions();
  void indirectReferencesToSecondaryFunctions();
  void exportImportCalledPrimaryFunctions();
  void setupTablePatching();
  void shareImportableItems();
  void removeUnusedSecondaryElements();

  ModuleSplitter(Module& primary, const Config& config)
    : config(config), secondaryPtr(initSecondary(primary)), primary(primary),
      secondary(*secondaryPtr),
      classifiedFuncs(classifyFunctions(primary, config)),
      primaryFuncs(classifiedFuncs.first),
      secondaryFuncs(classifiedFuncs.second), tableManager(primary),
      exportedPrimaryFuncs(initExportedPrimaryFuncs(primary)) {
    if (config.jspi) {
      setupJSPI();
    }
    moveSecondaryFunctions();
    thunkExportedSecondaryFunctions();
    indirectReferencesToSecondaryFunctions();
    indirectCallsToSecondaryFunctions();
    exportImportCalledPrimaryFunctions();
    setupTablePatching();
    shareImportableItems();
    removeUnusedSecondaryElements();
  }
};

void ModuleSplitter::setupJSPI() {
  // Support the first version of JSPI, where the JSPI pass added the load
  // secondary module export.
  // TODO: remove this when the new JSPI API is only supported.
  if (primary.getExportOrNull(LOAD_SECONDARY_MODULE)) {
    internalLoadSecondaryModule =
      primary.getExport(LOAD_SECONDARY_MODULE)->value;
    // Remove the exported LOAD_SECONDARY_MODULE function since it's only needed
    // internally.
    primary.removeExport(LOAD_SECONDARY_MODULE);
  } else {
    // Add an imported function to load the secondary module.
    auto import = Builder::makeFunction(ModuleSplitting::LOAD_SECONDARY_MODULE,
                                        Signature(Type::none, Type::none),
                                        {});
    import->module = ENV;
    import->base = ModuleSplitting::LOAD_SECONDARY_MODULE;
    primary.addFunction(std::move(import));
    internalLoadSecondaryModule = ModuleSplitting::LOAD_SECONDARY_MODULE;
  }
  Builder builder(primary);
  // Add a global to track whether the secondary module has been loaded yet.
  primary.addGlobal(builder.makeGlobal(LOAD_SECONDARY_STATUS,
                                       Type::i32,
                                       builder.makeConst(int32_t(0)),
                                       Builder::Mutable));
  primary.addExport(builder.makeExport(
    LOAD_SECONDARY_STATUS, LOAD_SECONDARY_STATUS, ExternalKind::Global));
}

std::unique_ptr<Module> ModuleSplitter::initSecondary(const Module& primary) {
  // Create the secondary module and copy trivial properties.
  auto secondary = std::make_unique<Module>();
  secondary->features = primary.features;
  secondary->hasFeaturesSection = primary.hasFeaturesSection;
  return secondary;
}

std::pair<std::set<Name>, std::set<Name>>
ModuleSplitter::classifyFunctions(Module& primary, const Config& config) {
  // Find functions that refer to data or element segments. These functions must
  // remain in the primary module because segments cannot be exported to be
  // accessed from the secondary module.
  //
  // TODO: Investigate other options, such as moving the segments to the
  // secondary module or replacing the segment-using instructions in the
  // secondary module with calls to imports.
  ModuleUtils::ParallelFunctionAnalysis<std::vector<Name>>
    segmentReferrerCollector(
      primary, [&](Function* func, std::vector<Name>& segmentReferrers) {
        if (func->imported()) {
          return;
        }

        struct SegmentReferrerCollector
          : PostWalker<SegmentReferrerCollector,
                       UnifiedExpressionVisitor<SegmentReferrerCollector>> {
          bool hasSegmentReference = false;

          void visitExpression(Expression* curr) {

#define DELEGATE_ID curr->_id

#define DELEGATE_START(id) [[maybe_unused]] auto* cast = curr->cast<id>();
#define DELEGATE_GET_FIELD(id, field) cast->field
#define DELEGATE_FIELD_TYPE(id, field)
#define DELEGATE_FIELD_HEAPTYPE(id, field)
#define DELEGATE_FIELD_CHILD(id, field)
#define DELEGATE_FIELD_OPTIONAL_CHILD(id, field)
#define DELEGATE_FIELD_INT(id, field)
#define DELEGATE_FIELD_LITERAL(id, field)
#define DELEGATE_FIELD_NAME(id, field)
#define DELEGATE_FIELD_SCOPE_NAME_DEF(id, field)
#define DELEGATE_FIELD_SCOPE_NAME_USE(id, field)
#define DELEGATE_FIELD_ADDRESS(id, field)

#define DELEGATE_FIELD_NAME_KIND(id, field, kind)                              \
  if (kind == ModuleItemKind::DataSegment ||                                   \
      kind == ModuleItemKind::ElementSegment) {                                \
    hasSegmentReference = true;                                                \
  }

#include "wasm-delegations-fields.def"
          }
        };
        SegmentReferrerCollector collector;
        collector.walkFunction(func);
        if (collector.hasSegmentReference) {
          segmentReferrers.push_back(func->name);
        }
      });

  std::unordered_set<Name> segmentReferrers;
  for (auto& [_, referrers] : segmentReferrerCollector.map) {
    segmentReferrers.insert(referrers.begin(), referrers.end());
  }

  std::set<Name> primaryFuncs, secondaryFuncs;
  for (auto& func : primary.functions) {
    // In JSPI mode exported functions cannot be moved to the secondary
    // module since that would make them async when they may not have the JSPI
    // wrapper. Exported JSPI functions can still benefit from splitting though
    // since only the JSPI wrapper stub will remain in the primary module.
    if (func->imported() || !config.secondaryFuncs.count(func->name) ||
        (config.jspi && ExportUtils::isExported(primary, *func)) ||
        segmentReferrers.count(func->name)) {
      primaryFuncs.insert(func->name);
    } else {
      assert(func->name != primary.start && "The start function must be kept");
      secondaryFuncs.insert(func->name);
    }
  }
  return std::make_pair(std::move(primaryFuncs), std::move(secondaryFuncs));
}

std::map<Name, Name>
ModuleSplitter::initExportedPrimaryFuncs(const Module& primary) {
  std::map<Name, Name> functionExportNames;
  for (auto& ex : primary.exports) {
    if (ex->kind == ExternalKind::Function) {
      functionExportNames[ex->value] = ex->name;
    }
  }
  return functionExportNames;
}

void ModuleSplitter::exportImportFunction(Name funcName) {
  Name exportName;
  // If the function is already exported, use the existing export name.
  // Otherwise, create a new export for it.
  auto exportIt = exportedPrimaryFuncs.find(funcName);
  if (exportIt != exportedPrimaryFuncs.end()) {
    exportName = exportIt->second;
  } else {
    if (config.minimizeNewExportNames) {
      do {
        exportName = config.newExportPrefix + minified.getName();
      } while (primary.getExportOrNull(exportName) != nullptr);
    } else {
      exportName = Names::getValidExportName(
        primary, config.newExportPrefix + funcName.toString());
    }
    primary.addExport(
      Builder::makeExport(exportName, funcName, ExternalKind::Function));
    exportedPrimaryFuncs[funcName] = exportName;
  }
  // Import the function if it is not already imported into the secondary
  // module.
  if (secondary.getFunctionOrNull(funcName) == nullptr) {
    auto primaryFunc = primary.getFunction(funcName);
    auto func = Builder::makeFunction(funcName, primaryFunc->type, {});
    func->hasExplicitName = primaryFunc->hasExplicitName;
    func->module = config.importNamespace;
    func->base = exportName;
    secondary.addFunction(std::move(func));
  }
}

void ModuleSplitter::moveSecondaryFunctions() {
  // Move the specified functions from the primary to the secondary module.
  for (auto funcName : secondaryFuncs) {
    auto* func = primary.getFunction(funcName);
    ModuleUtils::copyFunction(func, secondary);
    primary.removeFunction(funcName);
  }
}

void ModuleSplitter::thunkExportedSecondaryFunctions() {
  // Update exports of secondary functions in the primary module to export
  // wrapper functions that indirectly call the secondary functions. We are
  // adding secondary function names to the primary table here, but they will be
  // replaced with placeholder functions later along with any references to
  // secondary functions that were already in the table.
  Builder builder(primary);
  for (auto& ex : primary.exports) {
    if (ex->kind != ExternalKind::Function ||
        !secondaryFuncs.count(ex->value)) {
      continue;
    }
    Name secondaryFunc = ex->value;
    if (primary.getFunctionOrNull(secondaryFunc)) {
      // We've already created a thunk for this function
      continue;
    }
    auto* func = primary.addFunction(Builder::makeFunction(
      secondaryFunc, secondary.getFunction(secondaryFunc)->type, {}));
    std::vector<Expression*> args;
    Type params = func->getParams();
    for (size_t i = 0, size = params.size(); i < size; ++i) {
      args.push_back(builder.makeLocalGet(i, params[i]));
    }
    auto tableSlot = tableManager.getSlot(secondaryFunc, func->type);
    func->body = builder.makeCallIndirect(
      tableSlot.tableName, tableSlot.makeExpr(primary), args, func->type);
  }
}

Expression* ModuleSplitter::maybeLoadSecondary(Builder& builder,
                                               Expression* callIndirect) {
  if (!config.jspi) {
    return callIndirect;
  }
  // Check if the secondary module is loaded and if it isn't, call the
  // function to load it.
  auto* loadSecondary = builder.makeIf(
    builder.makeUnary(EqZInt32,
                      builder.makeGlobalGet(LOAD_SECONDARY_STATUS, Type::i32)),
    builder.makeCall(internalLoadSecondaryModule, {}, Type::none));
  return builder.makeSequence(loadSecondary, callIndirect);
}

void ModuleSplitter::indirectReferencesToSecondaryFunctions() {
  // Turn references to secondary functions into references to thunks that
  // perform a direct call to the original referent. The direct calls in the
  // thunks will be handled like all other cross-module calls later, in
  // |indirectCallsToSecondaryFunctions|.
  struct Gatherer : public PostWalker<Gatherer> {
    ModuleSplitter& parent;

    Gatherer(ModuleSplitter& parent) : parent(parent) {}

    // Collect RefFuncs in a map from the function name to all RefFuncs that
    // refer to it. We only collect this for secondary funcs.
    InsertOrderedMap<Name, std::vector<RefFunc*>> map;

    void visitRefFunc(RefFunc* curr) {
      if (parent.secondaryFuncs.count(curr->func)) {
        map[curr->func].push_back(curr);
      }
    }
  } gatherer(*this);
  gatherer.walkModule(&primary);

  // Ignore references to secondary functions that occur in the active segment
  // that will contain the imported placeholders. Indirect calls to table slots
  // initialized by that segment will already go to the right place once the
  // secondary module has been loaded and the table has been patched.
  std::unordered_set<RefFunc*> ignore;
  if (tableManager.activeSegment) {
    for (auto* expr : tableManager.activeSegment->data) {
      if (auto* ref = expr->dynCast<RefFunc>()) {
        ignore.insert(ref);
      }
    }
  }

  // Fix up what we found: Generate trampolines as described earlier, and apply
  // them.
  Builder builder(primary);
  // Generate the new trampoline function and add it to the module.
  for (auto& [name, refFuncs] : gatherer.map) {
    // Find the relevant (non-ignored) RefFuncs. If there are none, we can skip
    // creating a thunk entirely.
    std::vector<RefFunc*> relevantRefFuncs;
    for (auto* refFunc : refFuncs) {
      assert(refFunc->func == name);
      if (!ignore.count(refFunc)) {
        relevantRefFuncs.push_back(refFunc);
      }
    }
    if (relevantRefFuncs.empty()) {
      continue;
    }

    auto* oldFunc = secondary.getFunction(name);
    auto newName = Names::getValidFunctionName(
      primary, std::string("trampoline_") + name.toString());

    // Generate the call and the function.
    std::vector<Expression*> args;
    for (Index i = 0; i < oldFunc->getNumParams(); i++) {
      args.push_back(builder.makeLocalGet(i, oldFunc->getLocalType(i)));
    }
    auto* call = builder.makeCall(name, args, oldFunc->getResults());

    primary.addFunction(builder.makeFunction(newName, oldFunc->type, {}, call));

    // Update RefFuncs to refer to it.
    for (auto* refFunc : relevantRefFuncs) {
      refFunc->func = newName;
    }
  }
}

void ModuleSplitter::indirectCallsToSecondaryFunctions() {
  // Update direct calls of secondary functions to be indirect calls of their
  // corresponding table indices instead.
  struct CallIndirector : public PostWalker<CallIndirector> {
    ModuleSplitter& parent;
    Builder builder;
    CallIndirector(ModuleSplitter& parent)
      : parent(parent), builder(parent.primary) {}
    // Avoid visitRefFunc on element segment data
    void walkElementSegment(ElementSegment* segment) {}
    void visitCall(Call* curr) {
      if (!parent.secondaryFuncs.count(curr->target)) {
        return;
      }
      auto* func = parent.secondary.getFunction(curr->target);
      auto tableSlot = parent.tableManager.getSlot(curr->target, func->type);

      replaceCurrent(parent.maybeLoadSecondary(
        builder,
        builder.makeCallIndirect(tableSlot.tableName,
                                 tableSlot.makeExpr(parent.primary),
                                 curr->operands,
                                 func->type,
                                 curr->isReturn)));
    }
  };
  CallIndirector(*this).walkModule(&primary);
}

void ModuleSplitter::exportImportCalledPrimaryFunctions() {
  // Find primary functions called/referred in the secondary module.
  ModuleUtils::ParallelFunctionAnalysis<std::vector<Name>> callCollector(
    secondary, [&](Function* func, std::vector<Name>& calledPrimaryFuncs) {
      struct CallCollector : PostWalker<CallCollector> {
        const std::set<Name>& primaryFuncs;
        std::vector<Name>& calledPrimaryFuncs;
        CallCollector(const std::set<Name>& primaryFuncs,
                      std::vector<Name>& calledPrimaryFuncs)
          : primaryFuncs(primaryFuncs), calledPrimaryFuncs(calledPrimaryFuncs) {
        }
        void visitCall(Call* curr) {
          if (primaryFuncs.count(curr->target)) {
            calledPrimaryFuncs.push_back(curr->target);
          }
        }
        void visitRefFunc(RefFunc* curr) {
          if (primaryFuncs.count(curr->func)) {
            calledPrimaryFuncs.push_back(curr->func);
          }
        }
      };
      CallCollector(primaryFuncs, calledPrimaryFuncs).walkFunction(func);
    });
  std::set<Name> calledPrimaryFuncs;
  for (auto& entry : callCollector.map) {
    auto& calledFuncs = entry.second;
    calledPrimaryFuncs.insert(calledFuncs.begin(), calledFuncs.end());
  }

  // Ensure each called primary function is exported and imported
  for (auto func : calledPrimaryFuncs) {
    exportImportFunction(func);
  }
}

void ModuleSplitter::setupTablePatching() {
  if (!tableManager.activeTable) {
    return;
  }

  std::map<Index, Function*> replacedElems;
  // Replace table references to secondary functions with an imported
  // placeholder that encodes the table index in its name:
  // `importNamespace`.`index`.
  forEachElement(primary, [&](Name, Name, Index index, Expression*& elem) {
    auto* ref = elem->dynCast<RefFunc>();
    if (!ref) {
      return;
    }
    if (!secondaryFuncs.count(ref->func)) {
      return;
    }
    placeholderMap[index] = ref->func;
    auto* secondaryFunc = secondary.getFunction(ref->func);
    replacedElems[index] = secondaryFunc;
    if (!config.usePlaceholders) {
      // TODO: This can create active element segments with lots of nulls. We
      // should optimize them like we do data segments with zeros.
      elem = Builder(primary).makeRefNull(HeapType::nofunc);
      return;
    }
    auto placeholder = std::make_unique<Function>();
    placeholder->module = config.placeholderNamespace;
    placeholder->base = std::to_string(index);
    placeholder->name = Names::getValidFunctionName(
      primary, std::string("placeholder_") + placeholder->base.toString());
    placeholder->hasExplicitName = true;
    placeholder->type = secondaryFunc->type;
    elem = Builder(primary).makeRefFunc(placeholder->name, placeholder->type);
    primary.addFunction(std::move(placeholder));
  });

  if (replacedElems.size() == 0) {
    // No placeholders to patch out of the table
    return;
  }

  auto secondaryTable =
    ModuleUtils::copyTable(tableManager.activeTable, secondary);

  if (tableManager.activeBase.global.size()) {
    assert(tableManager.activeTableSegments.size() == 1 &&
           "Unexpected number of segments with non-const base");
    assert(secondary.tables.size() == 1 && secondary.elementSegments.empty());
    // Since addition is not currently allowed in initializer expressions, we
    // need to start the new secondary segment where the primary segment starts.
    // The secondary segment will contain the same primary functions as the
    // primary module except in positions where it needs to overwrite a
    // placeholder function. All primary functions in the table therefore need
    // to be imported into the second module. TODO: use better strategies here,
    // such as using ref.func in the start function or standardizing addition in
    // initializer expressions.
    ElementSegment* primarySeg = tableManager.activeTableSegments.front();
    std::vector<Expression*> secondaryElems;
    secondaryElems.reserve(primarySeg->data.size());

    // Copy functions from the primary segment to the secondary segment,
    // replacing placeholders and creating new exports and imports as necessary.
    auto replacement = replacedElems.begin();
    for (Index i = 0;
         i < primarySeg->data.size() && replacement != replacedElems.end();
         ++i) {
      if (replacement->first == i) {
        // primarySeg->data[i] is a placeholder, so use the secondary function.
        auto* func = replacement->second;
        auto* ref = Builder(secondary).makeRefFunc(func->name, func->type);
        secondaryElems.push_back(ref);
        ++replacement;
      } else if (auto* get = primarySeg->data[i]->dynCast<RefFunc>()) {
        exportImportFunction(get->func);
        auto* copied =
          ExpressionManipulator::copy(primarySeg->data[i], secondary);
        secondaryElems.push_back(copied);
      }
    }

    auto offset = ExpressionManipulator::copy(primarySeg->offset, secondary);
    auto secondarySeg = std::make_unique<ElementSegment>(
      secondaryTable->name, offset, secondaryTable->type, secondaryElems);
    secondarySeg->setName(primarySeg->name, primarySeg->hasExplicitName);
    secondary.addElementSegment(std::move(secondarySeg));
    return;
  }

  // Create active table segments in the secondary module to patch in the
  // original functions when it is instantiated.
  Index currBase = replacedElems.begin()->first;
  std::vector<Expression*> currData;
  auto finishSegment = [&]() {
    auto* offset = Builder(secondary).makeConst(int32_t(currBase));
    auto secondarySeg = std::make_unique<ElementSegment>(
      secondaryTable->name, offset, secondaryTable->type, currData);
    Name name = Names::getValidElementSegmentName(
      secondary, Name::fromInt(secondary.elementSegments.size()));
    secondarySeg->setName(name, false);
    secondary.addElementSegment(std::move(secondarySeg));
  };
  for (auto curr = replacedElems.begin(); curr != replacedElems.end(); ++curr) {
    if (curr->first != currBase + currData.size()) {
      finishSegment();
      currBase = curr->first;
      currData.clear();
    }
    auto* func = curr->second;
    currData.push_back(Builder(secondary).makeRefFunc(func->name, func->type));
  }
  if (currData.size()) {
    finishSegment();
  }
}

void ModuleSplitter::shareImportableItems() {
  // Map internal names to (one of) their corresponding export names. Don't
  // consider functions because they have already been imported and exported as
  // necessary.
  std::unordered_map<std::pair<ExternalKind, Name>, Name> exports;
  for (auto& ex : primary.exports) {
    if (ex->kind != ExternalKind::Function) {
      exports[std::make_pair(ex->kind, ex->value)] = ex->name;
    }
  }

  auto makeImportExport = [&](Importable& primaryItem,
                              Importable& secondaryItem,
                              const std::string& genericExportName,
                              ExternalKind kind) {
    secondaryItem.name = primaryItem.name;
    secondaryItem.hasExplicitName = primaryItem.hasExplicitName;
    secondaryItem.module = config.importNamespace;
    auto exportIt = exports.find(std::make_pair(kind, primaryItem.name));
    if (exportIt != exports.end()) {
      secondaryItem.base = exportIt->second;
    } else {
      std::string baseName =
        config.newExportPrefix + (config.minimizeNewExportNames
                                    ? minified.getName()
                                    : genericExportName);
      Name exportName = Names::getValidExportName(primary, baseName);
      primary.addExport(new Export{exportName, primaryItem.name, kind});
      secondaryItem.base = exportName;
    }
  };

  // TODO: Be more selective by only sharing global items that are actually used
  // in the secondary module, just like we do for functions.

  for (auto& memory : primary.memories) {
    auto secondaryMemory = ModuleUtils::copyMemory(memory.get(), secondary);
    makeImportExport(*memory, *secondaryMemory, "memory", ExternalKind::Memory);
  }

  for (auto& table : primary.tables) {
    auto secondaryTable = secondary.getTableOrNull(table->name);
    if (!secondaryTable) {
      secondaryTable = ModuleUtils::copyTable(table.get(), secondary);
    }

    makeImportExport(*table, *secondaryTable, "table", ExternalKind::Table);
  }

  for (auto& global : primary.globals) {
    if (global->mutable_) {
      assert(primary.features.hasMutableGlobals() &&
             "TODO: add wrapper functions for disallowed mutable globals");
    }
    auto secondaryGlobal = std::make_unique<Global>();
    secondaryGlobal->type = global->type;
    secondaryGlobal->mutable_ = global->mutable_;
    secondaryGlobal->init =
      global->init == nullptr
        ? nullptr
        : ExpressionManipulator::copy(global->init, secondary);
    makeImportExport(*global, *secondaryGlobal, "global", ExternalKind::Global);
    secondary.addGlobal(std::move(secondaryGlobal));
  }

  for (auto& tag : primary.tags) {
    auto secondaryTag = std::make_unique<Tag>();
    secondaryTag->sig = tag->sig;
    makeImportExport(*tag, *secondaryTag, "tag", ExternalKind::Tag);
    secondary.addTag(std::move(secondaryTag));
  }
}

void ModuleSplitter::removeUnusedSecondaryElements() {
  // TODO: It would be better to be more selective about only exporting and
  // importing those items that the secondary module needs. This would reduce
  // code size in the primary module as well.
  PassRunner runner(&secondary);
  runner.add("remove-unused-module-elements");
  runner.run();
}

} // anonymous namespace

Results splitFunctions(Module& primary, const Config& config) {
  ModuleSplitter split(primary, config);
  return {std::move(split.secondaryPtr), std::move(split.placeholderMap)};
}

} // namespace wasm::ModuleSplitting