summaryrefslogtreecommitdiff
path: root/src/ir/module-utils.cpp
blob: 7861bde549c6e475b0087770dc82c8656d6bdaa4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
/*
 * Copyright 2022 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "module-utils.h"
#include "support/insert_ordered.h"
#include "support/topological_sort.h"

namespace wasm::ModuleUtils {

namespace {

// Helper for collecting HeapTypes and their frequencies.
struct Counts : public InsertOrderedMap<HeapType, size_t> {
  void note(HeapType type) {
    if (!type.isBasic()) {
      (*this)[type]++;
    }
  }
  void note(Type type) {
    for (HeapType ht : type.getHeapTypeChildren()) {
      note(ht);
    }
  }
  // Ensure a type is included without increasing its count.
  void include(HeapType type) {
    if (!type.isBasic()) {
      (*this)[type];
    }
  }
};

struct CodeScanner
  : PostWalker<CodeScanner, UnifiedExpressionVisitor<CodeScanner>> {
  Counts& counts;

  CodeScanner(Module& wasm, Counts& counts) : counts(counts) {
    setModule(&wasm);
  }

  void visitExpression(Expression* curr) {
    if (auto* call = curr->dynCast<CallIndirect>()) {
      counts.note(call->heapType);
    } else if (curr->is<RefNull>()) {
      counts.note(curr->type);
    } else if (curr->is<RttCanon>() || curr->is<RttSub>()) {
      counts.note(curr->type.getRtt().heapType);
    } else if (auto* make = curr->dynCast<StructNew>()) {
      handleMake(make);
    } else if (auto* make = curr->dynCast<ArrayNew>()) {
      handleMake(make);
    } else if (auto* make = curr->dynCast<ArrayInit>()) {
      handleMake(make);
    } else if (auto* cast = curr->dynCast<RefCast>()) {
      handleCast(cast);
    } else if (auto* cast = curr->dynCast<RefTest>()) {
      handleCast(cast);
    } else if (auto* cast = curr->dynCast<BrOn>()) {
      if (cast->op == BrOnCast || cast->op == BrOnCastFail) {
        handleCast(cast);
      }
    } else if (auto* get = curr->dynCast<StructGet>()) {
      counts.note(get->ref->type);
    } else if (auto* set = curr->dynCast<StructSet>()) {
      counts.note(set->ref->type);
    } else if (Properties::isControlFlowStructure(curr)) {
      if (curr->type.isTuple()) {
        // TODO: Allow control flow to have input types as well
        counts.note(Signature(Type::none, curr->type));
      } else {
        counts.note(curr->type);
      }
    }
  }

  template<typename T> void handleMake(T* curr) {
    if (!curr->rtt && curr->type != Type::unreachable) {
      counts.note(curr->type.getHeapType());
    }
  }

  template<typename T> void handleCast(T* curr) {
    // Some operations emit a HeapType in the binary format, if they are
    // static and not dynamic (if dynamic, the RTT provides the heap type).
    if (!curr->rtt) {
      counts.note(curr->intendedType);
    }
  }
};

Counts getHeapTypeCounts(Module& wasm) {
  // Collect module-level info.
  Counts counts;
  CodeScanner(wasm, counts).walkModuleCode(&wasm);
  for (auto& curr : wasm.tags) {
    counts.note(curr->sig);
  }
  for (auto& curr : wasm.tables) {
    counts.note(curr->type);
  }
  for (auto& curr : wasm.elementSegments) {
    counts.note(curr->type);
  }

  // Collect info from functions in parallel.
  ModuleUtils::ParallelFunctionAnalysis<Counts, Immutable, InsertOrderedMap>
    analysis(wasm, [&](Function* func, Counts& counts) {
      counts.note(func->type);
      for (auto type : func->vars) {
        counts.note(type);
      }
      if (!func->imported()) {
        CodeScanner(wasm, counts).walk(func->body);
      }
    });

  // Combine the function info with the module info.
  for (auto& [_, functionCounts] : analysis.map) {
    for (auto& [sig, count] : functionCounts) {
      counts[sig] += count;
    }
  }

  // Recursively traverse each reference type, which may have a child type that
  // is itself a reference type. This reflects an appearance in the binary
  // format that is in the type section itself. As we do this we may find more
  // and more types, as nested children of previous ones. Each such type will
  // appear in the type section once, so we just need to visit it once. Also
  // track which recursion groups we've already processed to avoid quadratic
  // behavior when there is a single large group.
  InsertOrderedSet<HeapType> newTypes;
  for (auto& [type, _] : counts) {
    newTypes.insert(type);
  }
  std::unordered_set<RecGroup> includedGroups;
  while (!newTypes.empty()) {
    auto iter = newTypes.begin();
    auto ht = *iter;
    newTypes.erase(iter);
    for (HeapType child : ht.getHeapTypeChildren()) {
      if (!child.isBasic()) {
        if (!counts.count(child)) {
          newTypes.insert(child);
        }
        counts.note(child);
      }
    }

    if (auto super = ht.getSuperType()) {
      if (!counts.count(*super)) {
        newTypes.insert(*super);
        // We should unconditionally count supertypes, but while the type system
        // is in flux, skip counting them to keep the type orderings in nominal
        // test outputs more similar to the orderings in the equirecursive
        // outputs. FIXME
        counts.include(*super);
      }
    }

    // Make sure we've noted the complete recursion group of each type as well.
    auto recGroup = ht.getRecGroup();
    if (includedGroups.insert(recGroup).second) {
      for (auto type : recGroup) {
        if (!counts.count(type)) {
          newTypes.insert(type);
          counts.include(type);
        }
      }
    }
  }

  return counts;
}

void setIndices(IndexedHeapTypes& indexedTypes) {
  for (Index i = 0; i < indexedTypes.types.size(); i++) {
    indexedTypes.indices[indexedTypes.types[i]] = i;
  }
}

} // anonymous namespace

std::vector<HeapType> collectHeapTypes(Module& wasm) {
  Counts counts = getHeapTypeCounts(wasm);
  std::vector<HeapType> types;
  types.reserve(counts.size());
  for (auto& [type, _] : counts) {
    types.push_back(type);
  }
  return types;
}

IndexedHeapTypes getOptimizedIndexedHeapTypes(Module& wasm) {
  Counts counts = getHeapTypeCounts(wasm);

  if (getTypeSystem() != TypeSystem::Isorecursive) {
    // Sort by frequency and then original insertion order.
    std::vector<std::pair<HeapType, size_t>> sorted(counts.begin(),
                                                    counts.end());
    std::stable_sort(sorted.begin(), sorted.end(), [&](auto a, auto b) {
      return a.second > b.second;
    });

    // Collect the results.
    IndexedHeapTypes indexedTypes;
    for (Index i = 0; i < sorted.size(); ++i) {
      indexedTypes.types.push_back(sorted[i].first);
    }

    setIndices(indexedTypes);
    return indexedTypes;
  }

  // Isorecursive types have to be arranged into topologically ordered recursion
  // groups. Sort the groups by average use count among their members so that
  // the topological sort will place frequently used types first.
  struct GroupInfo {
    size_t index;
    double useCount = 0;
    std::unordered_set<RecGroup> preds;
    std::vector<RecGroup> sortedPreds;
    GroupInfo(size_t index) : index(index) {}
    bool operator<(const GroupInfo& other) const {
      if (useCount != other.useCount) {
        return useCount < other.useCount;
      }
      return index < other.index;
    }
  };

  struct GroupInfoMap : std::unordered_map<RecGroup, GroupInfo> {
    void sort(std::vector<RecGroup>& groups) {
      std::sort(groups.begin(), groups.end(), [&](auto& a, auto& b) {
        return this->at(a) < this->at(b);
      });
    }
  };

  // Collect the information that will be used to sort the recursion groups.
  GroupInfoMap groupInfos;
  for (auto& [type, _] : counts) {
    RecGroup group = type.getRecGroup();
    // Try to initialize a new info or get the existing info.
    auto& info = groupInfos.insert({group, {groupInfos.size()}}).first->second;
    // Update the reference count.
    info.useCount += counts.at(type);
    // Collect predecessor groups.
    for (auto child : type.getReferencedHeapTypes()) {
      if (!child.isBasic()) {
        RecGroup otherGroup = child.getRecGroup();
        if (otherGroup != group) {
          info.preds.insert(otherGroup);
        }
      }
    }
  }

  // Fix up the use counts to be averages to ensure groups are used comensurate
  // with the amount of index space they occupy.
  for (auto& [group, info] : groupInfos) {
    info.useCount /= group.size();
  }

  // Sort the predecessors so the most used will be visited first.
  for (auto& [group, info] : groupInfos) {
    info.sortedPreds.insert(
      info.sortedPreds.end(), info.preds.begin(), info.preds.end());
    groupInfos.sort(info.sortedPreds);
    info.preds.clear();
  }

  struct RecGroupSort : TopologicalSort<RecGroup, RecGroupSort> {
    GroupInfoMap& groupInfos;
    RecGroupSort(GroupInfoMap& groupInfos) : groupInfos(groupInfos) {
      // Sort all the groups so the topological sort visits the most used first.
      std::vector<RecGroup> sortedGroups;
      sortedGroups.reserve(groupInfos.size());
      for (auto& [group, _] : groupInfos) {
        sortedGroups.push_back(group);
      }
      groupInfos.sort(sortedGroups);
      for (auto group : sortedGroups) {
        push(group);
      }
    }

    void pushPredecessors(RecGroup group) {
      for (auto pred : groupInfos.at(group).sortedPreds) {
        push(pred);
      }
    }
  };

  // Perform the topological sort and collect the types.
  IndexedHeapTypes indexedTypes;
  indexedTypes.types.reserve(counts.size());
  for (auto group : RecGroupSort(groupInfos)) {
    for (auto member : group) {
      indexedTypes.types.push_back(member);
    }
  }
  setIndices(indexedTypes);
  return indexedTypes;
}

} // namespace wasm::ModuleUtils