summaryrefslogtreecommitdiff
path: root/src/ir/possible-contents.cpp
blob: 00a2cb82500241932cb048bd782942fa39727ef4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
/*
 * Copyright 2022 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <optional>
#include <variant>

#include "analysis/cfg.h"
#include "ir/bits.h"
#include "ir/branch-utils.h"
#include "ir/eh-utils.h"
#include "ir/gc-type-utils.h"
#include "ir/linear-execution.h"
#include "ir/local-graph.h"
#include "ir/module-utils.h"
#include "ir/possible-contents.h"
#include "support/insert_ordered.h"
#include "wasm.h"

namespace std {

std::ostream& operator<<(std::ostream& stream,
                         const wasm::PossibleContents& contents) {
  contents.dump(stream);
  return stream;
}

} // namespace std

namespace wasm {

PossibleContents PossibleContents::combine(const PossibleContents& a,
                                           const PossibleContents& b) {
  auto aType = a.getType();
  auto bType = b.getType();
  // First handle the trivial cases of them being equal, or one of them is
  // None or Many.
  if (a == b) {
    return a;
  }
  if (b.isNone()) {
    return a;
  }
  if (a.isNone()) {
    return b;
  }
  if (a.isMany()) {
    return a;
  }
  if (b.isMany()) {
    return b;
  }

  if (!aType.isRef() || !bType.isRef()) {
    // At least one is not a reference. The only possibility left for a useful
    // combination here is if they have the same type (since we've already ruled
    // out the case of them being equal). If they have the same type then
    // neither is a reference and we can emit an exact type (since subtyping is
    // not relevant for non-references).
    if (aType == bType) {
      return ExactType(aType);
    } else {
      return Many();
    }
  }

  // Special handling for references from here.

  if (a.isNull() && b.isNull()) {
    // These must be nulls in different hierarchies, otherwise a would have
    // been handled by the `a == b` case above.
    assert(aType != bType);
    return Many();
  }

  auto lub = Type::getLeastUpperBound(aType, bType);
  if (lub == Type::none) {
    // The types are not in the same hierarchy.
    return Many();
  }

  // From here we can assume there is a useful LUB.

  // Nulls can be combined in by just adding nullability to a type.
  if (a.isNull() || b.isNull()) {
    // Only one of them can be null here, since we already handled the case
    // where they were both null.
    assert(!a.isNull() || !b.isNull());
    // If only one is a null then we can use the type info from the b, and
    // just add in nullability. For example, a literal of type T and a null
    // becomes an exact type of T that allows nulls, and so forth.
    auto mixInNull = [](ConeType cone) {
      cone.type = Type(cone.type.getHeapType(), Nullable);
      return cone;
    };
    if (!a.isNull()) {
      return mixInNull(a.getCone());
    } else if (!b.isNull()) {
      return mixInNull(b.getCone());
    }
  }

  // Find a ConeType that describes both inputs, using the shared ancestor which
  // is the LUB. We need to find how big a cone we need: the cone must be big
  // enough to contain both the inputs.
  auto aDepth = a.getCone().depth;
  auto bDepth = b.getCone().depth;
  Index newDepth;
  if (aDepth == FullDepth || bDepth == FullDepth) {
    // At least one has full (infinite) depth, so we know the new depth must
    // be the same.
    newDepth = FullDepth;
  } else {
    // The depth we need under the lub is how far from the lub we are, plus
    // the depth of our cone.
    // TODO: we could make a single loop that also does the LUB, at the same
    // time, and also avoids calling getDepth() which loops once more?
    auto aDepthFromRoot = aType.getHeapType().getDepth();
    auto bDepthFromRoot = bType.getHeapType().getDepth();
    auto lubDepthFromRoot = lub.getHeapType().getDepth();
    assert(lubDepthFromRoot <= aDepthFromRoot);
    assert(lubDepthFromRoot <= bDepthFromRoot);
    Index aDepthUnderLub = aDepthFromRoot - lubDepthFromRoot + aDepth;
    Index bDepthUnderLub = bDepthFromRoot - lubDepthFromRoot + bDepth;

    // The total cone must be big enough to contain all the above.
    newDepth = std::max(aDepthUnderLub, bDepthUnderLub);
  }

  return ConeType{lub, newDepth};
}

void PossibleContents::intersect(const PossibleContents& other) {
  // This does not yet handle all possible content.
  assert(other.isFullConeType() || other.isLiteral() || other.isNone());

  if (*this == other) {
    // Nothing changes.
    return;
  }

  if (!haveIntersection(*this, other)) {
    // There is no intersection at all.
    // Note that this code path handles |this| or |other| being None.
    value = None();
    return;
  }

  if (isSubContents(other, *this)) {
    // The intersection is just |other|.
    // Note that this code path handles |this| being Many.
    value = other.value;
    return;
  }

  if (isSubContents(*this, other)) {
    // The intersection is just |this|.
    return;
  }

  if (isLiteral() || other.isLiteral()) {
    // We've ruled out either being a subcontents of the other. A literal has
    // no other intersection possibility.
    value = None();
    return;
  }

  auto type = getType();
  auto otherType = other.getType();
  auto heapType = type.getHeapType();
  auto otherHeapType = otherType.getHeapType();

  // If both inputs are nullable then the intersection is nullable as well.
  auto nullability =
    type.isNullable() && otherType.isNullable() ? Nullable : NonNullable;

  auto setNoneOrNull = [&]() {
    if (nullability == Nullable) {
      value = Literal::makeNull(heapType);
    } else {
      value = None();
    }
  };

  // If the heap types are not compatible then they are in separate hierarchies
  // and there is no intersection, aside from possibly a null of the bottom
  // type.
  auto isSubType = HeapType::isSubType(heapType, otherHeapType);
  auto otherIsSubType = HeapType::isSubType(otherHeapType, heapType);
  if (!isSubType && !otherIsSubType) {
    if (heapType.getBottom() == otherHeapType.getBottom()) {
      setNoneOrNull();
    } else {
      value = None();
    }
    return;
  }

  // The heap types are compatible, so intersect the cones.
  auto depthFromRoot = heapType.getDepth();
  auto otherDepthFromRoot = otherHeapType.getDepth();

  // To compute the new cone, find the new heap type for it, and to compute its
  // depth, consider the adjustments to the existing depths that stem from the
  // choice of new heap type.
  HeapType newHeapType;

  if (depthFromRoot < otherDepthFromRoot) {
    newHeapType = otherHeapType;
  } else {
    newHeapType = heapType;
  }

  // Note the global's information, if we started as a global. In that case, the
  // code below will refine our type but we can remain a global, which we will
  // accomplish by restoring our global status at the end.
  std::optional<Name> globalName;
  if (isGlobal()) {
    globalName = getGlobal();
  }

  auto newType = Type(newHeapType, nullability);

  // By assumption |other| has full depth. Consider the other cone in |this|.
  if (hasFullCone()) {
    // Both are full cones, so the result is as well.
    value = FullConeType(newType);
  } else {
    // The result is a partial cone. If the cone starts in |otherHeapType| then
    // we need to adjust the depth down, since it will be smaller than the
    // original cone:
    /*
    //                             ..
    //                            /
    //              otherHeapType
    //            /               \
    //   heapType                  ..
    //            \
    */
    // E.g. if |this| is a cone of depth 10, and |otherHeapType| is an immediate
    // subtype of |this|, then the new cone must be of depth 9.
    auto newDepth = getCone().depth;
    if (newHeapType == otherHeapType) {
      assert(depthFromRoot <= otherDepthFromRoot);
      auto reduction = otherDepthFromRoot - depthFromRoot;
      if (reduction > newDepth) {
        // The cone on heapType does not even reach the cone on otherHeapType,
        // so the result is not a cone.
        setNoneOrNull();
        return;
      }
      newDepth -= reduction;
    }

    value = ConeType{newType, newDepth};
  }

  if (globalName) {
    // Restore the global but keep the new and refined type.
    value = GlobalInfo{*globalName, getType()};
  }
}

bool PossibleContents::haveIntersection(const PossibleContents& a,
                                        const PossibleContents& b) {
  if (a.isNone() || b.isNone()) {
    // One is the empty set, so nothing can intersect here.
    return false;
  }

  if (a.isMany() || b.isMany()) {
    // One is the set of all things, so definitely something can intersect since
    // we've ruled out an empty set for both.
    return true;
  }

  if (a == b) {
    // The intersection is equal to them.
    return true;
  }

  auto aType = a.getType();
  auto bType = b.getType();

  if (!aType.isRef() || !bType.isRef()) {
    // At least one is not a reference. The only way they can intersect is if
    // the type is identical, and they are not both literals (we've already
    // ruled out them being identical earlier).
    return aType == bType && (!a.isLiteral() || !b.isLiteral());
  }

  // From here on we focus on references.

  auto aHeapType = aType.getHeapType();
  auto bHeapType = bType.getHeapType();

  if (aType.isNullable() && bType.isNullable() &&
      aHeapType.getBottom() == bHeapType.getBottom()) {
    // A compatible null is possible on both sides.
    return true;
  }

  // We ruled out having a compatible null on both sides. If one is simply a
  // null then no chance for an intersection remains.
  if (a.isNull() || b.isNull()) {
    return false;
  }

  auto aSubB = HeapType::isSubType(aHeapType, bHeapType);
  auto bSubA = HeapType::isSubType(bHeapType, aHeapType);
  if (!aSubB && !bSubA) {
    // No type can appear in both a and b, so the types differ, so the values
    // do not overlap.
    return false;
  }

  // From here on we focus on references and can ignore the case of null - any
  // intersection must be of a non-null value, so we can focus on the heap
  // types.

  auto aDepthFromRoot = aHeapType.getDepth();
  auto bDepthFromRoot = bHeapType.getDepth();

  if (aSubB) {
    // A is a subtype of B. For there to be an intersection we need their cones
    // to intersect, that is, to rule out the case where the cone from B is not
    // deep enough to reach A.
    assert(aDepthFromRoot >= bDepthFromRoot);
    return aDepthFromRoot - bDepthFromRoot <= b.getCone().depth;
  } else if (bSubA) {
    assert(bDepthFromRoot >= aDepthFromRoot);
    return bDepthFromRoot - aDepthFromRoot <= a.getCone().depth;
  } else {
    WASM_UNREACHABLE("we ruled out no subtyping before");
  }

  // TODO: we can also optimize things like different Literals, but existing
  //       passes do such things already so it is low priority.
}

bool PossibleContents::isSubContents(const PossibleContents& a,
                                     const PossibleContents& b) {
  if (a == b) {
    return true;
  }

  if (a.isNone()) {
    return true;
  }

  if (b.isNone()) {
    return false;
  }

  if (a.isMany()) {
    return false;
  }

  if (b.isMany()) {
    return true;
  }

  if (a.isLiteral()) {
    // Note we already checked for |a == b| above. We need b to be a set that
    // contains the literal a.
    return !b.isLiteral() && Type::isSubType(a.getType(), b.getType());
  }

  if (b.isLiteral()) {
    return false;
  }

  if (b.isFullConeType()) {
    if (a.isNull()) {
      return b.getType().isNullable();
    }
    return Type::isSubType(a.getType(), b.getType());
  }

  if (a.isFullConeType()) {
    // We've already ruled out b being a full cone type before.
    return false;
  }

  WASM_UNREACHABLE("unhandled case of isSubContents");
}

namespace {

// We are going to do a very large flow operation, potentially, as we create
// a Location for every interesting part in the entire wasm, and some of those
// places will have lots of links (like a struct field may link out to every
// single struct.get of that type), so we must make the data structures here
// as efficient as possible. Towards that goal, we work with location
// *indexes* where possible, which are small (32 bits) and do not require any
// complex hashing when we use them in sets or maps.
//
// Note that we do not use indexes everywhere, since the initial analysis is
// done in parallel, and we do not have a fixed indexing of locations yet. When
// we merge the parallel data we create that indexing, and use indexes from then
// on.
using LocationIndex = uint32_t;

#ifndef NDEBUG
// Assert on not having duplicates in a vector.
template<typename T> void disallowDuplicates(const T& targets) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
  std::unordered_set<LocationIndex> uniqueTargets;
  for (const auto& target : targets) {
    uniqueTargets.insert(target);
  }
  assert(uniqueTargets.size() == targets.size());
#endif
}
#endif

// A link indicates a flow of content from one location to another. For
// example, if we do a local.get and return that value from a function, then
// we have a link from the ExpressionLocation of that local.get to a
// ResultLocation.
template<typename T> struct Link {
  T from;
  T to;

  bool operator==(const Link<T>& other) const {
    return from == other.from && to == other.to;
  }
};

using LocationLink = Link<Location>;
using IndexLink = Link<LocationIndex>;

} // anonymous namespace

} // namespace wasm

namespace std {

template<> struct hash<wasm::LocationLink> {
  size_t operator()(const wasm::LocationLink& loc) const {
    return std::hash<std::pair<wasm::Location, wasm::Location>>{}(
      {loc.from, loc.to});
  }
};

template<> struct hash<wasm::IndexLink> {
  size_t operator()(const wasm::IndexLink& loc) const {
    return std::hash<std::pair<wasm::LocationIndex, wasm::LocationIndex>>{}(
      {loc.from, loc.to});
  }
};

} // namespace std

namespace wasm {

namespace {

// The data we gather from each function, as we process them in parallel. Later
// this will be merged into a single big graph.
struct CollectedFuncInfo {
  // All the links we found in this function. Rarely are there duplicates
  // in this list (say when writing to the same global location from another
  // global location), and we do not try to deduplicate here, just store them in
  // a plain array for now, which is faster (later, when we merge all the info
  // from the functions, we need to deduplicate anyhow).
  std::vector<LocationLink> links;

  // All the roots of the graph, that is, places that begin by containing some
  // particular content. That includes i32.const, ref.func, struct.new, etc. All
  // possible contents in the rest of the graph flow from such places.
  //
  // The vector here is of the location of the root and then its contents.
  std::vector<std::pair<Location, PossibleContents>> roots;

  // In some cases we need to know the parent of the expression. Consider this:
  //
  //  (struct.set $A k
  //    (local.get $ref)
  //    (local.get $value)
  //  )
  //
  // Imagine that the first local.get, for $ref, receives a new value. That can
  // affect where the struct.set sends values: if previously that local.get had
  // no possible contents, and now it does, then we have DataLocations to
  // update. Likewise, when the second local.get is updated we must do the same,
  // but again which DataLocations we update depends on the ref passed to the
  // struct.set. To handle such things, we set add a childParent link, and then
  // when we update the child we can find the parent and handle any special
  // behavior we need there.
  std::unordered_map<Expression*, Expression*> childParents;

  // All functions that might be called from the outside. Any RefFunc suggests
  // that, in open world. (We could be more precise and use our flow analysis to
  // see which, in fact, flow outside, but it is unclear how useful that would
  // be. Anyhow, closed-world is more important to optimize, and avoids this.)
  std::unordered_set<Name> calledFromOutside;
};

// Does a walk while maintaining a map of names of branch targets to those
// expressions, so they can be found by their name.
// TODO: can this replace ControlFlowWalker in other places?
template<typename SubType, typename VisitorType = Visitor<SubType>>
struct BreakTargetWalker : public PostWalker<SubType, VisitorType> {
  std::unordered_map<Name, Expression*> breakTargets;

  Expression* findBreakTarget(Name name) { return breakTargets[name]; }

  static void scan(SubType* self, Expression** currp) {
    auto* curr = *currp;
    BranchUtils::operateOnScopeNameDefs(
      curr, [&](Name name) { self->breakTargets[name] = curr; });

    PostWalker<SubType, VisitorType>::scan(self, currp);
  }
};

// Walk the wasm and find all the links we need to care about, and the locations
// and roots related to them. This builds up a CollectedFuncInfo data structure.
// After all InfoCollectors run, those data structures will be merged and the
// main flow will begin.
struct InfoCollector
  : public BreakTargetWalker<InfoCollector, OverriddenVisitor<InfoCollector>> {
  CollectedFuncInfo& info;
  const PassOptions& options;

  InfoCollector(CollectedFuncInfo& info, const PassOptions& options)
    : info(info), options(options) {}

  // Check if a type is relevant for us. If not, we can ignore it entirely.
  bool isRelevant(Type type) {
    if (type == Type::unreachable || type == Type::none) {
      return false;
    }
    if (type.isTuple()) {
      for (auto t : type) {
        if (isRelevant(t)) {
          return true;
        }
      }
    }
    return true;
  }

  bool isRelevant(Signature sig) {
    return isRelevant(sig.params) || isRelevant(sig.results);
  }

  bool isRelevant(Expression* curr) { return curr && isRelevant(curr->type); }

  template<typename T> bool isRelevant(const T& vec) {
    for (auto* expr : vec) {
      if (isRelevant(expr->type)) {
        return true;
      }
    }
    return false;
  }

  // Each visit*() call is responsible for connecting the children of a node to
  // that node. Responsibility for connecting the node's output to anywhere
  // else (another expression or the function itself, if we are at the top
  // level) is the responsibility of the outside.

  void visitBlock(Block* curr) {
    if (curr->list.empty()) {
      return;
    }

    // The final item in the block can flow a value to here as well.
    receiveChildValue(curr->list.back(), curr);
  }
  void visitIf(If* curr) {
    // Each arm may flow out a value.
    receiveChildValue(curr->ifTrue, curr);
    receiveChildValue(curr->ifFalse, curr);
  }
  void visitLoop(Loop* curr) { receiveChildValue(curr->body, curr); }
  void visitBreak(Break* curr) {
    // Connect the value (if present) to the break target.
    handleBreakValue(curr);

    // The value may also flow through in a br_if (the type will indicate that,
    // which receiveChildValue will notice).
    receiveChildValue(curr->value, curr);
  }
  void visitSwitch(Switch* curr) { handleBreakValue(curr); }
  void visitLoad(Load* curr) {
    // We could infer the exact type here, but as no subtyping is possible, it
    // would have no benefit, so just add a generic root (which will be "Many").
    // See the comment on the ContentOracle class.
    addRoot(curr);
  }
  void visitStore(Store* curr) {}
  void visitAtomicRMW(AtomicRMW* curr) { addRoot(curr); }
  void visitAtomicCmpxchg(AtomicCmpxchg* curr) { addRoot(curr); }
  void visitAtomicWait(AtomicWait* curr) { addRoot(curr); }
  void visitAtomicNotify(AtomicNotify* curr) { addRoot(curr); }
  void visitAtomicFence(AtomicFence* curr) {}
  void visitSIMDExtract(SIMDExtract* curr) { addRoot(curr); }
  void visitSIMDReplace(SIMDReplace* curr) { addRoot(curr); }
  void visitSIMDShuffle(SIMDShuffle* curr) { addRoot(curr); }
  void visitSIMDTernary(SIMDTernary* curr) { addRoot(curr); }
  void visitSIMDShift(SIMDShift* curr) { addRoot(curr); }
  void visitSIMDLoad(SIMDLoad* curr) { addRoot(curr); }
  void visitSIMDLoadStoreLane(SIMDLoadStoreLane* curr) { addRoot(curr); }
  void visitMemoryInit(MemoryInit* curr) {}
  void visitDataDrop(DataDrop* curr) {}
  void visitMemoryCopy(MemoryCopy* curr) {}
  void visitMemoryFill(MemoryFill* curr) {}
  void visitConst(Const* curr) {
    addRoot(curr, PossibleContents::literal(curr->value));
  }
  void visitUnary(Unary* curr) {
    // We could optimize cases like this using interpreter integration: if the
    // input is a Literal, we could interpret the Literal result. However, if
    // the input is a literal then the GUFA pass will emit a Const there, and
    // the Precompute pass can use that later to interpret a result. That is,
    // the input we need here, a constant, is already something GUFA can emit as
    // an output. As a result, integrating the interpreter here would perhaps
    // make compilation require fewer steps, but it wouldn't let us optimize
    // more than we could before.
    addRoot(curr);
  }
  void visitBinary(Binary* curr) { addRoot(curr); }
  void visitSelect(Select* curr) {
    receiveChildValue(curr->ifTrue, curr);
    receiveChildValue(curr->ifFalse, curr);
  }
  void visitDrop(Drop* curr) {}
  void visitMemorySize(MemorySize* curr) { addRoot(curr); }
  void visitMemoryGrow(MemoryGrow* curr) { addRoot(curr); }
  void visitRefNull(RefNull* curr) {
    addRoot(
      curr,
      PossibleContents::literal(Literal::makeNull(curr->type.getHeapType())));
  }
  void visitRefIsNull(RefIsNull* curr) {
    // TODO: Optimize when possible. For example, if we can infer an exact type
    //       here which allows us to know the result then we should do so. This
    //       is unlike the case in visitUnary, above: the information that lets
    //       us optimize *cannot* be written into Binaryen IR (unlike a Literal)
    //       so using it during this pass allows us to optimize new things.
    addRoot(curr);
  }
  void visitRefFunc(RefFunc* curr) {
    addRoot(
      curr,
      PossibleContents::literal(Literal(curr->func, curr->type.getHeapType())));

    // The presence of a RefFunc indicates the function may be called
    // indirectly, so add the relevant connections for this particular function.
    // We do so here in the RefFunc so that we only do it for functions that
    // actually have a RefFunc.
    auto* func = getModule()->getFunction(curr->func);
    for (Index i = 0; i < func->getParams().size(); i++) {
      info.links.push_back(
        {SignatureParamLocation{func->type, i}, ParamLocation{func, i}});
    }
    for (Index i = 0; i < func->getResults().size(); i++) {
      info.links.push_back(
        {ResultLocation{func, i}, SignatureResultLocation{func->type, i}});
    }

    if (!options.closedWorld) {
      info.calledFromOutside.insert(curr->func);
    }
  }
  void visitRefEq(RefEq* curr) {
    addRoot(curr);
  }
  void visitTableGet(TableGet* curr) {
    // TODO: be more precise
    addRoot(curr);
  }
  void visitTableSet(TableSet* curr) {}
  void visitTableSize(TableSize* curr) { addRoot(curr); }
  void visitTableGrow(TableGrow* curr) { addRoot(curr); }
  void visitTableFill(TableFill* curr) { addRoot(curr); }
  void visitTableCopy(TableCopy* curr) { addRoot(curr); }
  void visitTableInit(TableInit* curr) {}

  void visitNop(Nop* curr) {}
  void visitUnreachable(Unreachable* curr) {}

#ifndef NDEBUG
  // For now we only handle pops in a catch body, see visitTry(). To check for
  // errors, use counter of the pops we handled and all the pops; those sums
  // must agree at the end, or else we've seen something we can't handle.
  Index totalPops = 0;
  Index handledPops = 0;
#endif

  void visitPop(Pop* curr) {
#ifndef NDEBUG
    totalPops++;
#endif
  }
  void visitRefI31(RefI31* curr) {
    // TODO: optimize like struct references
    addRoot(curr);
  }
  void visitI31Get(I31Get* curr) {
    // TODO: optimize like struct references
    addRoot(curr);
  }

  void visitRefCast(RefCast* curr) { receiveChildValue(curr->ref, curr); }
  void visitRefTest(RefTest* curr) { addRoot(curr); }
  void visitBrOn(BrOn* curr) {
    // TODO: optimize when possible
    handleBreakValue(curr);
    receiveChildValue(curr->ref, curr);
  }
  void visitRefAs(RefAs* curr) {
    if (curr->op == ExternConvertAny || curr->op == AnyConvertExtern) {
      // The external conversion ops emit something of a completely different
      // type, which we must mark as a root.
      addRoot(curr);
      return;
    }

    // All other RefAs operations flow values through while refining them (the
    // filterExpressionContents method will handle the refinement
    // automatically).
    receiveChildValue(curr->value, curr);
  }

  void visitLocalSet(LocalSet* curr) {
    if (!isRelevant(curr->value->type)) {
      return;
    }

    // Tees flow out the value (receiveChildValue will see if this is a tee
    // based on the type, automatically).
    receiveChildValue(curr->value, curr);

    // We handle connecting local.gets to local.sets below, in visitFunction.
  }
  void visitLocalGet(LocalGet* curr) {
    // We handle connecting local.gets to local.sets below, in visitFunction.
  }

  // Globals read and write from their location.
  void visitGlobalGet(GlobalGet* curr) {
    if (isRelevant(curr->type)) {
      // FIXME: we allow tuples in globals, so GlobalLocation needs a tupleIndex
      //        and we should loop here.
      assert(!curr->type.isTuple());
      info.links.push_back(
        {GlobalLocation{curr->name}, ExpressionLocation{curr, 0}});
    }
  }
  void visitGlobalSet(GlobalSet* curr) {
    if (isRelevant(curr->value->type)) {
      info.links.push_back(
        {ExpressionLocation{curr->value, 0}, GlobalLocation{curr->name}});
    }
  }

  // Iterates over a list of children and adds links to parameters and results
  // as needed. The param/result functions receive the index and create the
  // proper location for it.
  template<typename T>
  void handleCall(T* curr,
                  std::function<Location(Index)> makeParamLocation,
                  std::function<Location(Index)> makeResultLocation) {
    Index i = 0;
    for (auto* operand : curr->operands) {
      if (isRelevant(operand->type)) {
        info.links.push_back(
          {ExpressionLocation{operand, 0}, makeParamLocation(i)});
      }
      i++;
    }

    // Add results, if anything flows out.
    for (Index i = 0; i < curr->type.size(); i++) {
      if (isRelevant(curr->type[i])) {
        info.links.push_back(
          {makeResultLocation(i), ExpressionLocation{curr, i}});
      }
    }

    // If this is a return call then send the result to the function return as
    // well.
    if (curr->isReturn) {
      auto results = getFunction()->getResults();
      for (Index i = 0; i < results.size(); i++) {
        auto result = results[i];
        if (isRelevant(result)) {
          info.links.push_back(
            {makeResultLocation(i), ResultLocation{getFunction(), i}});
        }
      }
    }
  }

  // Calls send values to params in their possible targets, and receive
  // results.

  template<typename T> void handleDirectCall(T* curr, Name targetName) {
    auto* target = getModule()->getFunction(targetName);
    handleCall(
      curr,
      [&](Index i) {
        assert(i <= target->getParams().size());
        return ParamLocation{target, i};
      },
      [&](Index i) {
        assert(i <= target->getResults().size());
        return ResultLocation{target, i};
      });
  }
  template<typename T> void handleIndirectCall(T* curr, HeapType targetType) {
    // If the heap type is not a signature, which is the case for a bottom type
    // (null) then nothing can be called.
    if (!targetType.isSignature()) {
      assert(targetType.isBottom());
      return;
    }
    handleCall(
      curr,
      [&](Index i) {
        assert(i <= targetType.getSignature().params.size());
        return SignatureParamLocation{targetType, i};
      },
      [&](Index i) {
        assert(i <= targetType.getSignature().results.size());
        return SignatureResultLocation{targetType, i};
      });
  }
  template<typename T> void handleIndirectCall(T* curr, Type targetType) {
    // If the type is unreachable, nothing can be called (and there is no heap
    // type to get).
    if (targetType != Type::unreachable) {
      handleIndirectCall(curr, targetType.getHeapType());
    }
  }

  void visitCall(Call* curr) {
    Name targetName;
    if (!Intrinsics(*getModule()).isCallWithoutEffects(curr)) {
      // This is just a normal call.
      handleDirectCall(curr, curr->target);
      return;
    }
    // A call-without-effects receives a function reference and calls it, the
    // same as a CallRef. When we have a flag for non-closed-world, we should
    // handle this automatically by the reference flowing out to an import,
    // which is what binaryen intrinsics look like. For now, to support use
    // cases of a closed world but that also use this intrinsic, handle the
    // intrinsic specifically here. (Without that, the closed world assumption
    // makes us ignore the function ref that flows to an import, so we are not
    // aware that it is actually called.)
    auto* target = curr->operands.back();

    // We must ignore the last element when handling the call - the target is
    // used to perform the call, and not sent during the call.
    curr->operands.pop_back();

    if (auto* refFunc = target->dynCast<RefFunc>()) {
      // We can see exactly where this goes.
      handleDirectCall(curr, refFunc->func);
    } else {
      // We can't see where this goes. We must be pessimistic and assume it
      // can call anything of the proper type, the same as a CallRef. (We could
      // look at the possible contents of |target| during the flow, but that
      // would require special logic like we have for StructGet etc., and the
      // intrinsics will be lowered away anyhow, so just running after that is
      // a workaround.)
      handleIndirectCall(curr, target->type);
    }

    // Restore the target.
    curr->operands.push_back(target);
  }
  void visitCallIndirect(CallIndirect* curr) {
    // TODO: the table identity could also be used here
    // TODO: optimize the call target like CallRef
    handleIndirectCall(curr, curr->heapType);
  }
  void visitCallRef(CallRef* curr) {
    handleIndirectCall(curr, curr->target->type);
  }

  // Creates a location for a null of a particular type and adds a root for it.
  // Such roots are where the default value of an i32 local comes from, or the
  // value in a ref.null.
  Location getNullLocation(Type type) {
    auto location = NullLocation{type};
    addRoot(location, PossibleContents::literal(Literal::makeZero(type)));
    return location;
  }

  // Iterates over a list of children and adds links from them. The target of
  // those link is created using a function that is passed in, which receives
  // the index of the child.
  void linkChildList(ExpressionList& operands,
                     std::function<Location(Index)> makeTarget) {
    Index i = 0;
    for (auto* operand : operands) {
      // This helper is not used from places that allow a tuple (hence we can
      // hardcode the index 0 a few lines down).
      assert(!operand->type.isTuple());

      if (isRelevant(operand->type)) {
        info.links.push_back({ExpressionLocation{operand, 0}, makeTarget(i)});
      }
      i++;
    }
  }

  void visitStructNew(StructNew* curr) {
    if (curr->type == Type::unreachable) {
      return;
    }
    auto type = curr->type.getHeapType();
    if (curr->isWithDefault()) {
      // Link the default values to the struct's fields.
      auto& fields = type.getStruct().fields;
      for (Index i = 0; i < fields.size(); i++) {
        info.links.push_back(
          {getNullLocation(fields[i].type), DataLocation{type, i}});
      }
    } else {
      // Link the operands to the struct's fields.
      linkChildList(curr->operands, [&](Index i) {
        return DataLocation{type, i};
      });
    }
    addRoot(curr, PossibleContents::exactType(curr->type));
  }
  void visitArrayNew(ArrayNew* curr) {
    if (curr->type == Type::unreachable) {
      return;
    }
    auto type = curr->type.getHeapType();
    if (curr->init) {
      info.links.push_back(
        {ExpressionLocation{curr->init, 0}, DataLocation{type, 0}});
    } else {
      info.links.push_back(
        {getNullLocation(type.getArray().element.type), DataLocation{type, 0}});
    }
    addRoot(curr, PossibleContents::exactType(curr->type));
  }
  void visitArrayNewData(ArrayNewData* curr) {
    if (curr->type == Type::unreachable) {
      return;
    }
    addRoot(curr, PossibleContents::exactType(curr->type));
    auto heapType = curr->type.getHeapType();
    Type elemType = heapType.getArray().element.type;
    addRoot(DataLocation{heapType, 0}, PossibleContents::fromType(elemType));
  }
  void visitArrayNewElem(ArrayNewElem* curr) {
    if (curr->type == Type::unreachable) {
      return;
    }
    addRoot(curr, PossibleContents::exactType(curr->type));
    auto heapType = curr->type.getHeapType();
    Type segType = getModule()->getElementSegment(curr->segment)->type;
    addRoot(DataLocation{heapType, 0}, PossibleContents::fromType(segType));
    return;
  }
  void visitArrayNewFixed(ArrayNewFixed* curr) {
    if (curr->type == Type::unreachable) {
      return;
    }
    if (!curr->values.empty()) {
      auto type = curr->type.getHeapType();
      linkChildList(curr->values, [&](Index i) {
        // The index i is ignored, as we do not track indexes in Arrays -
        // everything is modeled as if at index 0.
        return DataLocation{type, 0};
      });
    }
    addRoot(curr, PossibleContents::exactType(curr->type));
  }

  // Struct operations access the struct fields' locations.
  void visitStructGet(StructGet* curr) {
    if (!isRelevant(curr->ref)) {
      // If references are irrelevant then we will ignore them, and we won't
      // have information about this struct.get's reference, which means we
      // won't have information to compute relevant values for this struct.get.
      // Instead, just mark this as an unknown value (root).
      addRoot(curr);
      return;
    }
    // The struct.get will receive different values depending on the contents
    // in the reference, so mark us as the parent of the ref, and we will
    // handle all of this in a special way during the flow. Note that we do
    // not even create a DataLocation here; anything that we need will be
    // added during the flow.
    addChildParentLink(curr->ref, curr);
  }
  void visitStructSet(StructSet* curr) {
    if (curr->ref->type == Type::unreachable) {
      return;
    }
    // See comment on visitStructGet. Here we also connect the value.
    addChildParentLink(curr->ref, curr);
    addChildParentLink(curr->value, curr);
  }
  // Array operations access the array's location, parallel to how structs work.
  void visitArrayGet(ArrayGet* curr) {
    if (!isRelevant(curr->ref)) {
      addRoot(curr);
      return;
    }
    addChildParentLink(curr->ref, curr);
  }
  void visitArraySet(ArraySet* curr) {
    if (curr->ref->type == Type::unreachable) {
      return;
    }
    addChildParentLink(curr->ref, curr);
    addChildParentLink(curr->value, curr);
  }

  void visitArrayLen(ArrayLen* curr) {
    // TODO: optimize when possible (perhaps we can infer a Literal for the
    //       length)
    addRoot(curr);
  }
  void visitArrayCopy(ArrayCopy* curr) {
    if (curr->type == Type::unreachable) {
      return;
    }
    // Our flow handling of GC data is not simple: we have special code for each
    // read and write instruction. Therefore, to avoid adding special code for
    // ArrayCopy, model it as a combination of an ArrayRead and ArrayWrite, by
    // just emitting fake expressions for those. The fake expressions are not
    // part of the main IR, which is potentially confusing during debugging,
    // however, which is a downside.
    Builder builder(*getModule());
    auto* get =
      builder.makeArrayGet(curr->srcRef, curr->srcIndex, curr->srcRef->type);
    visitArrayGet(get);
    auto* set = builder.makeArraySet(curr->destRef, curr->destIndex, get);
    visitArraySet(set);
  }
  void visitArrayFill(ArrayFill* curr) {
    if (curr->type == Type::unreachable) {
      return;
    }
    // See ArrayCopy, above.
    Builder builder(*getModule());
    auto* set = builder.makeArraySet(curr->ref, curr->index, curr->value);
    visitArraySet(set);
  }
  template<typename ArrayInit> void visitArrayInit(ArrayInit* curr) {
    // Check for both unreachability and a bottom type. In either case we have
    // no work to do, and would error on an assertion below in finding the array
    // type.
    auto field = GCTypeUtils::getField(curr->ref->type);
    if (!field) {
      return;
    }
    // See ArrayCopy, above. Here an additional complexity is that we need to
    // model the read from the segment. As in TableGet, for now we just assume
    // any value is possible there (a root in the graph), which we set up
    // manually here as a fake unknown value, using a fake local.get that we
    // root.
    // TODO: be more precise about what is in the table
    auto valueType = field->type;
    Builder builder(*getModule());
    auto* get = builder.makeLocalGet(-1, valueType);
    addRoot(get);
    auto* set = builder.makeArraySet(curr->ref, curr->index, get);
    visitArraySet(set);
  }
  void visitArrayInitData(ArrayInitData* curr) { visitArrayInit(curr); }
  void visitArrayInitElem(ArrayInitElem* curr) { visitArrayInit(curr); }
  void visitStringNew(StringNew* curr) {
    if (curr->type == Type::unreachable) {
      return;
    }
    addRoot(curr, PossibleContents::exactType(curr->type));
  }
  void visitStringConst(StringConst* curr) {
    addRoot(curr,
            PossibleContents::literal(Literal(std::string(curr->string.str))));
  }
  void visitStringMeasure(StringMeasure* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }
  void visitStringEncode(StringEncode* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }
  void visitStringConcat(StringConcat* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }
  void visitStringEq(StringEq* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }
  void visitStringWTF16Get(StringWTF16Get* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }
  void visitStringSliceWTF(StringSliceWTF* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }

  // TODO: Model which throws can go to which catches. For now, anything thrown
  //       is sent to the location of that tag, and any catch of that tag can
  //       read them.
  void visitTry(Try* curr) {
    receiveChildValue(curr->body, curr);
    for (auto* catchBody : curr->catchBodies) {
      receiveChildValue(catchBody, curr);
    }

    auto numTags = curr->catchTags.size();
    for (Index tagIndex = 0; tagIndex < numTags; tagIndex++) {
      auto tag = curr->catchTags[tagIndex];
      auto* body = curr->catchBodies[tagIndex];

      auto params = getModule()->getTag(tag)->sig.params;
      if (params.size() == 0) {
        continue;
      }

      // Find the pop of the tag's contents. The body must start with such a
      // pop, which might be of a tuple.
      auto* pop = EHUtils::findPop(body);
      // There must be a pop since we checked earlier if it was an empty tag,
      // and would not reach here.
      assert(pop);
      assert(pop->type.size() == params.size());
      for (Index i = 0; i < params.size(); i++) {
        if (isRelevant(params[i])) {
          info.links.push_back(
            {TagLocation{tag, i}, ExpressionLocation{pop, i}});
        }
      }

#ifndef NDEBUG
      // This pop was in the position we can handle, note that (see visitPop
      // for details).
      handledPops++;
#endif
    }
  }
  void visitTryTable(TryTable* curr) {
    receiveChildValue(curr->body, curr);

    // Connect caught tags with their branch targets, and materialize non-null
    // exnref values.
    auto numTags = curr->catchTags.size();
    for (Index tagIndex = 0; tagIndex < numTags; tagIndex++) {
      auto tag = curr->catchTags[tagIndex];
      auto target = curr->catchDests[tagIndex];

      Index exnrefIndex = 0;
      if (tag.is()) {
        auto params = getModule()->getTag(tag)->sig.params;

        for (Index i = 0; i < params.size(); i++) {
          if (isRelevant(params[i])) {
            info.links.push_back(
              {TagLocation{tag, i}, getBreakTargetLocation(target, i)});
          }
        }

        exnrefIndex = params.size();
      }

      if (curr->catchRefs[tagIndex]) {
        auto location = CaughtExnRefLocation{};
        addRoot(location,
                PossibleContents::fromType(Type(HeapType::exn, NonNullable)));
        info.links.push_back(
          {location, getBreakTargetLocation(target, exnrefIndex)});
      }
    }
  }
  void visitThrow(Throw* curr) {
    auto& operands = curr->operands;
    if (!isRelevant(operands)) {
      return;
    }

    auto tag = curr->tag;
    for (Index i = 0; i < curr->operands.size(); i++) {
      info.links.push_back(
        {ExpressionLocation{operands[i], 0}, TagLocation{tag, i}});
    }
  }
  void visitRethrow(Rethrow* curr) {}
  void visitThrowRef(ThrowRef* curr) {}

  void visitTupleMake(TupleMake* curr) {
    if (isRelevant(curr->type)) {
      for (Index i = 0; i < curr->operands.size(); i++) {
        info.links.push_back({ExpressionLocation{curr->operands[i], 0},
                              ExpressionLocation{curr, i}});
      }
    }
  }
  void visitTupleExtract(TupleExtract* curr) {
    if (isRelevant(curr->type)) {
      info.links.push_back({ExpressionLocation{curr->tuple, curr->index},
                            ExpressionLocation{curr, 0}});
    }
  }

  // Adds a result to the current function, such as from a return or the value
  // that flows out.
  void addResult(Expression* value) {
    if (value && isRelevant(value->type)) {
      for (Index i = 0; i < value->type.size(); i++) {
        info.links.push_back(
          {ExpressionLocation{value, i}, ResultLocation{getFunction(), i}});
      }
    }
  }

  void visitReturn(Return* curr) { addResult(curr->value); }

  void visitContBind(ContBind* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }
  void visitContNew(ContNew* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }
  void visitResume(Resume* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }
  void visitSuspend(Suspend* curr) {
    // TODO: optimize when possible
    addRoot(curr);
  }

  void visitFunction(Function* func) {
    // Functions with a result can flow a value out from their body.
    addResult(func->body);

    // See visitPop().
    assert(handledPops == totalPops);

    // Handle local.get/sets: each set must write to the proper gets.
    //
    // Note that we do not use LocalLocation because LocalGraph gives us more
    // precise information: we generate direct links from sets to relevant gets
    // rather than consider each local index a single location, which
    // LocalLocation does. (LocalLocation is useful in cases where we do need a
    // single location, such as when we consider what type to give the local;
    // the type must be the same for all gets of that local.)
    LocalGraph localGraph(func, getModule());

    for (auto& [curr, _] : localGraph.locations) {
      auto* get = curr->dynCast<LocalGet>();
      if (!get) {
        continue;
      }

      auto index = get->index;
      auto type = func->getLocalType(index);
      if (!isRelevant(type)) {
        continue;
      }

      // Each get reads from its relevant sets.
      for (auto* set : localGraph.getSets(get)) {
        for (Index i = 0; i < type.size(); i++) {
          Location source;
          if (set) {
            // This is a normal local.set.
            source = ExpressionLocation{set->value, i};
          } else if (getFunction()->isParam(index)) {
            // This is a parameter.
            source = ParamLocation{getFunction(), index};
          } else {
            // This is the default value from the function entry, a null.
            source = getNullLocation(type[i]);
          }
          info.links.push_back({source, ExpressionLocation{get, i}});
        }
      }
    }
  }

  // Helpers

  // Returns the location of a break target by the name (e.g. returns the
  // location of a block, if the name is the name of a block). Also receives the
  // index in a tuple, if this is part of a tuple value.
  Location getBreakTargetLocation(Name target, Index i) {
    return ExpressionLocation{findBreakTarget(target), i};
  }

  // Handles the value sent in a break instruction. Does not handle anything
  // else like the condition etc.
  void handleBreakValue(Expression* curr) {
    BranchUtils::operateOnScopeNameUsesAndSentValues(
      curr, [&](Name target, Expression* value) {
        if (value && isRelevant(value->type)) {
          for (Index i = 0; i < value->type.size(); i++) {
            // Breaks send the contents of the break value to the branch target
            // that the break goes to.
            info.links.push_back({ExpressionLocation{value, i},
                                  getBreakTargetLocation(target, i)});
          }
        }
      });
  }

  // Connect a child's value to the parent, that is, all content in the child is
  // now considered possible in the parent as well.
  void receiveChildValue(Expression* child, Expression* parent) {
    if (isRelevant(parent) && isRelevant(child)) {
      // The tuple sizes must match (or, if not a tuple, the size should be 1 in
      // both cases).
      assert(child->type.size() == parent->type.size());
      for (Index i = 0; i < child->type.size(); i++) {
        info.links.push_back(
          {ExpressionLocation{child, i}, ExpressionLocation{parent, i}});
      }
    }
  }

  // See the comment on CollectedFuncInfo::childParents.
  void addChildParentLink(Expression* child, Expression* parent) {
    if (isRelevant(child->type)) {
      info.childParents[child] = parent;
    }
  }

  // Adds a root, if the expression is relevant. If the value is not specified,
  // mark the root as containing Many (which is the common case, so avoid
  // verbose code).
  void addRoot(Expression* curr,
               PossibleContents contents = PossibleContents::many()) {
    // TODO Use a cone type here when relevant
    if (isRelevant(curr)) {
      if (contents.isMany()) {
        contents = PossibleContents::fromType(curr->type);
      }
      addRoot(ExpressionLocation{curr, 0}, contents);
    }
  }

  // As above, but given an arbitrary location and not just an expression.
  void addRoot(Location loc,
               PossibleContents contents = PossibleContents::many()) {
    info.roots.emplace_back(loc, contents);
  }
};

// TrapsNeverHappen Oracle. This makes inferences *backwards* from traps that we
// know will not happen due to the TNH assumption. For example,
//
//  (local.get $a)
//  (ref.cast $B (local.get $a))
//
// The cast happens right after the first local.get, and we assume it does not
// fail, so the local must contain a B, even though the IR only has A.
//
// This analysis complements ContentOracle, which uses this analysis internally.
// ContentOracle does a forward flow analysis (as content moves from place to
// place) which increases from "nothing", while this does a backwards analysis
// that decreases from "everything" (or rather, from the type declared in the
// IR), so the two cannot be done at once.
//
// TODO: We could cycle between this and ContentOracle for repeated
//       improvements.
// TODO: This pass itself could benefit from internal cycles.
//
// This analysis mainly focuses on information across calls, as simple backwards
// inference is done in OptimizeCasts. Note that it is not needed if a call is
// inlined, obviously, and so it mostly helps cases like functions too large to
// inline, or when optimizing for size, or with indirect calls.
//
// We track cast parameters by mapping an index to the type it is definitely
// cast to if the function is entered. From that information we can infer things
// about the values being sent to the function (which we can assume must have
// the right type so that the casts do not trap).
using CastParams = std::unordered_map<Index, Type>;

// The information we collect and utilize as we operate in parallel in each
// function.
struct TNHInfo {
  CastParams castParams;

  // TODO: Returns as well: when we see (ref.cast (call $foo)) in all callers
  //       then we can refine inside $foo (in closed world).

  // We gather calls in parallel in order to process them later.
  std::vector<Call*> calls;
  std::vector<CallRef*> callRefs;

  // Note if a function body definitely traps.
  bool traps = false;

  // We gather inferences in parallel and combine them at the end.
  std::unordered_map<Expression*, PossibleContents> inferences;
};

class TNHOracle : public ModuleUtils::ParallelFunctionAnalysis<TNHInfo> {
  const PassOptions& options;

public:
  using Parent = ModuleUtils::ParallelFunctionAnalysis<TNHInfo>;
  TNHOracle(Module& wasm, const PassOptions& options)
    : Parent(wasm,
             [this, &options](Function* func, TNHInfo& info) {
               scan(func, info, options);
             }),
      options(options) {

    // After the scanning phase that we run in the constructor, continue to the
    // second phase of analysis: inference.
    infer();
  }

  // Get the type we inferred was possible at a location.
  PossibleContents getContents(Expression* curr) {
    auto naiveContents = PossibleContents::fullConeType(curr->type);

    // If we inferred nothing, use the naive type.
    auto iter = inferences.find(curr);
    if (iter == inferences.end()) {
      return naiveContents;
    }

    auto& contents = iter->second;
    // We only store useful contents that improve on the naive estimate that
    // uses the type in the IR.
    assert(contents != naiveContents);
    return contents;
  }

private:
  // Maps expressions to the content we inferred there. If an expression is not
  // here then expression->type (the type in Binaryen IR) is all we have.
  std::unordered_map<Expression*, PossibleContents> inferences;

  // Phase 1: Scan to find cast parameters and calls. This operates on a single
  // function, and is called in parallel.
  void scan(Function* func, TNHInfo& info, const PassOptions& options);

  // Phase 2: Infer contents based on what we scanned.
  void infer();

  // Optimize one specific call (or call_ref).
  void optimizeCallCasts(Expression* call,
                         const ExpressionList& operands,
                         const CastParams& targetCastParams,
                         const analysis::CFGBlockIndexes& blockIndexes,
                         TNHInfo& info);
};

void TNHOracle::scan(Function* func,
                     TNHInfo& info,
                     const PassOptions& options) {
  if (func->imported()) {
    return;
  }

  // Gather parameters that are definitely cast in the function entry.
  struct EntryScanner : public LinearExecutionWalker<EntryScanner> {
    Module& wasm;
    const PassOptions& options;
    TNHInfo& info;

    EntryScanner(Module& wasm, const PassOptions& options, TNHInfo& info)
      : wasm(wasm), options(options), info(info) {}

    // Note while we are still in the entry (first) block.
    bool inEntryBlock = true;

    static void doNoteNonLinear(EntryScanner* self, Expression** currp) {
      // This is the end of the first basic block.
      self->inEntryBlock = false;
    }

    void visitCall(Call* curr) { info.calls.push_back(curr); }

    void visitCallRef(CallRef* curr) {
      // We can only optimize call_ref in closed world, as otherwise the
      // call can go somewhere we can't see.
      if (options.closedWorld) {
        info.callRefs.push_back(curr);
      }
    }

    void visitRefAs(RefAs* curr) {
      if (curr->op == RefAsNonNull) {
        noteCast(curr->value, curr->type);
      }
    }
    void visitRefCast(RefCast* curr) { noteCast(curr->ref, curr->type); }

    // Note a cast of an expression to a particular type.
    void noteCast(Expression* expr, Type type) {
      if (!inEntryBlock) {
        return;
      }

      auto* fallthrough = Properties::getFallthrough(expr, options, wasm);
      if (auto* get = fallthrough->dynCast<LocalGet>()) {
        // To optimize, this needs to be a param, and of a useful type.
        //
        // Note that if we see more than one cast we keep the first one. This is
        // not important in optimized code, as the most refined cast would be
        // the only one to exist there, so it's ok to keep things simple here.
        if (getFunction()->isParam(get->index) && type != get->type &&
            info.castParams.count(get->index) == 0) {
          info.castParams[get->index] = type;
        }
      }
    }

    // Operations that trap on null are equivalent to casts to non-null, in that
    // they imply that their input is non-null if traps never happen.
    //
    // We only look at them if the input is actually nullable, since if they
    // are non-nullable then we can add no information. (This is equivalent
    // to the handling of RefAsNonNull above, in the sense that in optimized
    // code the RefAs will not appear if the input is already non-nullable).
    // This function is called with the reference that will be trapped on,
    // if it is null.
    void notePossibleTrap(Expression* expr) {
      if (!expr->type.isRef() || expr->type.isNonNullable()) {
        return;
      }
      noteCast(expr, Type(expr->type.getHeapType(), NonNullable));
    }

    void visitStructGet(StructGet* curr) { notePossibleTrap(curr->ref); }
    void visitStructSet(StructSet* curr) { notePossibleTrap(curr->ref); }
    void visitArrayGet(ArrayGet* curr) { notePossibleTrap(curr->ref); }
    void visitArraySet(ArraySet* curr) { notePossibleTrap(curr->ref); }
    void visitArrayLen(ArrayLen* curr) { notePossibleTrap(curr->ref); }
    void visitArrayCopy(ArrayCopy* curr) {
      notePossibleTrap(curr->srcRef);
      notePossibleTrap(curr->destRef);
    }
    void visitArrayFill(ArrayFill* curr) { notePossibleTrap(curr->ref); }
    void visitArrayInitData(ArrayInitData* curr) {
      notePossibleTrap(curr->ref);
    }
    void visitArrayInitElem(ArrayInitElem* curr) {
      notePossibleTrap(curr->ref);
    }

    void visitFunction(Function* curr) {
      // In optimized TNH code, a function that always traps will be turned
      // into a singleton unreachable instruction, so it is enough to check
      // for that.
      if (curr->body->is<Unreachable>()) {
        info.traps = true;
      }
    }
  } scanner(wasm, options, info);
  scanner.walkFunction(func);
}

void TNHOracle::infer() {
  // Phase 2: Inside each function, optimize calls based on the cast params of
  // the called function (which we noted during phase 1).
  //
  // Specifically, each time we call a target that will cast a param, we can
  // infer that the param must have that type (or else we'd trap, but we are
  // assuming traps never happen).
  //
  // While doing so we must be careful of control flow transfers right before
  // the call:
  //
  //  (call $target
  //    (A)
  //    (br_if ..)
  //    (B)
  //  )
  //
  // If we branch in the br_if then we might execute A and then something else
  // entirely, and not reach B or the call. In that case we can't infer anything
  // about A (perhaps, for example, we branch away exactly when A would fail the
  // cast). Therefore in the optimization below we only optimize code that, if
  // reached, will definitely reach the call, like B.
  //
  // TODO: Some control flow transfers are ok, so long as we must reach the
  //       call, like if we replace the br_if with an if with two arms (and no
  //       branches in either).
  // TODO: We can also infer backwards past basic blocks from casts, even
  //       without calls. Any cast tells us something about the uses of that
  //       value that must reach the cast.
  // TODO: We can do a whole-program flow of this information.

  // For call_ref, we need to know which functions belong to each type. Gather
  // that first. This map will map each heap type to each function that is of
  // that type or a subtype, i.e., might be called when that type is seen in a
  // call_ref target.
  std::unordered_map<HeapType, std::vector<Function*>> typeFunctions;
  if (options.closedWorld) {
    for (auto& func : wasm.functions) {
      auto type = func->type;
      auto& info = map[wasm.getFunction(func->name)];
      if (info.traps) {
        // This function definitely traps, so we can assume it is never called,
        // and don't need to even bother putting it in |typeFunctions|.
        continue;
      }
      while (1) {
        typeFunctions[type].push_back(func.get());
        if (auto super = type.getDeclaredSuperType()) {
          type = *super;
        } else {
          break;
        }
      }
    }
  }

  doAnalysis([&](Function* func, TNHInfo& info) {
    // We will need some CFG information below. Computing this is expensive, so
    // only do it if we find optimization opportunities.
    std::optional<analysis::CFGBlockIndexes> blockIndexes;

    auto ensureCFG = [&]() {
      if (!blockIndexes) {
        auto cfg = analysis::CFG::fromFunction(func);
        blockIndexes = analysis::CFGBlockIndexes(cfg);
      }
    };

    for (auto* call : info.calls) {
      auto& targetInfo = map[wasm.getFunction(call->target)];

      auto& targetCastParams = targetInfo.castParams;
      if (targetCastParams.empty()) {
        continue;
      }

      // This looks promising, create the CFG if we haven't already, and
      // optimize.
      ensureCFG();
      optimizeCallCasts(
        call, call->operands, targetCastParams, *blockIndexes, info);

      // Note that we don't need to do anything for targetInfo.traps for a
      // direct call: the inliner will inline the singleton unreachable in the
      // target function anyhow.
    }

    for (auto* call : info.callRefs) {
      auto targetType = call->target->type;
      if (!targetType.isRef()) {
        // This is unreachable or null, and other passes will optimize that.
        continue;
      }

      // We should only get here in a closed world, in which we know which
      // functions might be called (the scan phase only notes callRefs if we are
      // in fact in a closed world).
      assert(options.closedWorld);

      auto iter = typeFunctions.find(targetType.getHeapType());
      if (iter == typeFunctions.end()) {
        // No function exists of this type, so the call_ref will trap. We can
        // mark the target as empty, which has the identical effect.
        info.inferences[call->target] = PossibleContents::none();
        continue;
      }

      // Go through the targets and ignore any that will trap. That will leave
      // us with the actually possible targets.
      //
      // Note that we did not even add functions that certainly trap to
      // |typeFunctions| at all, so those are already excluded.
      const auto& targets = iter->second;
      std::vector<Function*> possibleTargets;
      for (Function* target : targets) {
        auto& targetInfo = map[target];

        // If any of our operands will fail a cast, then we will trap.
        bool traps = false;
        for (auto& [castIndex, castType] : targetInfo.castParams) {
          auto operandType = call->operands[castIndex]->type;
          auto result = GCTypeUtils::evaluateCastCheck(operandType, castType);
          if (result == GCTypeUtils::Failure) {
            traps = true;
            break;
          }
        }
        if (!traps) {
          possibleTargets.push_back(target);
        }
      }

      if (possibleTargets.empty()) {
        // No target is possible.
        info.inferences[call->target] = PossibleContents::none();
        continue;
      }

      if (possibleTargets.size() == 1) {
        // There is exactly one possible call target, which means we can
        // actually infer what the call_ref is calling. Add that as an
        // inference.
        // TODO: We could also optimizeCallCasts() here, but it is low priority
        //       as other opts will make this call direct later, after which a
        //       lot of other optimizations become possible anyhow.
        auto target = possibleTargets[0]->name;
        info.inferences[call->target] = PossibleContents::literal(
          Literal(target, wasm.getFunction(target)->type));
        continue;
      }

      // More than one target exists: apply the intersection of their
      // constraints. That is, if they all cast the k-th parameter to type T (or
      // more) than we can apply that here.
      auto numParams = call->operands.size();
      std::vector<Type> sharedCastParamsVec(numParams, Type::unreachable);
      for (auto* target : possibleTargets) {
        auto& targetInfo = map[target];
        auto& targetCastParams = targetInfo.castParams;
        for (Index i = 0; i < numParams; i++) {
          auto iter = targetCastParams.find(i);
          if (iter == targetCastParams.end()) {
            // If the target does not cast, we cannot do anything with this
            // parameter; mark it as unoptimizable with an impossible type.
            sharedCastParamsVec[i] = Type::none;
            continue;
          }

          // This function casts this param. Combine this with existing info.
          auto castType = iter->second;
          sharedCastParamsVec[i] =
            Type::getLeastUpperBound(sharedCastParamsVec[i], castType);
        }
      }

      // Build a map of the interesting cast params we found, and if there are
      // any, optimize using them.
      CastParams sharedCastParams;
      for (Index i = 0; i < numParams; i++) {
        auto type = sharedCastParamsVec[i];
        if (type != Type::none) {
          sharedCastParams[i] = type;
        }
      }
      if (!sharedCastParams.empty()) {
        ensureCFG();
        optimizeCallCasts(
          call, call->operands, sharedCastParams, *blockIndexes, info);
      }
    }
  });

  // Combine all of our inferences from the parallel phase above us into the
  // final list of inferences.
  for (auto& [_, info] : map) {
    for (auto& [expr, contents] : info.inferences) {
      inferences[expr] = contents;
    }
  }
}

void TNHOracle::optimizeCallCasts(Expression* call,
                                  const ExpressionList& operands,
                                  const CastParams& targetCastParams,
                                  const analysis::CFGBlockIndexes& blockIndexes,
                                  TNHInfo& info) {
  // Optimize in the same basic block as the call: all instructions still in
  // that block will definitely execute if the call is reached. We will do that
  // by going backwards through the call's operands and fallthrough values, and
  // optimizing while we are still in the same basic block.
  auto callBlockIndex = blockIndexes.get(call);

  // Operands must exist since there is a cast param, so a param exists.
  assert(operands.size() > 0);
  for (int i = int(operands.size() - 1); i >= 0; i--) {
    auto* operand = operands[i];

    if (blockIndexes.get(operand) != callBlockIndex) {
      // Control flow might transfer; stop.
      break;
    }

    auto iter = targetCastParams.find(i);
    if (iter == targetCastParams.end()) {
      // This param is not cast, so skip it.
      continue;
    }

    // If the call executes then this parameter is definitely reached (since it
    // is in the same basic block), and we know that it will be cast to a more
    // refined type.
    auto castType = iter->second;

    // Apply what we found to the operand and also to its fallthrough
    // values.
    //
    // At the loop entry |curr| has been checked for a possible control flow
    // transfer (and that problem ruled out).
    auto* curr = operand;
    while (1) {
      // Note the type if it is useful.
      if (castType != curr->type) {
        // There are two constraints on this location: any value there must
        // be of the declared type (curr->type) and also the cast type, so
        // we know only their intersection can appear here.
        auto declared = PossibleContents::fullConeType(curr->type);
        auto intersection = PossibleContents::fullConeType(castType);
        intersection.intersect(declared);
        if (intersection.isConeType()) {
          auto intersectionType = intersection.getType();
          if (intersectionType != curr->type) {
            // We inferred a more refined type.
            info.inferences[curr] = intersection;
          }
        } else {
          // Otherwise, the intersection can be a null (if the heap types are
          // incompatible, but a null is allowed), or empty. We can apply
          // either.
          assert(intersection.isNull() || intersection.isNone());
          info.inferences[curr] = intersection;
        }
      }

      auto* next = Properties::getImmediateFallthrough(curr, options, wasm);
      if (next == curr) {
        // No fallthrough, we're done with this param.
        break;
      }

      // There is a fallthrough. Check for a control flow transfer.
      if (blockIndexes.get(next) != callBlockIndex) {
        // Control flow might transfer; stop. We also cannot look at any further
        // operands (if a child of this operand is in another basic block from
        // the call, so are previous operands), so return from the entire
        // function.
        return;
      }

      // Continue to the fallthrough.
      curr = next;
    }
  }
}

// Main logic for building data for the flow analysis and then performing that
// analysis.
struct Flower {
  Module& wasm;
  const PassOptions& options;

  Flower(Module& wasm, const PassOptions& options);

  // Each LocationIndex will have one LocationInfo that contains the relevant
  // information we need for each location.
  struct LocationInfo {
    // The location at this index.
    Location location;

    // The possible contents in that location.
    PossibleContents contents;

    // A list of the target locations to which this location sends content.
    // TODO: benchmark SmallVector<1> here, as commonly there may be a single
    //       target (an expression has one parent)
    std::vector<LocationIndex> targets;

    LocationInfo(Location location) : location(location) {}
  };

  // Maps location indexes to the info stored there, as just described above.
  std::vector<LocationInfo> locations;

  // Reverse mapping of locations to their indexes.
  std::unordered_map<Location, LocationIndex> locationIndexes;

  const Location& getLocation(LocationIndex index) {
    assert(index < locations.size());
    return locations[index].location;
  }

  PossibleContents& getContents(LocationIndex index) {
    assert(index < locations.size());
    return locations[index].contents;
  }

  // Check what we know about the type of an expression, using static
  // information from a TrapsNeverHappen oracle (see TNHOracle), if we have one.
  PossibleContents getTNHContents(Expression* curr) {
    if (!tnhOracle) {
      // No oracle; just use the type in the IR.
      return PossibleContents::fullConeType(curr->type);
    }
    return tnhOracle->getContents(curr);
  }

private:
  std::unique_ptr<TNHOracle> tnhOracle;

  std::vector<LocationIndex>& getTargets(LocationIndex index) {
    assert(index < locations.size());
    return locations[index].targets;
  }

  // Convert the data into the efficient LocationIndex form we will use during
  // the flow analysis. This method returns the index of a location, allocating
  // one if this is the first time we see it.
  LocationIndex getIndex(const Location& location) {
    auto iter = locationIndexes.find(location);
    if (iter != locationIndexes.end()) {
      return iter->second;
    }

    // Allocate a new index here.
    size_t index = locations.size();
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
    std::cout << "  new index " << index << " for ";
    dump(location);
#endif
    if (index >= std::numeric_limits<LocationIndex>::max()) {
      // 32 bits should be enough since each location takes at least one byte
      // in the binary, and we don't have 4GB wasm binaries yet... do we?
      Fatal() << "Too many locations for 32 bits";
    }
    locations.emplace_back(location);
    locationIndexes[location] = index;

    return index;
  }

  bool hasIndex(const Location& location) {
    return locationIndexes.find(location) != locationIndexes.end();
  }

  IndexLink getIndexes(const LocationLink& link) {
    return {getIndex(link.from), getIndex(link.to)};
  }

  // See the comment on CollectedFuncInfo::childParents. This is the merged info
  // from all the functions and the global scope.
  std::unordered_map<LocationIndex, LocationIndex> childParents;

  // The work remaining to do during the flow: locations that we need to flow
  // content from, after new content reached them.
  //
  // Using a set here is efficient as multiple updates may arrive to a location
  // before we get to processing it.
  //
  // The items here could be {location, newContents}, but it is more efficient
  // to have already written the new contents to the main data structure. That
  // avoids larger data here, and also, updating the contents as early as
  // possible is helpful as anything reading them meanwhile (before we get to
  // their work item in the queue) will see the newer value, possibly avoiding
  // flowing an old value that would later be overwritten.
  //
  // This must be ordered to avoid nondeterminism. The problem is that our
  // operations are imprecise and so the transitive property does not hold:
  // (AvB)vC may differ from Av(BvC). Likewise (AvB)^C may differ from
  // (A^C)v(B^C). An example of the latter is if a location is sent a null func
  // and an i31, and the location can only contain funcref. If the null func
  // arrives first, then later we'd merge null func + i31 which ends up as Many,
  // and then we filter that to funcref and get funcref. But if the i31 arrived
  // first, we'd filter it into nothing, and then the null func that arrives
  // later would be the final result. This would not happen if our operations
  // were precise, but we only make approximations here to avoid unacceptable
  // overhead, such as cone types but not arbitrary unions, etc.
  InsertOrderedSet<LocationIndex> workQueue;

  // All existing links in the graph. We keep this to know when a link we want
  // to add is new or not.
  std::unordered_set<IndexLink> links;

  // Update a location with new contents that are added to everything already
  // present there. If the update changes the contents at that location (if
  // there was anything new) then we also need to flow from there, which we will
  // do by adding the location to the work queue, and eventually flowAfterUpdate
  // will be called on this location.
  //
  // Returns whether it is worth sending new contents to this location in the
  // future. If we return false, the sending location never needs to do that
  // ever again.
  bool updateContents(LocationIndex locationIndex,
                      PossibleContents newContents);

  // Slow helper that converts a Location to a LocationIndex. This should be
  // avoided. TODO: remove the remaining uses of this.
  bool updateContents(const Location& location,
                      const PossibleContents& newContents) {
    return updateContents(getIndex(location), newContents);
  }

  // Flow contents from a location where a change occurred. This sends the new
  // contents to all the normal targets of this location (using
  // flowToTargetsAfterUpdate), and also handles special cases of flow after.
  void flowAfterUpdate(LocationIndex locationIndex);

  // Internal part of flowAfterUpdate that handles sending new values to the
  // given location index's normal targets (that is, the ones listed in the
  // |targets| vector).
  void flowToTargetsAfterUpdate(LocationIndex locationIndex,
                                const PossibleContents& contents);

  // Add a new connection while the flow is happening. If the link already
  // exists it is not added.
  void connectDuringFlow(Location from, Location to);

  // Contents sent to certain locations can be filtered in a special way during
  // the flow, which is handled in these helpers. These may update
  // |worthSendingMore| which is whether it is worth sending any more content to
  // this location in the future.
  void filterExpressionContents(PossibleContents& contents,
                                const ExpressionLocation& exprLoc,
                                bool& worthSendingMore);
  void filterGlobalContents(PossibleContents& contents,
                            const GlobalLocation& globalLoc);
  void filterDataContents(PossibleContents& contents,
                          const DataLocation& dataLoc);
  void filterPackedDataReads(PossibleContents& contents,
                             const ExpressionLocation& exprLoc);

  // Reads from GC data: a struct.get or array.get. This is given the type of
  // the read operation, the field that is read on that type, the known contents
  // in the reference the read receives, and the read instruction itself. We
  // compute where we need to read from based on the type and the ref contents
  // and get that data, adding new links in the graph as needed.
  void readFromData(Type declaredType,
                    Index fieldIndex,
                    const PossibleContents& refContents,
                    Expression* read);

  // Similar to readFromData, but does a write for a struct.set or array.set.
  void writeToData(Expression* ref, Expression* value, Index fieldIndex);

  // We will need subtypes during the flow, so compute them once ahead of time.
  std::unique_ptr<SubTypes> subTypes;

  // The depth of children for each type. This is 0 if the type has no
  // subtypes, 1 if it has subtypes but none of those have subtypes themselves,
  // and so forth.
  std::unordered_map<HeapType, Index> maxDepths;

  // Given a ConeType, return the normalized depth, that is, the canonical depth
  // given the actual children it has. If this is a full cone, then we can
  // always pick the actual maximal depth and use that instead of FullDepth==-1.
  // For a non-full cone, we also reduce the depth as much as possible, so it is
  // equal to the maximum depth of an existing subtype.
  Index getNormalizedConeDepth(Type type, Index depth) {
    return std::min(depth, maxDepths[type.getHeapType()]);
  }

  void normalizeConeType(PossibleContents& cone) {
    assert(cone.isConeType());
    auto type = cone.getType();
    auto before = cone.getCone().depth;
    auto normalized = getNormalizedConeDepth(type, before);
    if (normalized != before) {
      cone = PossibleContents::coneType(type, normalized);
    }
  }

#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
  // Dump out a location for debug purposes.
  void dump(Location location);
#endif
};

Flower::Flower(Module& wasm, const PassOptions& options)
  : wasm(wasm), options(options) {

  // If traps never happen, create a TNH oracle.
  //
  // Atm this oracle only helps on GC content, so disable it without GC.
  if (options.trapsNeverHappen && wasm.features.hasGC()) {
#ifdef POSSIBLE_CONTENTS_DEBUG
    std::cout << "tnh phase\n";
#endif
    tnhOracle = std::make_unique<TNHOracle>(wasm, options);
  }

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "parallel phase\n";
#endif

  // First, collect information from each function.
  ModuleUtils::ParallelFunctionAnalysis<CollectedFuncInfo> analysis(
    wasm, [&](Function* func, CollectedFuncInfo& info) {
      InfoCollector finder(info, options);

      if (func->imported()) {
        // Imports return unknown values.
        auto results = func->getResults();
        for (Index i = 0; i < results.size(); i++) {
          finder.addRoot(ResultLocation{func, i},
                         PossibleContents::fromType(results[i]));
        }
        return;
      }

      finder.walkFunctionInModule(func, &wasm);
    });

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "single phase\n";
#endif

  // Also walk the global module code (for simplicity, also add it to the
  // function map, using a "function" key of nullptr).
  auto& globalInfo = analysis.map[nullptr];
  InfoCollector finder(globalInfo, options);
  finder.walkModuleCode(&wasm);

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "global init phase\n";
#endif

  // Connect global init values (which we've just processed, as part of the
  // module code) to the globals they initialize.
  for (auto& global : wasm.globals) {
    if (global->imported()) {
      // Imports are unknown values.
      finder.addRoot(GlobalLocation{global->name},
                     PossibleContents::fromType(global->type));
      continue;
    }
    auto* init = global->init;
    if (finder.isRelevant(init->type)) {
      globalInfo.links.push_back(
        {ExpressionLocation{init, 0}, GlobalLocation{global->name}});
    }
  }

  // Merge the function information into a single large graph that represents
  // the entire program all at once, indexing and deduplicating everything as we
  // go.

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "merging+indexing phase\n";
#endif

  // The merged roots. (Note that all other forms of merged data are declared at
  // the class level, since we need them during the flow, but the roots are only
  // needed to start the flow, so we can declare them here.)
  //
  // This must be insert-ordered for the same reason as |workQueue| is, see
  // above.
  InsertOrderedMap<Location, PossibleContents> roots;

  // Any function that may be called from the outside, like an export, is a
  // root, since they can be called with unknown parameters.
  auto calledFromOutside = [&](Name funcName) {
    auto* func = wasm.getFunction(funcName);
    auto params = func->getParams();
    for (Index i = 0; i < func->getParams().size(); i++) {
      roots[ParamLocation{func, i}] = PossibleContents::fromType(params[i]);
    }
  };

  for (auto& [func, info] : analysis.map) {
    for (auto& link : info.links) {
      links.insert(getIndexes(link));
    }
    for (auto& [root, value] : info.roots) {
      roots[root] = value;

      // Ensure an index even for a root with no links to it - everything needs
      // an index.
      getIndex(root);
    }
    for (auto [child, parent] : info.childParents) {
      // In practice we do not have any childParent connections with a tuple;
      // assert on that just to be safe.
      assert(!child->type.isTuple());
      childParents[getIndex(ExpressionLocation{child, 0})] =
        getIndex(ExpressionLocation{parent, 0});
    }

    for (auto func : info.calledFromOutside) {
      calledFromOutside(func);
    }
  }

  // We no longer need the function-level info.
  analysis.map.clear();

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "external phase\n";
#endif

  // Exports can be modified from the outside.
  for (auto& ex : wasm.exports) {
    if (ex->kind == ExternalKind::Function) {
      calledFromOutside(ex->value);
    } else if (ex->kind == ExternalKind::Table) {
      // If any table is exported, assume any function in any table (including
      // other tables) can be called from the outside.
      // TODO: This could be more precise about which tables are exported and
      //       which are not: perhaps one table is exported but we can optimize
      //       the functions in another table, which is not exported. However,
      //       it is simpler to treat them all the same, and this handles the
      //       common case of no tables being exported at all.
      // TODO: This does not handle table.get/table.set, or call_ref, for which
      //       we'd need to see which references are used and which escape etc.
      //       For now, assume a closed world for such such advanced use cases /
      //       assume this pass won't be run in them anyhow.
      // TODO: do this only once if multiple tables are exported
      for (auto& elementSegment : wasm.elementSegments) {
        for (auto* curr : elementSegment->data) {
          if (auto* refFunc = curr->dynCast<RefFunc>()) {
            calledFromOutside(refFunc->func);
          }
        }
      }
    } else if (ex->kind == ExternalKind::Global) {
      // Exported mutable globals are roots, since the outside may write any
      // value to them.
      auto name = ex->value;
      auto* global = wasm.getGlobal(name);
      if (global->mutable_) {
        roots[GlobalLocation{name}] = PossibleContents::fromType(global->type);
      }
    }
  }

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "struct phase\n";
#endif

  subTypes = std::make_unique<SubTypes>(wasm);
  maxDepths = subTypes->getMaxDepths();

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "Link-targets phase\n";
#endif

  // Add all links to the targets vectors of the source locations, which we will
  // use during the flow.
  for (auto& link : links) {
    getTargets(link.from).push_back(link.to);
  }

#ifndef NDEBUG
  // Each vector of targets (which is a vector for efficiency) must have no
  // duplicates.
  for (auto& info : locations) {
    disallowDuplicates(info.targets);
  }
#endif

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "roots phase\n";
#endif

  // Set up the roots, which are the starting state for the flow analysis: send
  // their initial content to them to start the flow.
  for (const auto& [location, value] : roots) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
    std::cout << "  init root\n";
    dump(location);
    value.dump(std::cout, &wasm);
    std::cout << '\n';
#endif

    updateContents(location, value);
  }

#ifdef POSSIBLE_CONTENTS_DEBUG
  std::cout << "flow phase\n";
  size_t iters = 0;
#endif

  // Flow the data while there is still stuff flowing.
  while (!workQueue.empty()) {
#ifdef POSSIBLE_CONTENTS_DEBUG
    iters++;
    if ((iters & 255) == 0) {
      std::cout << iters++ << " iters, work left: " << workQueue.size() << '\n';
    }
#endif

    auto iter = workQueue.begin();
    auto locationIndex = *iter;
    workQueue.erase(iter);

    flowAfterUpdate(locationIndex);
  }

  // TODO: Add analysis and retrieval logic for fields of immutable globals,
  //       including multiple levels of depth (necessary for itables in j2wasm).
}

bool Flower::updateContents(LocationIndex locationIndex,
                            PossibleContents newContents) {
  auto& contents = getContents(locationIndex);
  auto oldContents = contents;

#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
  std::cout << "\nupdateContents\n";
  dump(getLocation(locationIndex));
  contents.dump(std::cout, &wasm);
  std::cout << "\n with new contents \n";
  newContents.dump(std::cout, &wasm);
  std::cout << '\n';
#endif

  auto location = getLocation(locationIndex);

  // Handle special cases: Some locations can only contain certain contents, so
  // filter accordingly. In principle we need to filter both before and after
  // combining with existing content; filtering afterwards is obviously
  // necessary as combining two things will create something larger than both,
  // and our representation has limitations (e.g. two different ref types will
  // result in a cone, potentially a very large one). Filtering beforehand is
  // necessary for the a more subtle reason: consider a location that contains
  // an i8 which is sent a 0 and then 0x100. If we filter only after, then we'd
  // combine 0 and 0x100 first and get "unknown integer"; only by filtering
  // 0x100 to 0 beforehand (since 0x100 & 0xff => 0) will we combine 0 and 0 and
  // not change anything, which is correct.
  //
  // For efficiency reasons we aim to only filter once, depending on the type of
  // filtering. Most can be filtered a single time afterwards, while for data
  // locations, where the issue is packed integer fields, it's necessary to do
  // it before as we've mentioned, and also sufficient (see details in
  // filterDataContents).
  if (auto* dataLoc = std::get_if<DataLocation>(&location)) {
    filterDataContents(newContents, *dataLoc);
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
    std::cout << "  pre-filtered data contents:\n";
    newContents.dump(std::cout, &wasm);
    std::cout << '\n';
#endif
  } else if (auto* exprLoc = std::get_if<ExpressionLocation>(&location)) {
    if (exprLoc->expr->is<StructGet>() || exprLoc->expr->is<ArrayGet>()) {
      // Packed data reads must be filtered before the combine() operation, as
      // we must only combine the filtered contents (e.g. if 0xff arrives which
      // as a signed read is truly 0xffffffff then we cannot first combine the
      // existing 0xffffffff with the new 0xff, as they are different, and the
      // result will no longer be a constant).
      filterPackedDataReads(newContents, *exprLoc);
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
      std::cout << "  pre-filtered packed read contents:\n";
      newContents.dump(std::cout, &wasm);
      std::cout << '\n';
#endif
    }
  }

  contents.combine(newContents);

  if (contents.isNone()) {
    // There is still nothing here. There is nothing more to do here but to
    // return that it is worth sending more.
    return true;
  }

  // It is not worth sending any more to this location if we are now in the
  // worst possible case, as no future value could cause any change.
  bool worthSendingMore = true;
  if (contents.isConeType()) {
    if (!contents.getType().isRef()) {
      // A cone type of a non-reference is the worst case, since subtyping is
      // not relevant there, and so if we only know something about the type
      // then we already know nothing beyond what the type in the wasm tells us
      // (and from there we can only go to Many).
      worthSendingMore = false;
    } else {
      // Normalize all reference cones. There is never a point to flow around
      // anything non-normalized, which might lead to extra work. For example,
      // if A has no subtypes, then a full cone for A is really the same as one
      // with depth 0 (an exact type). And we don't want to see the full cone
      // arrive and think it was an improvement over the one with depth 0 and do
      // more flowing based on that.
      normalizeConeType(contents);
    }
  }

  // Check if anything changed.
  if (contents == oldContents) {
    // Nothing actually changed, so just return.
    return worthSendingMore;
  }

  // Handle filtering (see comment earlier, this is the later filtering stage).
  bool filtered = false;
  if (auto* exprLoc = std::get_if<ExpressionLocation>(&location)) {
    // TODO: Replace this with specific filterFoo or flowBar methods like we
    //       have for filterGlobalContents. That could save a little wasted work
    //       here. Might be best to do that after the spec is fully stable.
    filterExpressionContents(contents, *exprLoc, worthSendingMore);
    filtered = true;
  } else if (auto* globalLoc = std::get_if<GlobalLocation>(&location)) {
    filterGlobalContents(contents, *globalLoc);
    filtered = true;
  }

  // Check if anything changed after filtering, if we did so.
  if (filtered) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
    std::cout << "  filtered contents:\n";
    contents.dump(std::cout, &wasm);
    std::cout << '\n';
#endif

    if (contents == oldContents) {
      return worthSendingMore;
    }
  }

#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
  std::cout << "  updateContents has something new\n";
  contents.dump(std::cout, &wasm);
  std::cout << '\n';
#endif

  // After filtering we should always have more precise information than "many"
  // - in the worst case, we can have the type declared in the wasm.
  assert(!contents.isMany());

  // Add a work item if there isn't already.
  workQueue.insert(locationIndex);

  return worthSendingMore;
}

void Flower::flowAfterUpdate(LocationIndex locationIndex) {
  const auto location = getLocation(locationIndex);
  auto& contents = getContents(locationIndex);

  // We are called after a change at a location. A change means that some
  // content has arrived, since we never send empty values around. Assert on
  // that.
  assert(!contents.isNone());

#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
  std::cout << "\nflowAfterUpdate to:\n";
  dump(location);
  std::cout << "  arriving:\n";
  contents.dump(std::cout, &wasm);
  std::cout << '\n';
#endif

  // Flow the contents to the normal targets of this location.
  flowToTargetsAfterUpdate(locationIndex, contents);

  // We are mostly done, except for handling interesting/special cases in the
  // flow, additional operations that we need to do aside from sending the new
  // contents to the normal (statically linked) targets.

  if (auto* exprLoc = std::get_if<ExpressionLocation>(&location)) {
    auto iter = childParents.find(locationIndex);
    if (iter == childParents.end()) {
      return;
    }

    // This is indeed one of the special cases where it is the child of a
    // parent, and we need to do some special handling because of that child-
    // parent connection.
    [[maybe_unused]] auto* child = exprLoc->expr;
    auto parentIndex = iter->second;
    auto* parent = std::get<ExpressionLocation>(getLocation(parentIndex)).expr;

#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
    std::cout << "  special, parent:\n" << *parent << '\n';
#endif

    if (auto* get = parent->dynCast<StructGet>()) {
      // |child| is the reference child of a struct.get.
      assert(get->ref == child);
      readFromData(get->ref->type, get->index, contents, get);
    } else if (auto* set = parent->dynCast<StructSet>()) {
      // |child| is either the reference or the value child of a struct.set.
      assert(set->ref == child || set->value == child);
      writeToData(set->ref, set->value, set->index);
    } else if (auto* get = parent->dynCast<ArrayGet>()) {
      assert(get->ref == child);
      readFromData(get->ref->type, 0, contents, get);
    } else if (auto* set = parent->dynCast<ArraySet>()) {
      assert(set->ref == child || set->value == child);
      writeToData(set->ref, set->value, 0);
    } else {
      // TODO: ref.test and all other casts can be optimized (see the cast
      //       helper code used in OptimizeInstructions and RemoveUnusedBrs)
      WASM_UNREACHABLE("bad childParents content");
    }
  }
}

void Flower::flowToTargetsAfterUpdate(LocationIndex locationIndex,
                                      const PossibleContents& contents) {
  // Send the new contents to all the targets of this location. As we do so,
  // prune any targets that we do not need to bother sending content to in the
  // future, to save space and work later.
  auto& targets = getTargets(locationIndex);
  targets.erase(std::remove_if(targets.begin(),
                               targets.end(),
                               [&](LocationIndex targetIndex) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
                                 std::cout << "  send to target\n";
                                 dump(getLocation(targetIndex));
#endif
                                 return !updateContents(targetIndex, contents);
                               }),
                targets.end());

  if (contents.isMany()) {
    // We contain Many, and just called updateContents on our targets to send
    // that value to them. We'll never need to send anything from here ever
    // again, since we sent the worst case possible already, so we can just
    // clear our targets vector. But we should have already removed all the
    // targets in the above remove_if operation, since they should have all
    // notified us that we do not need to send them any more updates.
    assert(targets.empty());
  }
}

void Flower::connectDuringFlow(Location from, Location to) {
  auto newLink = LocationLink{from, to};
  auto newIndexLink = getIndexes(newLink);
  if (links.count(newIndexLink) == 0) {
    // This is a new link. Add it to the known links.
    links.insert(newIndexLink);

    // Add it to the |targets| vector.
    auto& targets = getTargets(newIndexLink.from);
    targets.push_back(newIndexLink.to);
#ifndef NDEBUG
    disallowDuplicates(targets);
#endif

    // In addition to adding the link, which will ensure new contents appearing
    // later will be sent along, we also update with the current contents.
    updateContents(to, getContents(getIndex(from)));
  }
}

void Flower::filterExpressionContents(PossibleContents& contents,
                                      const ExpressionLocation& exprLoc,
                                      bool& worthSendingMore) {
  auto type = exprLoc.expr->type;

  if (type.isTuple()) {
    // TODO: Optimize tuples here as well. We would need to take into account
    //       exprLoc.tupleIndex for that in all the below.
    return;
  }

  // The caller cannot know of a situation where it might not be worth sending
  // more to a reference - all that logic is in here. That is, the rest of this
  // function is the only place we can mark |worthSendingMore| as false for a
  // reference.
  bool isRef = type.isRef();
  assert(!isRef || worthSendingMore);

  // The TNH oracle informs us of the maximal contents possible here.
  auto maximalContents = getTNHContents(exprLoc.expr);
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
  std::cout << "TNHOracle informs us that " << *exprLoc.expr << " contains "
            << maximalContents << "\n";
#endif
  contents.intersect(maximalContents);
  if (contents.isNone()) {
    // Nothing was left here at all.
    return;
  }

  // For references we need to normalize the intersection, see below. For non-
  // references, we are done (we did all the relevant work in the intersect()
  // call).
  if (!isRef) {
    return;
  }

  // Normalize the intersection. We want to check later if any more content can
  // arrive here, and also we want to avoid flowing around anything non-
  // normalized, as explained earlier.
  //
  // Note that this normalization is necessary even though |contents| was
  // normalized before the intersection, e.g.:
  /*
  //      A
  //     / \
  //    B   C
  //        |
  //        D
  */
  // Consider the case where |maximalContents| is Cone(B, Infinity) and the
  // original |contents| was Cone(A, 2) (which is normalized). The naive
  // intersection is Cone(B, 1), since the core intersection logic makes no
  // assumptions about the rest of the types. That is then normalized to
  // Cone(B, 0) since there happens to be no subtypes for B.
  //
  // Note that the intersection may also not be a cone type, if it is a global
  // or literal. In that case we don't have anything more to do here.
  if (!contents.isConeType()) {
    return;
  }

  normalizeConeType(contents);

  // There is a chance that the intersection is equal to the maximal contents,
  // which would mean nothing more can arrive here.
  normalizeConeType(maximalContents);

  if (contents == maximalContents) {
    // We already contain everything possible, so this is the worst case.
    worthSendingMore = false;
  }
}

void Flower::filterGlobalContents(PossibleContents& contents,
                                  const GlobalLocation& globalLoc) {
  auto* global = wasm.getGlobal(globalLoc.name);
  if (global->mutable_ == Immutable) {
    // This is an immutable global. We never need to consider this value as
    // "Many", since in the worst case we can just use the immutable value. That
    // is, we can always replace this value with (global.get $name) which will
    // get the right value. Likewise, using the immutable global value is often
    // better than a cone type (even an exact one), but TODO: we could note both
    // a cone/exact type *and* that something is equal to a global, in some
    // cases. See https://github.com/WebAssembly/binaryen/pull/5083
    if (contents.isMany() || contents.isConeType()) {
      contents = PossibleContents::global(global->name, global->type);

      // TODO: We could do better here, to set global->init->type instead of
      //       global->type, or even the contents.getType() - either of those
      //       may be more refined. But other passes will handle that in
      //       general (by refining the global's type).

#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
      std::cout << "  setting immglobal to ImmutableGlobal\n";
      contents.dump(std::cout, &wasm);
      std::cout << '\n';
#endif
    }
  }
}

void Flower::filterDataContents(PossibleContents& contents,
                                const DataLocation& dataLoc) {
  auto field = GCTypeUtils::getField(dataLoc.type, dataLoc.index);
  if (!field) {
    // This is a bottom type; nothing will be written here.
    assert(dataLoc.type.isBottom());
    contents = PossibleContents::none();
    return;
  }

  if (field->isPacked()) {
    // We must handle packed fields carefully.
    if (contents.isLiteral()) {
      // This is a constant. We can truncate it and use that value.
      auto mask = Literal(int32_t(Bits::lowBitMask(field->getByteSize() * 8)));
      contents = PossibleContents::literal(contents.getLiteral().and_(mask));
    } else {
      // This is not a constant. We can't even handle a global here, as we'd
      // need to track that this global's value must be truncated before it is
      // used, and we don't do that atm. Leave only the type.
      // TODO Consider tracking packing on GlobalInfo alongside the type.
      //      Another option is to make GUFA.cpp apply packing on the read,
      //      like CFP does - but that can only be done when replacing a
      //      StructGet of a packed field, and not anywhere else we saw that
      //      value reach.
      contents = PossibleContents::fromType(contents.getType());
    }
    // Given that the above only (1) turns an i32 into a masked i32 or (2) turns
    // anything else into an unknown i32, this is safe to run as pre-filtering,
    // that is, before we combine contents, since
    //
    //  (a) two constants are ok as masking is distributive,
    //        (x & M) U (y & M)  ==  (x U y) & M
    //  (b) if one is a constant and the other is not then
    //        (x & M) U ?  ==  ?  ==  (x U ?)  ==  (x U ?) & M
    //      (where ? is an unknown i32)
    //  (c) and if both are not constants then likewise we always end up as an
    //      unknown i32
    //
  }
}

void Flower::filterPackedDataReads(PossibleContents& contents,
                                   const ExpressionLocation& exprLoc) {
  auto* expr = exprLoc.expr;

  // Packed fields are stored as the truncated bits (see comment on
  // DataLocation; the actual truncation is done in filterDataContents), which
  // means that unsigned gets just work but signed ones need fixing (and we only
  // know how to do that here, when we reach the get and see if it is signed).
  auto signed_ = false;
  Expression* ref;
  Index index;
  if (auto* get = expr->dynCast<StructGet>()) {
    signed_ = get->signed_;
    ref = get->ref;
    index = get->index;
  } else if (auto* get = expr->dynCast<ArrayGet>()) {
    signed_ = get->signed_;
    ref = get->ref;
    // Arrays are treated as having a single field.
    index = 0;
  } else {
    WASM_UNREACHABLE("bad packed read");
  }
  if (!signed_) {
    return;
  }

  // We are reading data here, so the reference must be a valid struct or
  // array, otherwise we would never have gotten here.
  assert(ref->type.isRef());
  auto field = GCTypeUtils::getField(ref->type.getHeapType(), index);
  assert(field);
  if (!field->isPacked()) {
    return;
  }

  if (contents.isLiteral()) {
    // This is a constant. We can sign-extend it and use that value.
    auto shifts = Literal(int32_t(32 - field->getByteSize() * 8));
    auto lit = contents.getLiteral();
    lit = lit.shl(shifts);
    lit = lit.shrS(shifts);
    contents = PossibleContents::literal(lit);
  } else {
    // This is not a constant. As in filterDataContents, give up and leave
    // only the type, since we have no way to track the sign-extension on
    // top of whatever this is.
    contents = PossibleContents::fromType(contents.getType());
  }
}

void Flower::readFromData(Type declaredType,
                          Index fieldIndex,
                          const PossibleContents& refContents,
                          Expression* read) {
#ifndef NDEBUG
  // We must not have anything in the reference that is invalid for the wasm
  // type there.
  auto maximalContents = PossibleContents::fullConeType(declaredType);
  assert(PossibleContents::isSubContents(refContents, maximalContents));
#endif

  // The data that a struct.get reads depends on two things: the reference that
  // we read from, and the relevant DataLocations. The reference determines
  // which DataLocations are relevant: if it is an exact type then we have a
  // single DataLocation to read from, the one type that can be read from there.
  // Otherwise, we might read from any subtype, and so all their DataLocations
  // are relevant.
  //
  // What can be confusing is that the information about the reference is also
  // inferred during the flow. That is, we use our current information about the
  // reference to decide what to do here. But the flow is not finished yet!
  // To keep things valid, we must therefore react to changes in either the
  // reference - when we see that more types might be read from here - or the
  // DataLocations - when new things are written to the data we can read from.
  // Specifically, at every point in time we want to preserve the property that
  // we've read from all relevant types based on the current reference, and
  // we've read the very latest possible contents from those types. And then
  // since we preserve that property til the end of the flow, it is also valid
  // then. At the end of the flow, the current reference's contents are the
  // final and correct contents for that location, which means we've ended up
  // with the proper result: the struct.get reads everything it should.
  //
  // To implement what was just described, we call this function when the
  // reference is updated. This function will then set up connections in the
  // graph so that updates to the relevant DataLocations will reach us in the
  // future.

  if (refContents.isNull() || refContents.isNone()) {
    // Nothing is read here as this is either a null or unreachable code. (Note
    // that the contents must be a subtype of the wasm type, which rules out
    // other possibilities like a non-null literal such as an integer or a
    // function reference.)
    return;
  }

#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
  std::cout << "    add special reads\n";
#endif

  // The only possibilities left are a cone type (the worst case is where the
  // cone matches the wasm type), or a global.
  //
  // TODO: The Global case may have a different cone type than the heapType,
  //       which we could use here.
  // TODO: A Global may refer to an immutable global, which we can read the
  //       field from potentially (reading it from the struct.new/array.new
  //       in the definition of it, if it is not imported; or, we could track
  //       the contents of immutable fields of allocated objects, and not just
  //       represent them as an exact type).
  //       See the test TODO with text "We optimize some of this, but stop at
  //       reading from the immutable global"
  assert(refContents.isGlobal() || refContents.isConeType());

  // Just look at the cone here, discarding information about this being a
  // global, if it was one. All that matters from now is the cone. We also
  // normalize the cone to avoid wasted work later.
  auto cone = refContents.getCone();
  auto normalizedDepth = getNormalizedConeDepth(cone.type, cone.depth);

  // We create a ConeReadLocation for the canonical cone of this type, to
  // avoid bloating the graph, see comment on ConeReadLocation().
  auto coneReadLocation =
    ConeReadLocation{cone.type.getHeapType(), normalizedDepth, fieldIndex};
  if (!hasIndex(coneReadLocation)) {
    // This is the first time we use this location, so create the links for it
    // in the graph.
    subTypes->iterSubTypes(
      cone.type.getHeapType(),
      normalizedDepth,
      [&](HeapType type, Index depth) {
        connectDuringFlow(DataLocation{type, fieldIndex}, coneReadLocation);
      });

    // TODO: we can end up with redundant links here if we see one cone first
    //       and then a larger one later. But removing links is not efficient,
    //       so for now just leave that.
  }

  // Link to the canonical location.
  connectDuringFlow(coneReadLocation, ExpressionLocation{read, 0});
}

void Flower::writeToData(Expression* ref, Expression* value, Index fieldIndex) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
  std::cout << "    add special writes\n";
#endif

  auto refContents = getContents(getIndex(ExpressionLocation{ref, 0}));

#ifndef NDEBUG
  // We must not have anything in the reference that is invalid for the wasm
  // type there.
  auto maximalContents = PossibleContents::fullConeType(ref->type);
  assert(PossibleContents::isSubContents(refContents, maximalContents));
#endif

  // We could set up links here as we do for reads, but as we get to this code
  // in any case, we can just flow the values forward directly. This avoids
  // adding any links (edges) to the graph (and edges are what we want to avoid
  // adding, as there can be a quadratic number of them). In other words, we'll
  // loop over the places we need to send info to, which we can figure out in a
  // simple way, and by doing so we avoid materializing edges into the graph.
  //
  // Note that this is different from readFromData, above, which does add edges
  // to the graph (and works hard to add as few as possible, see the "canonical
  // cone reads" logic). The difference is because readFromData must "subscribe"
  // to get notifications from the relevant DataLocations. But when writing that
  // is not a problem: whenever a change happens in the reference or the value
  // of a struct.set then this function will get called, and those are the only
  // things we care about. And we can then just compute the values we are
  // sending (based on the current contents of the reference and the value), and
  // where we should send them to, and do that right here. (And as commented in
  // readFromData, that is guaranteed to give us the right result in the end: at
  // every point in time we send the right data, so when the flow is finished
  // we've sent information based on the final and correct information about our
  // reference and value.)

  auto valueContents = getContents(getIndex(ExpressionLocation{value, 0}));

  // See the related comment in readFromData() as to why these are the only
  // things we need to check, and why the assertion afterwards contains the only
  // things possible.
  if (refContents.isNone() || refContents.isNull()) {
    return;
  }
  assert(refContents.isGlobal() || refContents.isConeType());

  // As in readFromData, normalize to the proper cone.
  auto cone = refContents.getCone();
  auto normalizedDepth = getNormalizedConeDepth(cone.type, cone.depth);

  subTypes->iterSubTypes(
    cone.type.getHeapType(), normalizedDepth, [&](HeapType type, Index depth) {
      auto heapLoc = DataLocation{type, fieldIndex};
      updateContents(heapLoc, valueContents);
    });
}

#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
void Flower::dump(Location location) {
  if (auto* loc = std::get_if<ExpressionLocation>(&location)) {
    std::cout << "  exprloc \n"
              << *loc->expr << " : " << loc->tupleIndex << '\n';
  } else if (auto* loc = std::get_if<DataLocation>(&location)) {
    std::cout << "  dataloc ";
    if (wasm.typeNames.count(loc->type)) {
      std::cout << '$' << wasm.typeNames[loc->type].name;
    } else {
      std::cout << loc->type << '\n';
    }
    std::cout << " : " << loc->index << '\n';
  } else if (auto* loc = std::get_if<TagLocation>(&location)) {
    std::cout << "  tagloc " << loc->tag << " : " << loc->tupleIndex << '\n';
  } else if (auto* loc = std::get_if<ParamLocation>(&location)) {
    std::cout << "  paramloc " << loc->func->name << " : " << loc->index
              << '\n';
  } else if (auto* loc = std::get_if<LocalLocation>(&location)) {
    std::cout << "  localloc " << loc->func->name << " : " << loc->index
              << '\n';
  } else if (auto* loc = std::get_if<ResultLocation>(&location)) {
    std::cout << "  resultloc $" << loc->func->name << " : " << loc->index
              << '\n';
  } else if (auto* loc = std::get_if<GlobalLocation>(&location)) {
    std::cout << "  globalloc " << loc->name << '\n';
  } else if (std::get_if<SignatureParamLocation>(&location)) {
    std::cout << "  sigparamloc " << '\n';
  } else if (std::get_if<SignatureResultLocation>(&location)) {
    std::cout << "  sigresultloc " << '\n';
  } else if (auto* loc = std::get_if<NullLocation>(&location)) {
    std::cout << "  Nullloc " << loc->type << '\n';
  } else {
    std::cout << "  (other)\n";
  }
}
#endif

} // anonymous namespace

void ContentOracle::analyze() {
  Flower flower(wasm, options);
  for (LocationIndex i = 0; i < flower.locations.size(); i++) {
    locationContents[flower.getLocation(i)] = flower.getContents(i);
  }
}

} // namespace wasm