1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
|
/*
* Copyright 2022 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <optional>
#include <variant>
#include "ir/branch-utils.h"
#include "ir/eh-utils.h"
#include "ir/module-utils.h"
#include "ir/possible-contents.h"
#include "wasm.h"
#ifdef POSSIBLE_CONTENTS_INSERT_ORDERED
// Use an insert-ordered set for easier debugging with deterministic queue
// ordering.
#include "support/insert_ordered.h"
#endif
namespace std {
std::ostream& operator<<(std::ostream& stream,
const wasm::PossibleContents& contents) {
contents.dump(stream);
return stream;
}
} // namespace std
namespace wasm {
void PossibleContents::combine(const PossibleContents& other) {
// First handle the trivial cases of them being equal, or one of them is
// None or Many.
if (*this == other) {
return;
}
if (other.isNone()) {
return;
}
if (isNone()) {
value = other.value;
return;
}
if (isMany()) {
return;
}
if (other.isMany()) {
value = Many();
return;
}
auto type = getType();
auto otherType = other.getType();
if (!type.isRef() || !otherType.isRef()) {
// At least one is not a reference. The only possibility left for a useful
// combination here is if they have the same type (since we've already ruled
// out the case of them being equal). If they have the same type then
// neither is a reference and we can emit an exact type (since subtyping is
// not relevant for non-references.
if (type == otherType) {
value = ExactType(type);
} else {
value = Many();
}
return;
}
// Special handling for references from here.
// Nulls are always equal to each other, even if their types differ.
if (isNull() || other.isNull()) {
// If only one is a null, but the other's type is known exactly, then the
// combination is to add nullability (if the type is *not* known exactly,
// like for a global, then we cannot do anything useful here).
if (!isNull() && hasExactType()) {
value = ExactType(Type(type.getHeapType(), Nullable));
return;
} else if (!other.isNull() && other.hasExactType()) {
value = ExactType(Type(otherType.getHeapType(), Nullable));
return;
} else if (isNull() && other.isNull()) {
// Both are null. The result is a null, of the LUB.
auto lub = HeapType::getLeastUpperBound(type.getHeapType(),
otherType.getHeapType());
value = Literal::makeNull(lub);
return;
}
}
if (hasExactType() && other.hasExactType() &&
type.getHeapType() == otherType.getHeapType()) {
// We know the types here exactly, and even the heap types match, but
// there is some other difference that prevents them from being 100%
// identical (for example, one might be an ExactType and the other a
// Literal; or both might be ExactTypes and only one might be nullable).
// In these cases we can emit a proper ExactType here, adding nullability
// if we need to.
value = ExactType(Type(
type.getHeapType(),
type.isNullable() || otherType.isNullable() ? Nullable : NonNullable));
return;
}
// Nothing else possible combines in an interesting way; emit a Many.
value = Many();
}
namespace {
// We are going to do a very large flow operation, potentially, as we create
// a Location for every interesting part in the entire wasm, and some of those
// places will have lots of links (like a struct field may link out to every
// single struct.get of that type), so we must make the data structures here
// as efficient as possible. Towards that goal, we work with location
// *indexes* where possible, which are small (32 bits) and do not require any
// complex hashing when we use them in sets or maps.
//
// Note that we do not use indexes everywhere, since the initial analysis is
// done in parallel, and we do not have a fixed indexing of locations yet. When
// we merge the parallel data we create that indexing, and use indexes from then
// on.
using LocationIndex = uint32_t;
#ifndef NDEBUG
// Assert on not having duplicates in a vector.
template<typename T> void disallowDuplicates(const T& targets) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::unordered_set<LocationIndex> uniqueTargets;
for (const auto& target : targets) {
uniqueTargets.insert(target);
}
assert(uniqueTargets.size() == targets.size());
#endif
}
#endif
// A link indicates a flow of content from one location to another. For
// example, if we do a local.get and return that value from a function, then
// we have a link from a LocalLocation to a ResultLocation.
template<typename T> struct Link {
T from;
T to;
bool operator==(const Link<T>& other) const {
return from == other.from && to == other.to;
}
};
using LocationLink = Link<Location>;
using IndexLink = Link<LocationIndex>;
} // anonymous namespace
} // namespace wasm
namespace std {
template<> struct hash<wasm::LocationLink> {
size_t operator()(const wasm::LocationLink& loc) const {
return std::hash<std::pair<wasm::Location, wasm::Location>>{}(
{loc.from, loc.to});
}
};
template<> struct hash<wasm::IndexLink> {
size_t operator()(const wasm::IndexLink& loc) const {
return std::hash<std::pair<wasm::LocationIndex, wasm::LocationIndex>>{}(
{loc.from, loc.to});
}
};
} // namespace std
namespace wasm {
namespace {
// The data we gather from each function, as we process them in parallel. Later
// this will be merged into a single big graph.
struct CollectedFuncInfo {
// All the links we found in this function. Rarely are there duplicates
// in this list (say when writing to the same global location from another
// global location), and we do not try to deduplicate here, just store them in
// a plain array for now, which is faster (later, when we merge all the info
// from the functions, we need to deduplicate anyhow).
std::vector<LocationLink> links;
// All the roots of the graph, that is, places that begin by containing some
// particular content. That includes i32.const, ref.func, struct.new, etc. All
// possible contents in the rest of the graph flow from such places.
//
// The vector here is of the location of the root and then its contents.
std::vector<std::pair<Location, PossibleContents>> roots;
// In some cases we need to know the parent of the expression. Consider this:
//
// (struct.set $A k
// (local.get $ref)
// (local.get $value)
// )
//
// Imagine that the first local.get, for $ref, receives a new value. That can
// affect where the struct.set sends values: if previously that local.get had
// no possible contents, and now it does, then we have DataLocations to
// update. Likewise, when the second local.get is updated we must do the same,
// but again which DataLocations we update depends on the ref passed to the
// struct.set. To handle such things, we set add a childParent link, and then
// when we update the child we can find the parent and handle any special
// behavior we need there.
std::unordered_map<Expression*, Expression*> childParents;
};
// Walk the wasm and find all the links we need to care about, and the locations
// and roots related to them. This builds up a CollectedFuncInfo data structure.
// After all InfoCollectors run, those data structures will be merged and the
// main flow will begin.
struct InfoCollector
: public PostWalker<InfoCollector, OverriddenVisitor<InfoCollector>> {
CollectedFuncInfo& info;
InfoCollector(CollectedFuncInfo& info) : info(info) {}
// Check if a type is relevant for us. If not, we can ignore it entirely.
bool isRelevant(Type type) {
if (type == Type::unreachable || type == Type::none) {
return false;
}
if (type.isTuple()) {
for (auto t : type) {
if (isRelevant(t)) {
return true;
}
}
}
if (type.isRef() && getTypeSystem() != TypeSystem::Nominal &&
getTypeSystem() != TypeSystem::Isorecursive) {
// We need explicit supers in the SubTyping helper class. Without that,
// cannot handle refs, and consider them irrelevant.
return false;
}
return true;
}
bool isRelevant(Signature sig) {
return isRelevant(sig.params) || isRelevant(sig.results);
}
bool isRelevant(Expression* curr) { return curr && isRelevant(curr->type); }
template<typename T> bool isRelevant(const T& vec) {
for (auto* expr : vec) {
if (isRelevant(expr->type)) {
return true;
}
}
return false;
}
// Each visit*() call is responsible for connecting the children of a node to
// that node. Responsibility for connecting the node's output to anywhere
// else (another expression or the function itself, if we are at the top
// level) is the responsibility of the outside.
void visitBlock(Block* curr) {
if (curr->list.empty()) {
return;
}
// Values sent to breaks to this block must be received here.
handleBreakTarget(curr);
// The final item in the block can flow a value to here as well.
receiveChildValue(curr->list.back(), curr);
}
void visitIf(If* curr) {
// Each arm may flow out a value.
receiveChildValue(curr->ifTrue, curr);
receiveChildValue(curr->ifFalse, curr);
}
void visitLoop(Loop* curr) { receiveChildValue(curr->body, curr); }
void visitBreak(Break* curr) {
// Connect the value (if present) to the break target.
handleBreakValue(curr);
// The value may also flow through in a br_if (the type will indicate that,
// which receiveChildValue will notice).
receiveChildValue(curr->value, curr);
}
void visitSwitch(Switch* curr) { handleBreakValue(curr); }
void visitLoad(Load* curr) {
// We could infer the exact type here, but as no subtyping is possible, it
// would have no benefit, so just add a generic root (which will be "Many").
// See the comment on the ContentOracle class.
addRoot(curr);
}
void visitStore(Store* curr) {}
void visitAtomicRMW(AtomicRMW* curr) { addRoot(curr); }
void visitAtomicCmpxchg(AtomicCmpxchg* curr) { addRoot(curr); }
void visitAtomicWait(AtomicWait* curr) { addRoot(curr); }
void visitAtomicNotify(AtomicNotify* curr) { addRoot(curr); }
void visitAtomicFence(AtomicFence* curr) {}
void visitSIMDExtract(SIMDExtract* curr) { addRoot(curr); }
void visitSIMDReplace(SIMDReplace* curr) { addRoot(curr); }
void visitSIMDShuffle(SIMDShuffle* curr) { addRoot(curr); }
void visitSIMDTernary(SIMDTernary* curr) { addRoot(curr); }
void visitSIMDShift(SIMDShift* curr) { addRoot(curr); }
void visitSIMDLoad(SIMDLoad* curr) { addRoot(curr); }
void visitSIMDLoadStoreLane(SIMDLoadStoreLane* curr) { addRoot(curr); }
void visitMemoryInit(MemoryInit* curr) {}
void visitDataDrop(DataDrop* curr) {}
void visitMemoryCopy(MemoryCopy* curr) {}
void visitMemoryFill(MemoryFill* curr) {}
void visitConst(Const* curr) {
addRoot(curr, PossibleContents::literal(curr->value));
}
void visitUnary(Unary* curr) {
// TODO: Optimize cases like this using interpreter integration: if the
// input is a Literal, we could interpret the Literal result.
addRoot(curr);
}
void visitBinary(Binary* curr) { addRoot(curr); }
void visitSelect(Select* curr) {
// TODO: We could use the fact that both sides are executed unconditionally
// while optimizing (if one arm must trap, then the Select will trap,
// which is not the same as with an If).
receiveChildValue(curr->ifTrue, curr);
receiveChildValue(curr->ifFalse, curr);
}
void visitDrop(Drop* curr) {}
void visitMemorySize(MemorySize* curr) { addRoot(curr); }
void visitMemoryGrow(MemoryGrow* curr) { addRoot(curr); }
void visitRefNull(RefNull* curr) {
addRoot(
curr,
PossibleContents::literal(Literal::makeNull(curr->type.getHeapType())));
}
void visitRefIs(RefIs* curr) {
// TODO: optimize when possible
addRoot(curr);
}
void visitRefFunc(RefFunc* curr) {
addRoot(curr, PossibleContents::literal(Literal(curr->func, curr->type)));
}
void visitRefEq(RefEq* curr) {
// TODO: optimize when possible (e.g. when both sides must contain the same
// global)
addRoot(curr);
}
void visitTableGet(TableGet* curr) {
// TODO: optimize when possible
addRoot(curr);
}
void visitTableSet(TableSet* curr) {}
void visitTableSize(TableSize* curr) { addRoot(curr); }
void visitTableGrow(TableGrow* curr) { addRoot(curr); }
void visitNop(Nop* curr) {}
void visitUnreachable(Unreachable* curr) {}
#ifndef NDEBUG
// For now we only handle pops in a catch body, see visitTry(). To check for
// errors, use counter of the pops we handled and all the pops; those sums
// must agree at the end, or else we've seen something we can't handle.
Index totalPops = 0;
Index handledPops = 0;
#endif
void visitPop(Pop* curr) {
#ifndef NDEBUG
totalPops++;
#endif
}
void visitI31New(I31New* curr) {
// TODO: optimize like struct references
addRoot(curr);
}
void visitI31Get(I31Get* curr) {
// TODO: optimize like struct references
addRoot(curr);
}
void visitRefTest(RefTest* curr) {
// TODO: optimize when possible
addRoot(curr);
}
void visitRefCast(RefCast* curr) {
// We will handle this in a special way later during the flow, as ref.cast
// only allows valid values to flow through.
addChildParentLink(curr->ref, curr);
}
void visitBrOn(BrOn* curr) {
// TODO: optimize when possible
handleBreakValue(curr);
receiveChildValue(curr->ref, curr);
}
void visitRttCanon(RttCanon* curr) { addRoot(curr); }
void visitRttSub(RttSub* curr) { addRoot(curr); }
void visitRefAs(RefAs* curr) {
// TODO: optimize when possible: like RefCast, not all values flow through.
receiveChildValue(curr->value, curr);
}
// Locals read and write to their index.
// TODO: we could use a LocalGraph for SSA-like precision
void visitLocalGet(LocalGet* curr) {
if (isRelevant(curr->type)) {
for (Index i = 0; i < curr->type.size(); i++) {
info.links.push_back({LocalLocation{getFunction(), curr->index, i},
ExpressionLocation{curr, i}});
}
}
}
void visitLocalSet(LocalSet* curr) {
if (!isRelevant(curr->value->type)) {
return;
}
for (Index i = 0; i < curr->value->type.size(); i++) {
info.links.push_back({ExpressionLocation{curr->value, i},
LocalLocation{getFunction(), curr->index, i}});
}
// Tees also flow out the value (receiveChildValue will see if this is a tee
// based on the type, automatically).
receiveChildValue(curr->value, curr);
}
// Globals read and write from their location.
void visitGlobalGet(GlobalGet* curr) {
if (isRelevant(curr->type)) {
// FIXME: we allow tuples in globals, so GlobalLocation needs a tupleIndex
// and we should loop here.
assert(!curr->type.isTuple());
info.links.push_back(
{GlobalLocation{curr->name}, ExpressionLocation{curr, 0}});
}
}
void visitGlobalSet(GlobalSet* curr) {
if (isRelevant(curr->value->type)) {
info.links.push_back(
{ExpressionLocation{curr->value, 0}, GlobalLocation{curr->name}});
}
}
// Iterates over a list of children and adds links to parameters and results
// as needed. The param/result functions receive the index and create the
// proper location for it.
template<typename T>
void handleCall(T* curr,
std::function<Location(Index)> makeParamLocation,
std::function<Location(Index)> makeResultLocation) {
Index i = 0;
for (auto* operand : curr->operands) {
if (isRelevant(operand->type)) {
info.links.push_back(
{ExpressionLocation{operand, 0}, makeParamLocation(i)});
}
i++;
}
// Add results, if anything flows out.
for (Index i = 0; i < curr->type.size(); i++) {
if (isRelevant(curr->type[i])) {
info.links.push_back(
{makeResultLocation(i), ExpressionLocation{curr, i}});
}
}
// If this is a return call then send the result to the function return as
// well.
if (curr->isReturn) {
auto results = getFunction()->getResults();
for (Index i = 0; i < results.size(); i++) {
auto result = results[i];
if (isRelevant(result)) {
info.links.push_back(
{makeResultLocation(i), ResultLocation{getFunction(), i}});
}
}
}
}
// Calls send values to params in their possible targets, and receive
// results.
void visitCall(Call* curr) {
auto* target = getModule()->getFunction(curr->target);
handleCall(
curr,
[&](Index i) {
return LocalLocation{target, i, 0};
},
[&](Index i) {
return ResultLocation{target, i};
});
}
void visitCallIndirect(CallIndirect* curr) {
// TODO: the table identity could also be used here
auto targetType = curr->heapType;
handleCall(
curr,
[&](Index i) {
return SignatureParamLocation{targetType, i};
},
[&](Index i) {
return SignatureResultLocation{targetType, i};
});
}
void visitCallRef(CallRef* curr) {
auto targetType = curr->target->type;
if (targetType != Type::unreachable) {
auto heapType = targetType.getHeapType();
handleCall(
curr,
[&](Index i) {
return SignatureParamLocation{heapType, i};
},
[&](Index i) {
return SignatureResultLocation{heapType, i};
});
}
}
// Creates a location for a null of a particular type and adds a root for it.
// Such roots are where the default value of an i32 local comes from, or the
// value in a ref.null.
Location getNullLocation(Type type) {
auto location = NullLocation{type};
addRoot(location, PossibleContents::literal(Literal::makeZero(type)));
return location;
}
// Iterates over a list of children and adds links from them. The target of
// those link is created using a function that is passed in, which receives
// the index of the child.
void linkChildList(ExpressionList& operands,
std::function<Location(Index)> makeTarget) {
Index i = 0;
for (auto* operand : operands) {
// This helper is not used from places that allow a tuple (hence we can
// hardcode the index 0 a few lines down).
assert(!operand->type.isTuple());
if (isRelevant(operand->type)) {
info.links.push_back({ExpressionLocation{operand, 0}, makeTarget(i)});
}
i++;
}
}
void visitStructNew(StructNew* curr) {
if (curr->type == Type::unreachable) {
return;
}
auto type = curr->type.getHeapType();
if (curr->isWithDefault()) {
// Link the default values to the struct's fields.
auto& fields = type.getStruct().fields;
for (Index i = 0; i < fields.size(); i++) {
info.links.push_back(
{getNullLocation(fields[i].type), DataLocation{type, i}});
}
} else {
// Link the operands to the struct's fields.
linkChildList(curr->operands, [&](Index i) {
return DataLocation{type, i};
});
}
addRoot(curr, PossibleContents::exactType(curr->type));
}
void visitArrayNew(ArrayNew* curr) {
if (curr->type == Type::unreachable) {
return;
}
auto type = curr->type.getHeapType();
if (curr->init) {
info.links.push_back(
{ExpressionLocation{curr->init, 0}, DataLocation{type, 0}});
} else {
info.links.push_back(
{getNullLocation(type.getArray().element.type), DataLocation{type, 0}});
}
addRoot(curr, PossibleContents::exactType(curr->type));
}
void visitArrayInit(ArrayInit* curr) {
if (curr->type == Type::unreachable) {
return;
}
if (!curr->values.empty()) {
auto type = curr->type.getHeapType();
linkChildList(curr->values, [&](Index i) {
// The index i is ignored, as we do not track indexes in Arrays -
// everything is modeled as if at index 0.
return DataLocation{type, 0};
});
}
addRoot(curr, PossibleContents::exactType(curr->type));
}
// Struct operations access the struct fields' locations.
void visitStructGet(StructGet* curr) {
if (!isRelevant(curr->ref)) {
// If references are irrelevant then we will ignore them, and we won't
// have information about this struct.get's reference, which means we
// won't have information to compute relevant values for this struct.get.
// Instead, just mark this as an unknown value (root).
addRoot(curr);
return;
}
// The struct.get will receive different values depending on the contents
// in the reference, so mark us as the parent of the ref, and we will
// handle all of this in a special way during the flow. Note that we do
// not even create a DataLocation here; anything that we need will be
// added during the flow.
addChildParentLink(curr->ref, curr);
}
void visitStructSet(StructSet* curr) {
if (curr->ref->type == Type::unreachable) {
return;
}
// See comment on visitStructGet. Here we also connect the value.
addChildParentLink(curr->ref, curr);
addChildParentLink(curr->value, curr);
}
// Array operations access the array's location, parallel to how structs work.
void visitArrayGet(ArrayGet* curr) {
if (!isRelevant(curr->ref)) {
addRoot(curr);
return;
}
addChildParentLink(curr->ref, curr);
}
void visitArraySet(ArraySet* curr) {
if (curr->ref->type == Type::unreachable) {
return;
}
addChildParentLink(curr->ref, curr);
addChildParentLink(curr->value, curr);
}
void visitArrayLen(ArrayLen* curr) {
// TODO: optimize when possible (perhaps we can infer a Literal for the
// length)
addRoot(curr);
}
void visitArrayCopy(ArrayCopy* curr) {
if (curr->type == Type::unreachable) {
return;
}
// Our flow handling of GC data is not simple: we have special code for each
// read and write instruction. Therefore, to avoid adding special code for
// ArrayCopy, model it as a combination of an ArrayRead and ArrayWrite, by
// just emitting fake expressions for those. The fake expressions are not
// part of the main IR, which is potentially confusing during debugging,
// however, which is a downside.
Builder builder(*getModule());
auto* get = builder.makeArrayGet(curr->srcRef, curr->srcIndex);
visitArrayGet(get);
auto* set = builder.makeArraySet(curr->destRef, curr->destIndex, get);
visitArraySet(set);
}
void visitStringNew(StringNew* curr) {
if (curr->type == Type::unreachable) {
return;
}
addRoot(curr, PossibleContents::exactType(curr->type));
}
void visitStringConst(StringConst* curr) {
addRoot(curr, PossibleContents::exactType(curr->type));
}
void visitStringMeasure(StringMeasure* curr) {
// TODO: optimize when possible
addRoot(curr);
}
void visitStringEncode(StringEncode* curr) {
// TODO: optimize when possible
addRoot(curr);
}
void visitStringConcat(StringConcat* curr) {
// TODO: optimize when possible
addRoot(curr);
}
void visitStringEq(StringEq* curr) {
// TODO: optimize when possible
addRoot(curr);
}
// TODO: Model which throws can go to which catches. For now, anything thrown
// is sent to the location of that tag, and any catch of that tag can
// read them.
void visitTry(Try* curr) {
receiveChildValue(curr->body, curr);
for (auto* catchBody : curr->catchBodies) {
receiveChildValue(catchBody, curr);
}
auto numTags = curr->catchTags.size();
for (Index tagIndex = 0; tagIndex < numTags; tagIndex++) {
auto tag = curr->catchTags[tagIndex];
auto* body = curr->catchBodies[tagIndex];
auto params = getModule()->getTag(tag)->sig.params;
if (params.size() == 0) {
continue;
}
// Find the pop of the tag's contents. The body must start with such a
// pop, which might be of a tuple.
auto* pop = EHUtils::findPop(body);
// There must be a pop since we checked earlier if it was an empty tag,
// and would not reach here.
assert(pop);
assert(pop->type.size() == params.size());
for (Index i = 0; i < params.size(); i++) {
if (isRelevant(params[i])) {
info.links.push_back(
{TagLocation{tag, i}, ExpressionLocation{pop, i}});
}
}
#ifndef NDEBUG
// This pop was in the position we can handle, note that (see visitPop
// for details).
handledPops++;
#endif
}
}
void visitThrow(Throw* curr) {
auto& operands = curr->operands;
if (!isRelevant(operands)) {
return;
}
auto tag = curr->tag;
for (Index i = 0; i < curr->operands.size(); i++) {
info.links.push_back(
{ExpressionLocation{operands[i], 0}, TagLocation{tag, i}});
}
}
void visitRethrow(Rethrow* curr) {}
void visitTupleMake(TupleMake* curr) {
if (isRelevant(curr->type)) {
for (Index i = 0; i < curr->operands.size(); i++) {
info.links.push_back({ExpressionLocation{curr->operands[i], 0},
ExpressionLocation{curr, i}});
}
}
}
void visitTupleExtract(TupleExtract* curr) {
if (isRelevant(curr->type)) {
info.links.push_back({ExpressionLocation{curr->tuple, curr->index},
ExpressionLocation{curr, 0}});
}
}
// Adds a result to the current function, such as from a return or the value
// that flows out.
void addResult(Expression* value) {
if (value && isRelevant(value->type)) {
for (Index i = 0; i < value->type.size(); i++) {
info.links.push_back(
{ExpressionLocation{value, i}, ResultLocation{getFunction(), i}});
}
}
}
void visitReturn(Return* curr) { addResult(curr->value); }
void visitFunction(Function* curr) {
// Vars have an initial value.
for (Index i = 0; i < curr->getNumLocals(); i++) {
if (curr->isVar(i)) {
Index j = 0;
for (auto t : curr->getLocalType(i)) {
if (t.isDefaultable()) {
info.links.push_back(
{getNullLocation(t), LocalLocation{curr, i, j}});
}
j++;
}
}
}
// Functions with a result can flow a value out from their body.
addResult(curr->body);
// See visitPop().
assert(handledPops == totalPops);
}
// Helpers
// Handles the value sent in a break instruction. Does not handle anything
// else like the condition etc.
void handleBreakValue(Expression* curr) {
BranchUtils::operateOnScopeNameUsesAndSentValues(
curr, [&](Name target, Expression* value) {
if (value && isRelevant(value->type)) {
for (Index i = 0; i < value->type.size(); i++) {
// Breaks send the contents of the break value to the branch target
// that the break goes to.
info.links.push_back(
{ExpressionLocation{value, i},
BreakTargetLocation{getFunction(), target, i}});
}
}
});
}
// Handles receiving values from breaks at the target (as in a block).
void handleBreakTarget(Expression* curr) {
if (isRelevant(curr->type)) {
BranchUtils::operateOnScopeNameDefs(curr, [&](Name target) {
for (Index i = 0; i < curr->type.size(); i++) {
info.links.push_back({BreakTargetLocation{getFunction(), target, i},
ExpressionLocation{curr, i}});
}
});
}
}
// Connect a child's value to the parent, that is, all content in the child is
// now considered possible in the parent as well.
void receiveChildValue(Expression* child, Expression* parent) {
if (isRelevant(parent) && isRelevant(child)) {
// The tuple sizes must match (or, if not a tuple, the size should be 1 in
// both cases).
assert(child->type.size() == parent->type.size());
for (Index i = 0; i < child->type.size(); i++) {
info.links.push_back(
{ExpressionLocation{child, i}, ExpressionLocation{parent, i}});
}
}
}
// See the comment on CollectedFuncInfo::childParents.
void addChildParentLink(Expression* child, Expression* parent) {
if (isRelevant(child->type)) {
info.childParents[child] = parent;
}
}
// Adds a root, if the expression is relevant. If the value is not specified,
// mark the root as containing Many (which is the common case, so avoid
// verbose code).
void addRoot(Expression* curr,
PossibleContents contents = PossibleContents::many()) {
if (isRelevant(curr)) {
addRoot(ExpressionLocation{curr, 0}, contents);
}
}
// As above, but given an arbitrary location and not just an expression.
void addRoot(Location loc,
PossibleContents contents = PossibleContents::many()) {
info.roots.emplace_back(loc, contents);
}
};
// Main logic for building data for the flow analysis and then performing that
// analysis.
struct Flower {
Module& wasm;
Flower(Module& wasm);
// Each LocationIndex will have one LocationInfo that contains the relevant
// information we need for each location.
struct LocationInfo {
// The location at this index.
Location location;
// The possible contents in that location.
PossibleContents contents;
// A list of the target locations to which this location sends content.
// TODO: benchmark SmallVector<1> here, as commonly there may be a single
// target (an expression has one parent)
std::vector<LocationIndex> targets;
LocationInfo(Location location) : location(location) {}
};
// Maps location indexes to the info stored there, as just described above.
std::vector<LocationInfo> locations;
// Reverse mapping of locations to their indexes.
std::unordered_map<Location, LocationIndex> locationIndexes;
const Location& getLocation(LocationIndex index) {
assert(index < locations.size());
return locations[index].location;
}
PossibleContents& getContents(LocationIndex index) {
assert(index < locations.size());
return locations[index].contents;
}
private:
std::vector<LocationIndex>& getTargets(LocationIndex index) {
assert(index < locations.size());
return locations[index].targets;
}
// Convert the data into the efficient LocationIndex form we will use during
// the flow analysis. This method returns the index of a location, allocating
// one if this is the first time we see it.
LocationIndex getIndex(const Location& location) {
auto iter = locationIndexes.find(location);
if (iter != locationIndexes.end()) {
return iter->second;
}
// Allocate a new index here.
size_t index = locations.size();
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " new index " << index << " for ";
dump(location);
#endif
if (index >= std::numeric_limits<LocationIndex>::max()) {
// 32 bits should be enough since each location takes at least one byte
// in the binary, and we don't have 4GB wasm binaries yet... do we?
Fatal() << "Too many locations for 32 bits";
}
locations.emplace_back(location);
locationIndexes[location] = index;
return index;
}
bool hasIndex(const Location& location) {
return locationIndexes.find(location) != locationIndexes.end();
}
IndexLink getIndexes(const LocationLink& link) {
return {getIndex(link.from), getIndex(link.to)};
}
// See the comment on CollectedFuncInfo::childParents. This is the merged info
// from all the functions and the global scope.
std::unordered_map<LocationIndex, LocationIndex> childParents;
// The work remaining to do during the flow: locations that we need to flow
// content from, after new content reached them.
//
// Using a set here is efficient as multiple updates may arrive to a location
// before we get to processing it.
//
// The items here could be {location, newContents}, but it is more efficient
// to have already written the new contents to the main data structure. That
// avoids larger data here, and also, updating the contents as early as
// possible is helpful as anything reading them meanwhile (before we get to
// their work item in the queue) will see the newer value, possibly avoiding
// flowing an old value that would later be overwritten.
#ifdef POSSIBLE_CONTENTS_INSERT_ORDERED
InsertOrderedSet<LocationIndex> workQueue;
#else
std::unordered_set<LocationIndex> workQueue;
#endif
// All existing links in the graph. We keep this to know when a link we want
// to add is new or not.
std::unordered_set<IndexLink> links;
// Update a location with new contents that are added to everything already
// present there. If the update changes the contents at that location (if
// there was anything new) then we also need to flow from there, which we will
// do by adding the location to the work queue, and eventually flowAfterUpdate
// will be called on this location.
//
// Returns whether it is worth sending new contents to this location in the
// future. If we return false, the sending location never needs to do that
// ever again.
bool updateContents(LocationIndex locationIndex,
PossibleContents newContents);
// Slow helper that converts a Location to a LocationIndex. This should be
// avoided. TODO: remove the remaining uses of this.
bool updateContents(const Location& location,
const PossibleContents& newContents) {
return updateContents(getIndex(location), newContents);
}
// Flow contents from a location where a change occurred. This sends the new
// contents to all the normal targets of this location (using
// flowToTargetsAfterUpdate), and also handles special cases of flow after.
void flowAfterUpdate(LocationIndex locationIndex);
// Internal part of flowAfterUpdate that handles sending new values to the
// given location index's normal targets (that is, the ones listed in the
// |targets| vector).
void flowToTargetsAfterUpdate(LocationIndex locationIndex,
const PossibleContents& contents);
// Add a new connection while the flow is happening. If the link already
// exists it is not added.
void connectDuringFlow(Location from, Location to);
// Contents sent to a global location can be filtered in a special way during
// the flow, which is handled in this helper.
void filterGlobalContents(PossibleContents& contents,
const GlobalLocation& globalLoc);
// Reads from GC data: a struct.get or array.get. This is given the type of
// the read operation, the field that is read on that type, the known contents
// in the reference the read receives, and the read instruction itself. We
// compute where we need to read from based on the type and the ref contents
// and get that data, adding new links in the graph as needed.
void readFromData(HeapType declaredHeapType,
Index fieldIndex,
const PossibleContents& refContents,
Expression* read);
// Similar to readFromData, but does a write for a struct.set or array.set.
void writeToData(Expression* ref, Expression* value, Index fieldIndex);
// Special handling for RefCast during the flow: RefCast only admits valid
// values to flow through it.
void flowRefCast(const PossibleContents& contents, RefCast* cast);
// We will need subtypes during the flow, so compute them once ahead of time.
std::unique_ptr<SubTypes> subTypes;
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
// Dump out a location for debug purposes.
void dump(Location location);
#endif
};
Flower::Flower(Module& wasm) : wasm(wasm) {
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "parallel phase\n";
#endif
// First, collect information from each function.
ModuleUtils::ParallelFunctionAnalysis<CollectedFuncInfo> analysis(
wasm, [&](Function* func, CollectedFuncInfo& info) {
InfoCollector finder(info);
if (func->imported()) {
// Imports return unknown values.
for (Index i = 0; i < func->getResults().size(); i++) {
finder.addRoot(ResultLocation{func, i}, PossibleContents::many());
}
return;
}
finder.walkFunctionInModule(func, &wasm);
});
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "single phase\n";
#endif
// Also walk the global module code (for simplicity, also add it to the
// function map, using a "function" key of nullptr).
auto& globalInfo = analysis.map[nullptr];
InfoCollector finder(globalInfo);
finder.walkModuleCode(&wasm);
// Connect global init values (which we've just processed, as part of the
// module code) to the globals they initialize.
for (auto& global : wasm.globals) {
if (global->imported()) {
// Imports are unknown values.
finder.addRoot(GlobalLocation{global->name}, PossibleContents::many());
continue;
}
auto* init = global->init;
if (finder.isRelevant(init->type)) {
globalInfo.links.push_back(
{ExpressionLocation{init, 0}, GlobalLocation{global->name}});
}
}
// Merge the function information into a single large graph that represents
// the entire program all at once, indexing and deduplicating everything as we
// go.
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "merging+indexing phase\n";
#endif
// The merged roots. (Note that all other forms of merged data are declared at
// the class level, since we need them during the flow, but the roots are only
// needed to start the flow, so we can declare them here.)
std::unordered_map<Location, PossibleContents> roots;
for (auto& [func, info] : analysis.map) {
for (auto& link : info.links) {
links.insert(getIndexes(link));
}
for (auto& [root, value] : info.roots) {
roots[root] = value;
// Ensure an index even for a root with no links to it - everything needs
// an index.
getIndex(root);
}
for (auto [child, parent] : info.childParents) {
// In practice we do not have any childParent connections with a tuple;
// assert on that just to be safe.
assert(!child->type.isTuple());
childParents[getIndex(ExpressionLocation{child, 0})] =
getIndex(ExpressionLocation{parent, 0});
}
}
// We no longer need the function-level info.
analysis.map.clear();
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "external phase\n";
#endif
// Parameters of exported functions are roots, since exports can have callers
// that we can't see, so anything might arrive there.
auto calledFromOutside = [&](Name funcName) {
auto* func = wasm.getFunction(funcName);
for (Index i = 0; i < func->getParams().size(); i++) {
roots[LocalLocation{func, i, 0}] = PossibleContents::many();
}
};
for (auto& ex : wasm.exports) {
if (ex->kind == ExternalKind::Function) {
calledFromOutside(ex->value);
} else if (ex->kind == ExternalKind::Table) {
// If any table is exported, assume any function in any table (including
// other tables) can be called from the outside.
// TODO: This could be more precise about which tables are exported and
// which are not: perhaps one table is exported but we can optimize
// the functions in another table, which is not exported. However,
// it is simpler to treat them all the same, and this handles the
// common case of no tables being exported at all.
// TODO: This does not handle table.get/table.set, or call_ref, for which
// we'd need to see which references are used and which escape etc.
// For now, assume a closed world for such such advanced use cases /
// assume this pass won't be run in them anyhow.
// TODO: do this only once if multiple tables are exported
for (auto& elementSegment : wasm.elementSegments) {
for (auto* curr : elementSegment->data) {
if (auto* refFunc = curr->dynCast<RefFunc>()) {
calledFromOutside(refFunc->func);
}
}
}
}
}
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "func phase\n";
#endif
// Connect function parameters to their signature, so that any indirect call
// of that signature will reach them.
// TODO: find which functions are even taken by reference
for (auto& func : wasm.functions) {
for (Index i = 0; i < func->getParams().size(); i++) {
links.insert(getIndexes({SignatureParamLocation{func->type, i},
LocalLocation{func.get(), i, 0}}));
}
for (Index i = 0; i < func->getResults().size(); i++) {
links.insert(getIndexes({ResultLocation{func.get(), i},
SignatureResultLocation{func->type, i}}));
}
}
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "struct phase\n";
#endif
if (getTypeSystem() == TypeSystem::Nominal ||
getTypeSystem() == TypeSystem::Isorecursive) {
subTypes = std::make_unique<SubTypes>(wasm);
}
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "Link-targets phase\n";
#endif
// Add all links to the targets vectors of the source locations, which we will
// use during the flow.
for (auto& link : links) {
getTargets(link.from).push_back(link.to);
}
#ifndef NDEBUG
// Each vector of targets (which is a vector for efficiency) must have no
// duplicates.
for (auto& info : locations) {
disallowDuplicates(info.targets);
}
#endif
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "roots phase\n";
#endif
// Set up the roots, which are the starting state for the flow analysis: send
// their initial content to them to start the flow.
for (const auto& [location, value] : roots) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " init root\n";
dump(location);
value.dump(std::cout, &wasm);
std::cout << '\n';
#endif
updateContents(location, value);
}
#ifdef POSSIBLE_CONTENTS_DEBUG
std::cout << "flow phase\n";
size_t iters = 0;
#endif
// Flow the data while there is still stuff flowing.
while (!workQueue.empty()) {
#ifdef POSSIBLE_CONTENTS_DEBUG
iters++;
if ((iters & 255) == 0) {
std::cout << iters++ << " iters, work left: " << workQueue.size() << '\n';
}
#endif
auto iter = workQueue.begin();
auto locationIndex = *iter;
workQueue.erase(iter);
flowAfterUpdate(locationIndex);
}
// TODO: Add analysis and retrieval logic for fields of immutable globals,
// including multiple levels of depth (necessary for itables in j2wasm).
}
bool Flower::updateContents(LocationIndex locationIndex,
PossibleContents newContents) {
auto& contents = getContents(locationIndex);
auto oldContents = contents;
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << "updateContents\n";
dump(getLocation(locationIndex));
contents.dump(std::cout, &wasm);
std::cout << "\n with new contents \n";
newContents.dump(std::cout, &wasm);
std::cout << '\n';
#endif
contents.combine(newContents);
if (contents.isNone()) {
// There is still nothing here. There is nothing more to do here but to
// return that it is worth sending more.
return true;
}
// It is not worth sending any more to this location if we are now in the
// worst possible case, as no future value could cause any change.
//
// Many is always the worst possible case. An exact type of a non-reference is
// also the worst case, since subtyping is not relevant there, and so if we
// know only the type then we already know nothing beyond what the type in the
// wasm tells us (and from there we can only go to Many).
bool worthSendingMore = !contents.isMany();
if (!contents.getType().isRef() && contents.isExactType()) {
worthSendingMore = false;
}
if (contents == oldContents) {
// Nothing actually changed, so just return.
return worthSendingMore;
}
// Handle special cases: Some locations can only contain certain contents, so
// filter accordingly.
if (auto* globalLoc =
std::get_if<GlobalLocation>(&getLocation(locationIndex))) {
filterGlobalContents(contents, *globalLoc);
if (contents == oldContents) {
// Nothing actually changed after filtering, so just return.
return worthSendingMore;
}
}
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " updateContents has something new\n";
contents.dump(std::cout, &wasm);
std::cout << '\n';
#endif
// Add a work item if there isn't already.
workQueue.insert(locationIndex);
return worthSendingMore;
}
void Flower::flowAfterUpdate(LocationIndex locationIndex) {
const auto location = getLocation(locationIndex);
auto& contents = getContents(locationIndex);
// We are called after a change at a location. A change means that some
// content has arrived, since we never send empty values around. Assert on
// that.
assert(!contents.isNone());
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << "\nflowAfterUpdate to:\n";
dump(location);
std::cout << " arriving:\n";
contents.dump(std::cout, &wasm);
std::cout << '\n';
#endif
// Flow the contents to the normal targets of this location.
flowToTargetsAfterUpdate(locationIndex, contents);
// We are mostly done, except for handling interesting/special cases in the
// flow, additional operations that we need to do aside from sending the new
// contents to the normal (statically linked) targets.
if (auto* exprLoc = std::get_if<ExpressionLocation>(&location)) {
auto iter = childParents.find(locationIndex);
if (iter == childParents.end()) {
return;
}
// This is indeed one of the special cases where it is the child of a
// parent, and we need to do some special handling because of that child-
// parent connection.
auto* child = exprLoc->expr;
WASM_UNUSED(child);
auto parentIndex = iter->second;
auto* parent = std::get<ExpressionLocation>(getLocation(parentIndex)).expr;
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " special, parent:\n" << *parent << '\n';
#endif
if (auto* get = parent->dynCast<StructGet>()) {
// |child| is the reference child of a struct.get.
assert(get->ref == child);
readFromData(get->ref->type.getHeapType(), get->index, contents, get);
} else if (auto* set = parent->dynCast<StructSet>()) {
// |child| is either the reference or the value child of a struct.set.
assert(set->ref == child || set->value == child);
writeToData(set->ref, set->value, set->index);
} else if (auto* get = parent->dynCast<ArrayGet>()) {
assert(get->ref == child);
readFromData(get->ref->type.getHeapType(), 0, contents, get);
} else if (auto* set = parent->dynCast<ArraySet>()) {
assert(set->ref == child || set->value == child);
writeToData(set->ref, set->value, 0);
} else if (auto* cast = parent->dynCast<RefCast>()) {
assert(cast->ref == child);
flowRefCast(contents, cast);
} else {
// TODO: ref.test and all other casts can be optimized (see the cast
// helper code used in OptimizeInstructions and RemoveUnusedBrs)
WASM_UNREACHABLE("bad childParents content");
}
}
}
void Flower::flowToTargetsAfterUpdate(LocationIndex locationIndex,
const PossibleContents& contents) {
// Send the new contents to all the targets of this location. As we do so,
// prune any targets that we do not need to bother sending content to in the
// future, to save space and work later.
auto& targets = getTargets(locationIndex);
targets.erase(std::remove_if(targets.begin(),
targets.end(),
[&](LocationIndex targetIndex) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " send to target\n";
dump(getLocation(targetIndex));
#endif
return !updateContents(targetIndex, contents);
}),
targets.end());
if (contents.isMany()) {
// We contain Many, and just called updateContents on our targets to send
// that value to them. We'll never need to send anything from here ever
// again, since we sent the worst case possible already, so we can just
// clear our targets vector. But we should have already removed all the
// targets in the above remove_if operation, since they should have all
// notified us that we do not need to send them any more updates.
assert(targets.empty());
}
}
void Flower::connectDuringFlow(Location from, Location to) {
auto newLink = LocationLink{from, to};
auto newIndexLink = getIndexes(newLink);
if (links.count(newIndexLink) == 0) {
// This is a new link. Add it to the known links.
links.insert(newIndexLink);
// Add it to the |targets| vector.
auto& targets = getTargets(newIndexLink.from);
targets.push_back(newIndexLink.to);
#ifndef NDEBUG
disallowDuplicates(targets);
#endif
// In addition to adding the link, which will ensure new contents appearing
// later will be sent along, we also update with the current contents.
updateContents(to, getContents(getIndex(from)));
}
}
void Flower::filterGlobalContents(PossibleContents& contents,
const GlobalLocation& globalLoc) {
auto* global = wasm.getGlobal(globalLoc.name);
if (global->mutable_ == Immutable) {
// This is an immutable global. We never need to consider this value as
// "Many", since in the worst case we can just use the immutable value. That
// is, we can always replace this value with (global.get $name) which will
// get the right value. Likewise, using the immutable global value is often
// better than an exact type, but TODO: we could note both an exact type
// *and* that something is equal to a global, in some cases.
if (contents.isMany() || contents.isExactType()) {
contents = PossibleContents::global(global->name, global->type);
// TODO: We could do better here, to set global->init->type instead of
// global->type, or even the contents.getType() - either of those
// may be more refined. But other passes will handle that in
// general (by refining the global's type).
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " setting immglobal to ImmutableGlobal\n";
contents.dump(std::cout, &wasm);
std::cout << '\n';
#endif
}
}
}
void Flower::readFromData(HeapType declaredHeapType,
Index fieldIndex,
const PossibleContents& refContents,
Expression* read) {
// The data that a struct.get reads depends on two things: the reference that
// we read from, and the relevant DataLocations. The reference determines
// which DataLocations are relevant: if it is an ExactType then we have a
// single DataLocation to read from, the one type that can be read from there.
// Otherwise, we might read from any subtype, and so all their DataLocations
// are relevant.
//
// What can be confusing is that the information about the reference is also
// inferred during the flow. That is, we use our current information about the
// reference to decide what to do here. But the flow is not finished yet!
// To keep things valid, we must therefore react to changes in either the
// reference - when we see that more types might be read from here - or the
// DataLocations - when new things are written to the data we can read from.
// Specifically, at every point in time we want to preserve the property that
// we've read from all relevant types based on the current reference, and
// we've read the very latest possible contents from those types. And then
// since we preserve that property til the end of the flow, it is also valid
// then. At the end of the flow, the current reference's contents are the
// final and correct contents for that location, which means we've ended up
// with the proper result: the struct.get reads everything it should.
//
// To implement what was just described, we call this function when the
// reference is updated. This function will then set up connections in the
// graph so that updates to the relevant DataLocations will reach us in the
// future.
if (refContents.isNull() || refContents.isNone()) {
// Nothing is read here.
return;
}
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " add special reads\n";
#endif
if (refContents.isExactType()) {
// Add a single link to the exact location the reference points to.
connectDuringFlow(
DataLocation{refContents.getType().getHeapType(), fieldIndex},
ExpressionLocation{read, 0});
} else {
// Otherwise, this is a cone: the declared type of the reference, or any
// subtype of that, regardless of whether the content is a Many or a Global
// or anything else.
// TODO: The Global case may have a different cone type than the heapType,
// which we could use here.
// TODO: A Global may refer to an immutable global, which we can read the
// field from potentially (reading it from the struct.new/array.new
// in the definition of it, if it is not imported; or, we could track
// the contents of immutable fields of allocated objects, and not just
// represent them as ExactType).
// See the test TODO with text "We optimize some of this, but stop at
// reading from the immutable global"
// Note that this cannot be a Literal, since this is a reference, and the
// only reference literals we have are nulls (handled above) and ref.func.
// ref.func is not valid in struct|array.get, so the code would trap at
// runtime, and also it would never reach here as because of wasm validation
// it would be cast to a struct/array type, and our special ref.cast code
// would filter it out.
assert(refContents.isMany() || refContents.isGlobal());
// We create a ConeReadLocation for the canonical cone of this type, to
// avoid bloating the graph, see comment on ConeReadLocation().
// TODO: A cone with no subtypes needs no canonical location, just
// add one direct link here.
auto coneReadLocation = ConeReadLocation{declaredHeapType, fieldIndex};
if (!hasIndex(coneReadLocation)) {
// This is the first time we use this location, so create the links for it
// in the graph.
for (auto type : subTypes->getAllSubTypes(declaredHeapType)) {
connectDuringFlow(DataLocation{type, fieldIndex}, coneReadLocation);
}
// TODO: if the old contents here were an exact type then we have an old
// link here that we could remove as it is redundant (the cone
// contains the exact type among the others). But removing links
// is not efficient, so maybe not worth it.
}
// Link to the canonical location.
connectDuringFlow(coneReadLocation, ExpressionLocation{read, 0});
}
}
void Flower::writeToData(Expression* ref, Expression* value, Index fieldIndex) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " add special writes\n";
#endif
// We could set up links here as we do for reads, but as we get to this code
// in any case, we can just flow the values forward directly. This avoids
// adding any links (edges) to the graph (and edges are what we want to avoid
// adding, as there can be a quadratic number of them). In other words, we'll
// loop over the places we need to send info to, which we can figure out in a
// simple way, and by doing so we avoid materializing edges into the graph.
//
// Note that this is different from readFromData, above, which does add edges
// to the graph (and works hard to add as few as possible, see the "canonical
// cone reads" logic). The difference is because readFromData must "subscribe"
// to get notifications from the relevant DataLocations. But when writing that
// is not a problem: whenever a change happens in the reference or the value
// of a struct.set then this function will get called, and those are the only
// things we care about. And we can then just compute the values we are
// sending (based on the current contents of the reference and the value), and
// where we should send them to, and do that right here. (And as commented in
// readFromData, that is guaranteed to give us the right result in the end: at
// every point in time we send the right data, so when the flow is finished
// we've sent information based on the final and correct information about our
// reference and value.)
auto refContents = getContents(getIndex(ExpressionLocation{ref, 0}));
auto valueContents = getContents(getIndex(ExpressionLocation{value, 0}));
if (refContents.isNone() || refContents.isNull()) {
return;
}
if (refContents.hasExactType()) {
// Update the one possible type here.
auto heapLoc =
DataLocation{refContents.getType().getHeapType(), fieldIndex};
updateContents(heapLoc, valueContents);
} else {
assert(refContents.isMany() || refContents.isGlobal());
// Update all possible subtypes here.
auto type = ref->type.getHeapType();
for (auto subType : subTypes->getAllSubTypes(type)) {
auto heapLoc = DataLocation{subType, fieldIndex};
updateContents(heapLoc, valueContents);
}
}
}
void Flower::flowRefCast(const PossibleContents& contents, RefCast* cast) {
// RefCast only allows valid values to go through: nulls and things of the
// cast type. Filter anything else out.
PossibleContents filtered;
if (contents.isMany()) {
// Just pass the Many through.
// TODO: we could emit a cone type here when we get one, instead of
// emitting a Many in any of these code paths
filtered = contents;
} else {
auto intendedType = cast->getIntendedType();
bool isSubType =
HeapType::isSubType(contents.getType().getHeapType(), intendedType);
if (isSubType) {
// The contents are not Many, but their heap type is a subtype of the
// intended type, so we'll pass that through. Note that we pass the entire
// contents here, which includes nullability, but that is fine, it would
// just overlap with the code below that handles nulls (that is, the code
// below only makes a difference when the heap type is *not* a subtype but
// the type is nullable).
// TODO: When we get cone types, we could filter the cone here.
filtered.combine(contents);
}
bool mayBeNull = contents.getType().isNullable();
if (mayBeNull) {
// A null is possible, so pass that along.
filtered.combine(
PossibleContents::literal(Literal::makeNull(intendedType)));
}
}
if (!filtered.isNone()) {
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
std::cout << " ref.cast passing through\n";
filtered.dump(std::cout);
std::cout << '\n';
#endif
updateContents(ExpressionLocation{cast, 0}, filtered);
}
}
#if defined(POSSIBLE_CONTENTS_DEBUG) && POSSIBLE_CONTENTS_DEBUG >= 2
void Flower::dump(Location location) {
if (auto* loc = std::get_if<ExpressionLocation>(&location)) {
std::cout << " exprloc \n" << *loc->expr << '\n';
} else if (auto* loc = std::get_if<DataLocation>(&location)) {
std::cout << " dataloc ";
if (wasm.typeNames.count(loc->type)) {
std::cout << '$' << wasm.typeNames[loc->type].name;
} else {
std::cout << loc->type << '\n';
}
std::cout << " : " << loc->index << '\n';
} else if (auto* loc = std::get_if<TagLocation>(&location)) {
std::cout << " tagloc " << loc->tag << '\n';
} else if (auto* loc = std::get_if<LocalLocation>(&location)) {
std::cout << " localloc " << loc->func->name << " : " << loc->index
<< " tupleIndex " << loc->tupleIndex << '\n';
} else if (auto* loc = std::get_if<ResultLocation>(&location)) {
std::cout << " resultloc " << loc->func->name << " : " << loc->index
<< '\n';
} else if (auto* loc = std::get_if<GlobalLocation>(&location)) {
std::cout << " globalloc " << loc->name << '\n';
} else if (auto* loc = std::get_if<BreakTargetLocation>(&location)) {
std::cout << " branchloc " << loc->func->name << " : " << loc->target
<< " tupleIndex " << loc->tupleIndex << '\n';
} else if (auto* loc = std::get_if<SignatureParamLocation>(&location)) {
WASM_UNUSED(loc);
std::cout << " sigparamloc " << '\n';
} else if (auto* loc = std::get_if<SignatureResultLocation>(&location)) {
WASM_UNUSED(loc);
std::cout << " sigresultloc " << '\n';
} else if (auto* loc = std::get_if<NullLocation>(&location)) {
std::cout << " Nullloc " << loc->type << '\n';
} else if (auto* loc = std::get_if<UniqueLocation>(&location)) {
std::cout << " Specialloc " << loc->index << '\n';
} else {
std::cout << " (other)\n";
}
}
#endif
} // anonymous namespace
void ContentOracle::analyze() {
Flower flower(wasm);
for (LocationIndex i = 0; i < flower.locations.size(); i++) {
locationContents[flower.getLocation(i)] = flower.getContents(i);
}
}
} // namespace wasm
|