1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
|
/*
* Copyright 2022 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef wasm_ir_possible_contents_h
#define wasm_ir_possible_contents_h
#include <variant>
#include "ir/possible-constant.h"
#include "ir/subtypes.h"
#include "support/hash.h"
#include "support/small_vector.h"
#include "wasm-builder.h"
#include "wasm.h"
namespace wasm {
//
// PossibleContents represents the possible contents at a particular location
// (such as in a local or in a function parameter). This is a little similar to
// PossibleConstantValues, but considers more types of contents than constant
// values - in particular, it can track types to some extent.
//
// The specific contents this can vary over are:
//
// * None: No possible value.
//
// * Literal: One possible constant value like an i32 of 42.
//
// * Global: The name of a global whose value is here. We do not know
// the actual value at compile time, but we know it is equal
// to that global. Typically we can only infer this for
// immutable globals.
//
// * ConeType: Any possible value of a particular type, and a possible
// "cone" of a certain depth below it. If the depth is 0
// then only the exact type is possible; if the depth is 1
// then either that type or its immediate subtypes, and so
// forth.
// A depth of -1 means unlimited: all subtypes are allowed.
// If the type here is nullable then null is also allowed.
// TODO: Add ConeTypePlusContents or such, which would be
// used on e.g. a struct.new with an immutable field
// to which we assign a constant: not only do we know
// the type, but also certain field's values.
//
// * Many: Anything else. Many things are possible here, and we do
// not track what they might be, so we must assume the worst
// in the calling code.
//
class PossibleContents {
struct None : public std::monostate {};
struct GlobalInfo {
Name name;
// The type of contents. Note that this may not match the type of the
// global, if we were filtered. For example:
//
// (ref.as_non_null
// (global.get $nullable-global)
// )
//
// The contents flowing out will be a Global, but of a non-nullable type,
// unlike the original global.
Type type;
// TODO: Consider adding a depth here, or merging this with ConeType in some
// way. In principle, not having depth info can lead to loss of
// precision.
bool operator==(const GlobalInfo& other) const {
return name == other.name && type == other.type;
}
};
struct ConeType {
Type type;
Index depth;
bool operator==(const ConeType& other) const {
return type == other.type && depth == other.depth;
}
};
struct Many : public std::monostate {};
// TODO: This is similar to the variant in PossibleConstantValues, and perhaps
// we could share code, but extending a variant using template magic may
// not be worthwhile. Another option might be to make PCV inherit from
// this and disallow ConeType etc., but PCV might get slower.
using Variant = std::variant<None, Literal, GlobalInfo, ConeType, Many>;
Variant value;
// Internal convenience for creating a cone type with depth 0, i.e,, an exact
// type.
static ConeType ExactType(Type type) { return ConeType{type, 0}; }
static constexpr Index FullDepth = -1;
// Internal convenience for creating a cone type of unbounded depth, i.e., the
// full cone of all subtypes for that type.
static ConeType FullConeType(Type type) { return ConeType{type, FullDepth}; }
template<typename T> PossibleContents(T value) : value(value) {}
public:
PossibleContents() : value(None()) {}
PossibleContents(const PossibleContents& other) = default;
// Most users will use one of the following static functions to construct a
// new instance:
static PossibleContents none() { return PossibleContents{None()}; }
static PossibleContents literal(Literal c) { return PossibleContents{c}; }
static PossibleContents global(Name name, Type type) {
return PossibleContents{GlobalInfo{name, type}};
}
// Helper for a cone type with depth 0, i.e., an exact type.
static PossibleContents exactType(Type type) {
return PossibleContents{ExactType(type)};
}
// Helper for a cone with unbounded depth, i.e., the full cone of all subtypes
// for that type.
static PossibleContents fullConeType(Type type) {
return PossibleContents{FullConeType(type)};
}
static PossibleContents coneType(Type type, Index depth) {
return PossibleContents{ConeType{type, depth}};
}
static PossibleContents many() { return PossibleContents{Many()}; }
// Helper for creating a PossibleContents based on a wasm type, that is, where
// all we know is the wasm type.
static PossibleContents fromType(Type type) {
assert(type != Type::none);
if (type.isRef()) {
// For a reference, subtyping matters.
return fullConeType(type);
}
if (type == Type::unreachable) {
// Nothing is possible here.
return none();
}
// Otherwise, this is a concrete MVP type.
assert(type.isConcrete());
return exactType(type);
}
PossibleContents& operator=(const PossibleContents& other) = default;
bool operator==(const PossibleContents& other) const {
return value == other.value;
}
bool operator!=(const PossibleContents& other) const {
return !(*this == other);
}
// Combine the information in a given PossibleContents to this one. The
// contents here will then include whatever content was possible in |other|.
[[nodiscard]] static PossibleContents combine(const PossibleContents& a,
const PossibleContents& b);
void combine(const PossibleContents& other) {
*this = PossibleContents::combine(*this, other);
}
// Removes anything not in |other| from this object, so that it ends up with
// only their intersection.
void intersect(const PossibleContents& other);
bool isNone() const { return std::get_if<None>(&value); }
bool isLiteral() const { return std::get_if<Literal>(&value); }
bool isGlobal() const { return std::get_if<GlobalInfo>(&value); }
bool isConeType() const { return std::get_if<ConeType>(&value); }
bool isMany() const { return std::get_if<Many>(&value); }
Literal getLiteral() const {
assert(isLiteral());
return std::get<Literal>(value);
}
Name getGlobal() const {
assert(isGlobal());
return std::get<GlobalInfo>(value).name;
}
bool isNull() const { return isLiteral() && getLiteral().isNull(); }
// Return the relevant type here. Note that the *meaning* of the type varies
// by the contents: type $foo of a global means that type or any subtype, as a
// subtype might be written to it, while type $foo of a Literal or a ConeType
// with depth zero means that type and nothing else, etc. (see also
// hasExactType).
//
// If no type is possible, return unreachable; if many types are, return none.
Type getType() const {
if (auto* literal = std::get_if<Literal>(&value)) {
return literal->type;
} else if (auto* global = std::get_if<GlobalInfo>(&value)) {
return global->type;
} else if (auto* coneType = std::get_if<ConeType>(&value)) {
return coneType->type;
} else if (std::get_if<None>(&value)) {
return Type::unreachable;
} else if (std::get_if<Many>(&value)) {
return Type::none;
} else {
WASM_UNREACHABLE("bad value");
}
}
// Returns cone type info. This can be called on non-cone types as well, and
// it returns a cone that best describes them. That is, this is like getType()
// but it also provides an indication about the depth, if relevant. (If cone
// info is not relevant, like when getType() returns none or unreachable, the
// depth is set to 0.)
ConeType getCone() const {
if (auto* literal = std::get_if<Literal>(&value)) {
return ExactType(literal->type);
} else if (auto* global = std::get_if<GlobalInfo>(&value)) {
return FullConeType(global->type);
} else if (auto* coneType = std::get_if<ConeType>(&value)) {
return *coneType;
} else if (std::get_if<None>(&value)) {
return ExactType(Type::unreachable);
} else if (std::get_if<Many>(&value)) {
return ExactType(Type::none);
} else {
WASM_UNREACHABLE("bad value");
}
}
// Returns whether the relevant cone for this, as computed by getCone(), is of
// full size, that is, includes all subtypes.
bool hasFullCone() const { return getCone().depth == FullDepth; }
// Returns whether this is a cone type and also is of full size. This differs
// from hasFullCone() in that the former can return true for a global, for
// example, while this cannot (a global is not a cone type, but the
// information we have about its cone is that it is full).
bool isFullConeType() const { return isConeType() && hasFullCone(); }
// Returns whether the type we can report here is exact, that is, nothing of a
// strict subtype might show up - the contents here have an exact type.
//
// This returns false for None and Many, for whom it is not well-defined.
bool hasExactType() const {
if (isLiteral()) {
return true;
}
if (auto* coneType = std::get_if<ConeType>(&value)) {
return coneType->depth == 0;
}
return false;
}
// Returns whether the given contents have any intersection, that is, whether
// some value exists that can appear in both |a| and |b|. For example, if
// either is None, or if they are different literals, then they have no
// intersection.
static bool haveIntersection(const PossibleContents& a,
const PossibleContents& b);
// Returns whether |a| is a subset of |b|, that is, all possible contents of
// |a| are also possible in |b|.
static bool isSubContents(const PossibleContents& a,
const PossibleContents& b);
// Whether we can make an Expression* for this containing the proper contents.
// We can do that for a Literal (emitting a Const or RefFunc etc.) or a
// Global (emitting a GlobalGet), but not for anything else yet.
bool canMakeExpression() const { return isLiteral() || isGlobal(); }
Expression* makeExpression(Module& wasm) {
assert(canMakeExpression());
Builder builder(wasm);
if (isLiteral()) {
return builder.makeConstantExpression(getLiteral());
} else {
auto name = getGlobal();
// Note that we load the type from the module, rather than use the type
// in the GlobalInfo, as that type may not match the global (see comment
// in the GlobalInfo declaration above).
return builder.makeGlobalGet(name, wasm.getGlobal(name)->type);
}
}
size_t hash() const {
// First hash the index of the variant, then add the internals for each.
size_t ret = std::hash<size_t>()(value.index());
if (isNone() || isMany()) {
// Nothing to add.
} else if (isLiteral()) {
rehash(ret, getLiteral());
} else if (auto* global = std::get_if<GlobalInfo>(&value)) {
rehash(ret, global->name);
rehash(ret, global->type);
} else if (auto* coneType = std::get_if<ConeType>(&value)) {
rehash(ret, coneType->type);
rehash(ret, coneType->depth);
} else {
WASM_UNREACHABLE("bad variant");
}
return ret;
}
void dump(std::ostream& o, Module* wasm = nullptr) const {
o << '[';
if (isNone()) {
o << "None";
} else if (isLiteral()) {
o << "Literal " << getLiteral();
auto t = getType();
if (t.isRef()) {
auto h = t.getHeapType();
o << " HT: " << h;
}
} else if (isGlobal()) {
o << "GlobalInfo $" << getGlobal() << " T: " << getType();
} else if (auto* coneType = std::get_if<ConeType>(&value)) {
auto t = coneType->type;
o << "ConeType " << t;
if (coneType->depth == 0) {
o << " exact";
} else {
o << " depth=" << coneType->depth;
}
if (t.isRef()) {
auto h = t.getHeapType();
o << " HT: " << h;
if (wasm && wasm->typeNames.count(h)) {
o << " $" << wasm->typeNames[h].name;
}
if (t.isNullable()) {
o << " null";
}
}
} else if (isMany()) {
o << "Many";
} else {
WASM_UNREACHABLE("bad variant");
}
o << ']';
}
};
// The various *Location structs (ExpressionLocation, ResultLocation, etc.)
// describe particular locations where content can appear.
// The location of a specific IR expression.
struct ExpressionLocation {
Expression* expr;
// If this expression contains a tuple then each index in the tuple will have
// its own location with a corresponding tupleIndex. If this is not a tuple
// then we only use tupleIndex 0.
Index tupleIndex;
bool operator==(const ExpressionLocation& other) const {
return expr == other.expr && tupleIndex == other.tupleIndex;
}
};
// The location of one of the parameters of a function.
struct ParamLocation {
Function* func;
Index index;
bool operator==(const ParamLocation& other) const {
return func == other.func && index == other.index;
}
};
// The location of a value in a local.
struct LocalLocation {
Function* func;
Index index;
bool operator==(const LocalLocation& other) const {
return func == other.func && index == other.index;
}
};
// The location of one of the results of a function.
struct ResultLocation {
Function* func;
Index index;
bool operator==(const ResultLocation& other) const {
return func == other.func && index == other.index;
}
};
// The location of a global in the module.
struct GlobalLocation {
Name name;
bool operator==(const GlobalLocation& other) const {
return name == other.name;
}
};
// The location of one of the parameters in a function signature.
struct SignatureParamLocation {
HeapType type;
Index index;
bool operator==(const SignatureParamLocation& other) const {
return type == other.type && index == other.index;
}
};
// The location of one of the results in a function signature.
struct SignatureResultLocation {
HeapType type;
Index index;
bool operator==(const SignatureResultLocation& other) const {
return type == other.type && index == other.index;
}
};
// The location of contents in a struct or array (i.e., things that can fit in a
// dataref). Note that this is specific to this type - it does not include data
// about subtypes or supertypes.
//
// We store the truncated bits here when the field is packed. That is, if -1 is
// written to an i8 then the value here will be 0xff. StructGet/ArrayGet
// operations that read a signed value must then perform a sign-extend
// operation.
struct DataLocation {
HeapType type;
// The index of the field in a struct, or 0 for an array (where we do not
// attempt to differentiate by index).
Index index;
bool operator==(const DataLocation& other) const {
return type == other.type && index == other.index;
}
};
// The location of anything written to a particular tag.
struct TagLocation {
Name tag;
// If the tag has more than one element, we'll have a separate TagLocation for
// each, with corresponding indexes. If the tag has just one element we'll
// only have one TagLocation with index 0.
Index tupleIndex;
bool operator==(const TagLocation& other) const {
return tag == other.tag && tupleIndex == other.tupleIndex;
}
};
// The location of an exnref materialized by a catch_ref or catch_all_ref clause
// of a try_table. No data is stored here. exnrefs contain a tag and a payload
// at run-time, as well as potential metadata such as stack traces, but we don't
// track that. So this is the same as NullLocation in a way: we just need *a*
// source of contents for places that receive an exnref.
struct CaughtExnRefLocation {
bool operator==(const CaughtExnRefLocation& other) const { return true; }
};
// A null value. This is used as the location of the default value of a var in a
// function, a null written to a struct field in struct.new_with_default, etc.
struct NullLocation {
Type type;
bool operator==(const NullLocation& other) const {
return type == other.type;
}
};
// A special type of location that does not refer to something concrete in the
// wasm, but is used to optimize the graph. A "cone read" is a struct.get or
// array.get of a type that is not exact, so it can read from either that type
// of some of the subtypes (up to a particular subtype depth).
//
// In general a read of a cone type + depth (as opposed to an exact type) will
// require N incoming links, from each of the N subtypes - and we need that
// for each struct.get of a cone. If there are M such gets then we have N * M
// edges for this. Instead, we make a single canonical "cone read" location, and
// add a single link to it from each get, which is only N + M (plus the cost
// of adding "latency" in requiring an additional step along the way for the
// data to flow along).
struct ConeReadLocation {
HeapType type;
// As in PossibleContents, this represents the how deep we go with subtypes.
// 0 means an exact type, 1 means immediate subtypes, etc. (Note that 0 is not
// needed since that is what DataLocation already is.)
Index depth;
// The index of the field in a struct, or 0 for an array (where we do not
// attempt to differentiate by index).
Index index;
bool operator==(const ConeReadLocation& other) const {
return type == other.type && depth == other.depth && index == other.index;
}
};
// A location is a variant over all the possible flavors of locations that we
// have.
using Location = std::variant<ExpressionLocation,
ParamLocation,
LocalLocation,
ResultLocation,
GlobalLocation,
SignatureParamLocation,
SignatureResultLocation,
DataLocation,
TagLocation,
CaughtExnRefLocation,
NullLocation,
ConeReadLocation>;
} // namespace wasm
namespace std {
std::ostream& operator<<(std::ostream& stream,
const wasm::PossibleContents& contents);
template<> struct hash<wasm::PossibleContents> {
size_t operator()(const wasm::PossibleContents& contents) const {
return contents.hash();
}
};
// Define hashes of all the *Location flavors so that Location itself is
// hashable and we can use it in unordered maps and sets.
template<> struct hash<wasm::ExpressionLocation> {
size_t operator()(const wasm::ExpressionLocation& loc) const {
return std::hash<std::pair<size_t, wasm::Index>>{}(
{size_t(loc.expr), loc.tupleIndex});
}
};
template<> struct hash<wasm::ParamLocation> {
size_t operator()(const wasm::ParamLocation& loc) const {
return std::hash<std::pair<size_t, wasm::Index>>{}(
{size_t(loc.func), loc.index});
}
};
template<> struct hash<wasm::LocalLocation> {
size_t operator()(const wasm::LocalLocation& loc) const {
return std::hash<std::pair<size_t, wasm::Index>>{}(
{size_t(loc.func), loc.index});
}
};
template<> struct hash<wasm::ResultLocation> {
size_t operator()(const wasm::ResultLocation& loc) const {
return std::hash<std::pair<size_t, wasm::Index>>{}(
{size_t(loc.func), loc.index});
}
};
template<> struct hash<wasm::GlobalLocation> {
size_t operator()(const wasm::GlobalLocation& loc) const {
return std::hash<wasm::Name>{}(loc.name);
}
};
template<> struct hash<wasm::SignatureParamLocation> {
size_t operator()(const wasm::SignatureParamLocation& loc) const {
return std::hash<std::pair<wasm::HeapType, wasm::Index>>{}(
{loc.type, loc.index});
}
};
template<> struct hash<wasm::SignatureResultLocation> {
size_t operator()(const wasm::SignatureResultLocation& loc) const {
return std::hash<std::pair<wasm::HeapType, wasm::Index>>{}(
{loc.type, loc.index});
}
};
template<> struct hash<wasm::DataLocation> {
size_t operator()(const wasm::DataLocation& loc) const {
return std::hash<std::pair<wasm::HeapType, wasm::Index>>{}(
{loc.type, loc.index});
}
};
template<> struct hash<wasm::TagLocation> {
size_t operator()(const wasm::TagLocation& loc) const {
return std::hash<std::pair<wasm::Name, wasm::Index>>{}(
{loc.tag, loc.tupleIndex});
}
};
template<> struct hash<wasm::CaughtExnRefLocation> {
size_t operator()(const wasm::CaughtExnRefLocation& loc) const {
return std::hash<const void*>()("caught-exnref-location");
}
};
template<> struct hash<wasm::NullLocation> {
size_t operator()(const wasm::NullLocation& loc) const {
return std::hash<wasm::Type>{}(loc.type);
}
};
template<> struct hash<wasm::ConeReadLocation> {
size_t operator()(const wasm::ConeReadLocation& loc) const {
return std::hash<std::tuple<wasm::HeapType, wasm::Index, wasm::Index>>{}(
{loc.type, loc.depth, loc.index});
}
};
} // namespace std
namespace wasm {
// Analyze the entire wasm file to find which contents are possible in which
// locations. This assumes a closed world and starts from roots - newly created
// values - and propagates them to the locations they reach. After the
// analysis the user of this class can ask which contents are possible at any
// location.
//
// This focuses on useful information for the typical user of this API.
// Specifically, we find out:
//
// 1. What locations have no content reaching them at all. That means the code
// is unreachable. (Other passes may handle this, but ContentOracle does it
// for all things, so it might catch situations other passes do not cover;
// and, it takes no effort to support this here).
// 2. For all locations, we try to find when they must contain a constant value
// like i32(42) or ref.func(foo).
// 3. For locations that contain references, information about the subtypes
// possible there. For example, if something has wasm type anyref in the IR,
// we might find it must contain an exact type of something specific.
//
// Note that there is not much use in providing type info for locations that are
// *not* references. If a local is i32, for example, then it cannot contain any
// subtype anyhow, since i32 is not a reference and has no subtypes. And we know
// the type i32 from the wasm anyhow, that is, the caller will know it.
// Therefore the only useful information we can provide on top of the info
// already in the wasm is either that nothing can be there (1, above), or that a
// constant must be there (2, above), and so we do not make an effort to track
// non-reference types here. This makes the internals of ContentOracle simpler
// and faster. A noticeable outcome of that is that querying the contents of an
// i32 local will return Many and not ConeType{i32, 0} (assuming we could not
// infer either that there must be nothing there, or a constant). Again, the
// caller is assumed to know the wasm IR type anyhow, and also other
// optimization passes work on the types in the IR, so we do not focus on that
// here.
class ContentOracle {
Module& wasm;
const PassOptions& options;
void analyze();
public:
ContentOracle(Module& wasm, const PassOptions& options)
: wasm(wasm), options(options) {
analyze();
}
// Get the contents possible at a location.
PossibleContents getContents(Location location) {
auto iter = locationContents.find(location);
if (iter == locationContents.end()) {
// We know of no possible contents here.
return PossibleContents::none();
}
return iter->second;
}
// Helper for the common case of an expression location that is not a
// multivalue.
PossibleContents getContents(Expression* curr) {
assert(curr->type.size() == 1);
return getContents(ExpressionLocation{curr, 0});
}
private:
std::unordered_map<Location, PossibleContents> locationContents;
};
} // namespace wasm
#endif // wasm_ir_possible_contents_h
|