summaryrefslogtreecommitdiff
path: root/src/parser/lexer.cpp
blob: 44aecdc2bc124714d5a4d79cab703f58f2c44082 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
/*
 * Copyright 2023 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <cassert>
#include <cctype>
#include <cmath>
#include <iostream>
#include <optional>
#include <sstream>
#include <variant>

#include "lexer.h"
#include "support/bits.h"
#include "support/string.h"

using namespace std::string_view_literals;

namespace wasm::WATParser {

Name srcAnnotationKind("src");

namespace {

// ================
// Lexical Analysis
// ================

// The result of lexing a token fragment.
struct LexResult {
  std::string_view span;
};

// Lexing context that accumulates lexed input to produce a token fragment.
struct LexCtx {
private:
  // The input we are lexing.
  std::string_view input;

  // How much of the input we have already lexed.
  size_t lexedSize = 0;

public:
  explicit LexCtx(std::string_view in) : input(in) {}

  // Return the fragment that has been lexed so far.
  std::optional<LexResult> lexed() const {
    if (lexedSize > 0) {
      return {LexResult{input.substr(0, lexedSize)}};
    }
    return {};
  }

  // The next input that has not already been lexed.
  std::string_view next() const { return input.substr(lexedSize); }

  // Get the next character without consuming it.
  uint8_t peek() const { return next()[0]; }

  // The size of the unlexed input.
  size_t size() const { return input.size() - lexedSize; }

  // Whether there is no more input.
  bool empty() const { return size() == 0; }

  // Tokens must be separated by spaces or parentheses.
  bool canFinish() const;

  // Whether the unlexed input starts with prefix `sv`.
  size_t startsWith(std::string_view sv) const {
    return next().substr(0, sv.size()) == sv;
  }

  // Consume the next `n` characters.
  void take(size_t n) { lexedSize += n; }

  // Consume an additional lexed fragment.
  void take(const LexResult& res) { lexedSize += res.span.size(); }

  // Consume the prefix and return true if possible.
  bool takePrefix(std::string_view sv) {
    if (startsWith(sv)) {
      take(sv.size());
      return true;
    }
    return false;
  }

  // Consume the rest of the input.
  void takeAll() { lexedSize = input.size(); }
};

enum OverflowBehavior { DisallowOverflow, IgnoreOverflow };

std::optional<int> getDigit(char c) {
  if ('0' <= c && c <= '9') {
    return c - '0';
  }
  return {};
}

std::optional<int> getHexDigit(char c) {
  if ('0' <= c && c <= '9') {
    return c - '0';
  }
  if ('A' <= c && c <= 'F') {
    return 10 + c - 'A';
  }
  if ('a' <= c && c <= 'f') {
    return 10 + c - 'a';
  }
  return {};
}

enum Sign { NoSign, Pos, Neg };

// The result of lexing an integer token fragment.
struct LexIntResult : LexResult {
  uint64_t n;
  Sign sign;

  template<typename T> bool isUnsigned() {
    static_assert(std::is_integral_v<T> && std::is_unsigned_v<T>);
    return sign == NoSign && n <= std::numeric_limits<T>::max();
  }

  template<typename T> bool isSigned() {
    static_assert(std::is_integral_v<T> && std::is_signed_v<T>);
    if (sign == Neg) {
      return uint64_t(std::numeric_limits<T>::min()) <= n || n == 0;
    }
    return n <= uint64_t(std::numeric_limits<T>::max());
  }
};

// Lexing context that accumulates lexed input to produce an integer token
// fragment.
struct LexIntCtx : LexCtx {
  using LexCtx::take;

private:
  uint64_t n = 0;
  Sign sign = NoSign;
  bool overflow = false;

public:
  explicit LexIntCtx(std::string_view in) : LexCtx(in) {}

  // Lex only the underlying span, ignoring the overflow and value.
  std::optional<LexIntResult> lexedRaw() {
    if (auto basic = LexCtx::lexed()) {
      return LexIntResult{*basic, 0, NoSign};
    }
    return {};
  }

  std::optional<LexIntResult> lexed() {
    if (overflow) {
      return {};
    }
    if (auto basic = LexCtx::lexed()) {
      return LexIntResult{*basic, sign == Neg ? -n : n, sign};
    }
    return {};
  }

  void takeSign() {
    if (takePrefix("+"sv)) {
      sign = Pos;
    } else if (takePrefix("-"sv)) {
      sign = Neg;
    } else {
      sign = NoSign;
    }
  }

  bool takeDigit() {
    if (!empty()) {
      if (auto d = getDigit(peek())) {
        take(1);
        uint64_t newN = n * 10 + *d;
        if (newN < n) {
          overflow = true;
        }
        n = newN;
        return true;
      }
    }
    return false;
  }

  bool takeHexdigit() {
    if (!empty()) {
      if (auto h = getHexDigit(peek())) {
        take(1);
        uint64_t newN = n * 16 + *h;
        if (newN < n) {
          overflow = true;
        }
        n = newN;
        return true;
      }
    }
    return false;
  }

  void take(const LexIntResult& res) {
    LexCtx::take(res);
    n = res.n;
  }
};

struct LexFloatResult : LexResult {
  // The payload if we lexed a nan with payload. We cannot store the payload
  // directly in `d` because we do not know at this point whether we are parsing
  // an f32 or f64 and therefore we do not know what the allowable payloads are.
  // No payload with NaN means to use the default payload for the expected float
  // width.
  std::optional<uint64_t> nanPayload;
  double d;
};

struct LexFloatCtx : LexCtx {
  std::optional<uint64_t> nanPayload;

  LexFloatCtx(std::string_view in) : LexCtx(in) {}

  std::optional<LexFloatResult> lexed() {
    const double posNan = std::copysign(NAN, 1.0);
    const double negNan = std::copysign(NAN, -1.0);
    assert(!std::signbit(posNan) && "expected positive NaN to be positive");
    assert(std::signbit(negNan) && "expected negative NaN to be negative");
    auto basic = LexCtx::lexed();
    if (!basic) {
      return {};
    }
    // strtod does not return NaNs with the expected signs on all platforms.
    // TODO: use starts_with once we have C++20.
    if (basic->span.substr(0, 3) == "nan"sv ||
        basic->span.substr(0, 4) == "+nan"sv) {
      return LexFloatResult{*basic, nanPayload, posNan};
    }
    if (basic->span.substr(0, 4) == "-nan"sv) {
      return LexFloatResult{*basic, nanPayload, negNan};
    }
    // Do not try to implement fully general and precise float parsing
    // ourselves. Instead, call out to std::strtod to do our parsing. This means
    // we need to strip any underscores since `std::strtod` does not understand
    // them.
    std::stringstream ss;
    for (const char *curr = basic->span.data(),
                    *end = curr + basic->span.size();
         curr != end;
         ++curr) {
      if (*curr != '_') {
        ss << *curr;
      }
    }
    std::string str = ss.str();
    char* last;
    double d = std::strtod(str.data(), &last);
    assert(last == str.data() + str.size() && "could not parse float");
    return LexFloatResult{*basic, {}, d};
  }
};

struct LexStrResult : LexResult {
  // Allocate a string only if there are escape sequences, otherwise just use
  // the original string_view.
  std::optional<std::string> str;

  std::string_view getStr() {
    if (str) {
      return *str;
    }
    return span;
  }
};

struct LexStrCtx : LexCtx {
private:
  // Used to build a string with resolved escape sequences. Only used when the
  // parsed string contains escape sequences, otherwise we can just use the
  // parsed string directly.
  std::optional<std::stringstream> escapeBuilder;

public:
  LexStrCtx(std::string_view in) : LexCtx(in) {}

  std::optional<LexStrResult> lexed() {
    if (auto basic = LexCtx::lexed()) {
      if (escapeBuilder) {
        return LexStrResult{*basic, {escapeBuilder->str()}};
      } else {
        return LexStrResult{*basic, {}};
      }
    }
    return {};
  }

  void takeChar() {
    if (escapeBuilder) {
      *escapeBuilder << peek();
    }
    LexCtx::take(1);
  }

  void ensureBuildingEscaped() {
    if (escapeBuilder) {
      return;
    }
    // Drop the opening '"'.
    escapeBuilder = std::stringstream{};
    *escapeBuilder << LexCtx::lexed()->span.substr(1);
  }

  void appendEscaped(char c) { *escapeBuilder << c; }

  bool appendUnicode(uint64_t u) {
    if ((0xd800 <= u && u < 0xe000) || 0x110000 <= u) {
      return false;
    }
    String::writeWTF8CodePoint(*escapeBuilder, u);
    return true;
  }
};

struct LexIdResult : LexResult {
  bool isStr = false;
  std::optional<std::string> str;
};

struct LexIdCtx : LexCtx {
  bool isStr = false;
  std::optional<std::string> str;

  LexIdCtx(std::string_view in) : LexCtx(in) {}

  std::optional<LexIdResult> lexed() {
    if (auto basic = LexCtx::lexed()) {
      return LexIdResult{*basic, isStr, str};
    }
    return {};
  }
};

struct LexAnnotationResult : LexResult {
  Annotation annotation;
};

struct LexAnnotationCtx : LexCtx {
  std::string_view kind;
  size_t kindSize = 0;
  std::string_view contents;
  size_t contentsSize = 0;

  explicit LexAnnotationCtx(std::string_view in) : LexCtx(in) {}

  void startKind() { kind = next(); }

  void takeKind(size_t size) {
    kindSize += size;
    take(size);
  }

  void setKind(std::string_view kind) {
    this->kind = kind;
    kindSize = kind.size();
  }

  void startContents() { contents = next(); }

  void takeContents(size_t size) {
    contentsSize += size;
    take(size);
  }

  std::optional<LexAnnotationResult> lexed() {
    if (auto basic = LexCtx::lexed()) {
      return LexAnnotationResult{
        *basic,
        {Name(kind.substr(0, kindSize)), contents.substr(0, contentsSize)}};
    }
    return std::nullopt;
  }
};

std::optional<LexResult> idchar(std::string_view);
std::optional<LexResult> space(std::string_view);
std::optional<LexResult> keyword(std::string_view);
std::optional<LexIntResult> integer(std::string_view);
std::optional<LexFloatResult> float_(std::string_view);
std::optional<LexStrResult> str(std::string_view);
std::optional<LexIdResult> ident(std::string_view);

// annotation ::= ';;@' [^\n]* | '(@'idchar+ annotelem* ')'
// annotelem  ::= keyword | reserved | uN | sN | fN | string | id
//              | '(' annotelem* ')' | '(@'idchar+ annotelem* ')'
std::optional<LexAnnotationResult> annotation(std::string_view in) {
  LexAnnotationCtx ctx(in);
  if (ctx.takePrefix(";;@"sv)) {
    ctx.setKind(srcAnnotationKind.str);
    ctx.startContents();
    if (auto size = ctx.next().find('\n'); size != ""sv.npos) {
      ctx.takeContents(size);
    } else {
      ctx.takeContents(ctx.next().size());
    }
  } else if (ctx.takePrefix("(@"sv)) {
    ctx.startKind();
    bool hasIdchar = false;
    while (auto lexed = idchar(ctx.next())) {
      ctx.takeKind(1);
      hasIdchar = true;
    }
    if (!hasIdchar) {
      return std::nullopt;
    }
    ctx.startContents();
    size_t depth = 1;
    while (true) {
      if (ctx.empty()) {
        return std::nullopt;
      }
      if (auto lexed = space(ctx.next())) {
        ctx.takeContents(lexed->span.size());
        continue;
      }
      if (auto lexed = keyword(ctx.next())) {
        ctx.takeContents(lexed->span.size());
        continue;
      }
      if (auto lexed = integer(ctx.next())) {
        ctx.takeContents(lexed->span.size());
        continue;
      }
      if (auto lexed = float_(ctx.next())) {
        ctx.takeContents(lexed->span.size());
        continue;
      }
      if (auto lexed = str(ctx.next())) {
        ctx.takeContents(lexed->span.size());
        continue;
      }
      if (auto lexed = ident(ctx.next())) {
        ctx.takeContents(lexed->span.size());
        continue;
      }
      if (ctx.startsWith("(@"sv)) {
        ctx.takeContents(2);
        bool hasIdchar = false;
        while (auto lexed = idchar(ctx.next())) {
          ctx.takeContents(1);
          hasIdchar = true;
        }
        if (!hasIdchar) {
          return std::nullopt;
        }
        ++depth;
        continue;
      }
      if (ctx.startsWith("("sv)) {
        ctx.takeContents(1);
        ++depth;
        continue;
      }
      if (ctx.startsWith(")"sv)) {
        --depth;
        if (depth == 0) {
          ctx.take(1);
          break;
        }
        ctx.takeContents(1);
        continue;
      }
      // Unrecognized token.
      return std::nullopt;
    }
  }
  return ctx.lexed();
}

// comment      ::= linecomment | blockcomment
// linecomment  ::= ';;' linechar* ('\n' | eof)
// linechar     ::= c:char                      (if c != '\n')
// blockcomment ::= '(;' blockchar* ';)'
// blockchar    ::= c:char                      (if c != ';' and c != '(')
//                | ';'                         (if the next char is not ')')
//                | '('                         (if the next char is not ';')
//                | blockcomment
std::optional<LexResult> comment(std::string_view in) {
  LexCtx ctx(in);
  if (ctx.size() < 2) {
    return {};
  }

  // Line comment
  if (!ctx.startsWith(";;@"sv) && ctx.takePrefix(";;"sv)) {
    if (auto size = ctx.next().find('\n'); size != ""sv.npos) {
      ctx.take(size);
    } else {
      ctx.takeAll();
    }
    return ctx.lexed();
  }

  // Block comment (possibly nested!)
  if (ctx.takePrefix("(;"sv)) {
    size_t depth = 1;
    while (depth > 0 && ctx.size() >= 2) {
      if (ctx.takePrefix("(;"sv)) {
        ++depth;
      } else if (ctx.takePrefix(";)"sv)) {
        --depth;
      } else {
        ctx.take(1);
      }
    }
    if (depth > 0) {
      // TODO: Add error production for non-terminated block comment.
      return {};
    }
    return ctx.lexed();
  }

  return {};
}

std::optional<LexResult> spacechar(std::string_view in) {
  LexCtx ctx(in);
  ctx.takePrefix(" "sv) || ctx.takePrefix("\n"sv) || ctx.takePrefix("\r"sv) ||
    ctx.takePrefix("\t"sv);
  return ctx.lexed();
}

// space  ::= (' ' | format | comment)*
// format ::= '\t' | '\n' | '\r'
std::optional<LexResult> space(std::string_view in) {
  LexCtx ctx(in);
  while (ctx.size()) {
    if (auto lexed = spacechar(ctx.next())) {
      ctx.take(*lexed);
    } else if (auto lexed = comment(ctx.next())) {
      ctx.take(*lexed);
    } else {
      break;
    }
  }
  return ctx.lexed();
}

bool LexCtx::canFinish() const {
  // Logically we want to check for eof, parens, and space. But we don't
  // actually want to parse more than a couple characters of space, so check for
  // individual space chars or comment starts instead.
  return empty() || startsWith("("sv) || startsWith(")"sv) ||
         spacechar(next()) || startsWith(";;"sv);
}

// num   ::= d:digit => d
//         |  n:num '_'? d:digit => 10*n + d
// digit ::= '0' => 0 | ... | '9' => 9
std::optional<LexIntResult> num(std::string_view in,
                                OverflowBehavior overflow = DisallowOverflow) {
  LexIntCtx ctx(in);
  if (ctx.empty()) {
    return {};
  }
  if (!ctx.takeDigit()) {
    return {};
  }
  while (true) {
    bool under = ctx.takePrefix("_"sv);
    if (!ctx.takeDigit()) {
      if (!under) {
        return overflow == DisallowOverflow ? ctx.lexed() : ctx.lexedRaw();
      }
      // TODO: Add error production for trailing underscore.
      return {};
    }
  }
}

// hexnum   ::= h:hexdigit => h
//            | n:hexnum '_'? h:hexdigit => 16*n + h
// hexdigit ::= d:digit => d
//            | 'A' => 10 | ... | 'F' => 15
//            | 'a' => 10 | ... | 'f' => 15
std::optional<LexIntResult>
hexnum(std::string_view in, OverflowBehavior overflow = DisallowOverflow) {
  LexIntCtx ctx(in);
  if (!ctx.takeHexdigit()) {
    return {};
  }
  while (true) {
    bool under = ctx.takePrefix("_"sv);
    if (!ctx.takeHexdigit()) {
      if (!under) {
        return overflow == DisallowOverflow ? ctx.lexed() : ctx.lexedRaw();
      }
      // TODO: Add error production for trailing underscore.
      return {};
    }
  }
}

// uN ::= n:num         => n (if n < 2^N)
//      | '0x' n:hexnum => n (if n < 2^N)
// sN ::= s:sign n:num         => [s]n (if -2^(N-1) <= [s]n < 2^(N-1))
//      | s:sign '0x' n:hexnum => [s]n (if -2^(N-1) <= [s]n < 2^(N-1))
// sign ::= {} => + | '+' => + | '-' => -
//
// Note: Defer bounds and sign checking until we know what kind of integer we
// expect.
std::optional<LexIntResult> integer(std::string_view in) {
  LexIntCtx ctx(in);
  ctx.takeSign();
  if (ctx.takePrefix("0x"sv)) {
    if (auto lexed = hexnum(ctx.next())) {
      ctx.take(*lexed);
      if (ctx.canFinish()) {
        return ctx.lexed();
      }
    }
    // TODO: Add error production for unrecognized hexnum.
    return {};
  }
  if (auto lexed = num(ctx.next())) {
    ctx.take(*lexed);
    if (ctx.canFinish()) {
      return ctx.lexed();
    }
  }
  return {};
}

// float   ::= p:num '.'?                              => p
//           | p:num '.' q:frac                        => p + q
//           | p:num '.'? ('E'|'e') s:sign e:num       => p * 10^([s]e)
//           | p:num '.' q:frac ('E'|'e') s:sign e:num => (p + q) * 10^([s]e)
// frac    ::= d:digit                                 => d/10
//           | d:digit '_'? p:frac                     => (d + p/10) / 10
std::optional<LexResult> decfloat(std::string_view in) {
  LexCtx ctx(in);
  if (auto lexed = num(ctx.next(), IgnoreOverflow)) {
    ctx.take(*lexed);
  } else {
    return {};
  }
  // Optional '.' followed by optional frac
  if (ctx.takePrefix("."sv)) {
    if (auto lexed = num(ctx.next(), IgnoreOverflow)) {
      ctx.take(*lexed);
    }
  }
  if (ctx.takePrefix("E"sv) || ctx.takePrefix("e"sv)) {
    // Optional sign
    ctx.takePrefix("+"sv) || ctx.takePrefix("-"sv);
    if (auto lexed = num(ctx.next(), IgnoreOverflow)) {
      ctx.take(*lexed);
    } else {
      // TODO: Add error production for missing exponent.
      return {};
    }
  }
  return ctx.lexed();
}

// hexfloat ::= '0x' p:hexnum '.'?                        => p
//            | '0x' p:hexnum '.' q:hexfrac               => p + q
//            | '0x' p:hexnum '.'? ('P'|'p') s:sign e:num => p * 2^([s]e)
//            | '0x' p:hexnum '.' q:hexfrac ('P'|'p') s:sign e:num
//                   => (p + q) * 2^([s]e)
// hexfrac ::= h:hexdigit                              => h/16
//           | h:hexdigit '_'? p:hexfrac               => (h + p/16) / 16
std::optional<LexResult> hexfloat(std::string_view in) {
  LexCtx ctx(in);
  if (!ctx.takePrefix("0x"sv)) {
    return {};
  }
  if (auto lexed = hexnum(ctx.next(), IgnoreOverflow)) {
    ctx.take(*lexed);
  } else {
    return {};
  }
  // Optional '.' followed by optional hexfrac
  if (ctx.takePrefix("."sv)) {
    if (auto lexed = hexnum(ctx.next(), IgnoreOverflow)) {
      ctx.take(*lexed);
    }
  }
  if (ctx.takePrefix("P"sv) || ctx.takePrefix("p"sv)) {
    // Optional sign
    ctx.takePrefix("+"sv) || ctx.takePrefix("-"sv);
    if (auto lexed = num(ctx.next(), IgnoreOverflow)) {
      ctx.take(*lexed);
    } else {
      // TODO: Add error production for missing exponent.
      return {};
    }
  }
  return ctx.lexed();
}

// fN    ::= s:sign z:fNmag => [s]z
// fNmag ::= z:float        => float_N(z) (if float_N(z) != +/-infinity)
//         | z:hexfloat     => float_N(z) (if float_N(z) != +/-infinity)
//         | 'inf'          => infinity
//         | 'nan'          => nan(2^(signif(N)-1))
//         | 'nan:0x' n:hexnum => nan(n) (if 1 <= n < 2^signif(N))
std::optional<LexFloatResult> float_(std::string_view in) {
  LexFloatCtx ctx(in);
  // Optional sign
  ctx.takePrefix("+"sv) || ctx.takePrefix("-"sv);
  if (auto lexed = hexfloat(ctx.next())) {
    ctx.take(*lexed);
  } else if (auto lexed = decfloat(ctx.next())) {
    ctx.take(*lexed);
  } else if (ctx.takePrefix("inf"sv)) {
    // nop
  } else if (ctx.takePrefix("nan"sv)) {
    if (ctx.takePrefix(":0x"sv)) {
      if (auto lexed = hexnum(ctx.next())) {
        ctx.take(*lexed);
        ctx.nanPayload = lexed->n;
      } else {
        // TODO: Add error production for malformed NaN payload.
        return {};
      }
    } else {
      // No explicit payload necessary; we will inject the default payload
      // later.
    }
  } else {
    return {};
  }
  if (ctx.canFinish()) {
    return ctx.lexed();
  }
  return {};
}

// idchar ::= '0' | ... | '9'
//          | 'A' | ... | 'Z'
//          | 'a' | ... | 'z'
//          | '!' | '#' | '$' | '%' | '&' | ''' | '*' | '+'
//          | '-' | '.' | '/' | ':' | '<' | '=' | '>' | '?'
//          | '@' | '\' | '^' | '_' | '`' | '|' | '~'
std::optional<LexResult> idchar(std::string_view in) {
  LexCtx ctx(in);
  if (ctx.empty()) {
    return {};
  }
  uint8_t c = ctx.peek();
  // All the allowed characters lie in the range '!' to '~', and within that
  // range the vast majority of characters are allowed, so it is significantly
  // faster to check for the disallowed characters instead.
  if (c < '!' || c > '~') {
    return ctx.lexed();
  }
  switch (c) {
    case '"':
    case '(':
    case ')':
    case ',':
    case ';':
    case '[':
    case ']':
    case '{':
    case '}':
      return ctx.lexed();
  }
  ctx.take(1);
  return ctx.lexed();
}

// string     ::= '"' (b*:stringelem)* '"'  => concat((b*)*)
//                    (if |concat((b*)*)| < 2^32)
// stringelem ::= c:stringchar              => utf8(c)
//              | '\' n:hexdigit m:hexdigit => 16*n + m
// stringchar ::= c:char                    => c
//                    (if c >= U+20 && c != U+7f && c != '"' && c != '\')
//              | '\t' => \t | '\n' => \n | '\r' => \r
//              | '\\' => \ | '\"' => " | '\'' => '
//              | '\u{' n:hexnum '}'        => U+(n)
//                    (if n < 0xD800 and 0xE000 <= n <= 0x110000)
std::optional<LexStrResult> str(std::string_view in) {
  LexStrCtx ctx(in);
  if (!ctx.takePrefix("\""sv)) {
    return {};
  }
  while (!ctx.takePrefix("\""sv)) {
    if (ctx.empty()) {
      // TODO: Add error production for unterminated string.
      return {};
    }
    if (ctx.startsWith("\\"sv)) {
      // Escape sequences
      ctx.ensureBuildingEscaped();
      ctx.take(1);
      if (ctx.takePrefix("t"sv)) {
        ctx.appendEscaped('\t');
      } else if (ctx.takePrefix("n"sv)) {
        ctx.appendEscaped('\n');
      } else if (ctx.takePrefix("r"sv)) {
        ctx.appendEscaped('\r');
      } else if (ctx.takePrefix("\\"sv)) {
        ctx.appendEscaped('\\');
      } else if (ctx.takePrefix("\""sv)) {
        ctx.appendEscaped('"');
      } else if (ctx.takePrefix("'"sv)) {
        ctx.appendEscaped('\'');
      } else if (ctx.takePrefix("u{"sv)) {
        auto lexed = hexnum(ctx.next());
        if (!lexed) {
          // TODO: Add error production for malformed unicode escapes.
          return {};
        }
        ctx.take(*lexed);
        if (!ctx.takePrefix("}"sv)) {
          // TODO: Add error production for malformed unicode escapes.
          return {};
        }
        if (!ctx.appendUnicode(lexed->n)) {
          // TODO: Add error production for invalid unicode values.
          return {};
        }
      } else {
        LexIntCtx ictx(ctx.next());
        if (!ictx.takeHexdigit() || !ictx.takeHexdigit()) {
          // TODO: Add error production for unrecognized escape sequence.
          return {};
        }
        auto lexed = *ictx.lexed();
        ctx.take(lexed);
        ctx.appendEscaped(char(lexed.n));
      }
    } else {
      // Normal characters
      if (uint8_t c = ctx.peek(); c >= 0x20 && c != 0x7F) {
        ctx.takeChar();
      } else {
        // TODO: Add error production for unescaped control characters.
        return {};
      }
    }
  }
  return ctx.lexed();
}

// id ::= '$' idchar+ | '$' str
std::optional<LexIdResult> ident(std::string_view in) {
  LexIdCtx ctx(in);
  if (!ctx.takePrefix("$"sv)) {
    return {};
  }
  if (auto s = str(ctx.next())) {
    if (!String::isUTF8(s->getStr())) {
      return {};
    }
    ctx.isStr = true;
    ctx.str = s->str;
    ctx.take(*s);
  } else if (auto lexed = idchar(ctx.next())) {
    ctx.take(*lexed);
    while (auto lexed = idchar(ctx.next())) {
      ctx.take(*lexed);
    }
  } else {
    return {};
  }
  if (ctx.canFinish()) {
    return ctx.lexed();
  }
  return {};
}

// keyword ::= ( 'a' | ... | 'z' ) idchar* (if literal terminal in grammar)
// reserved ::= idchar+
//
// The "keyword" token we lex here covers both keywords as well as any reserved
// tokens that match the keyword format. This saves us from having to enumerate
// all the valid keywords here. These invalid keywords will still produce
// errors, just at a higher level of the parser.
std::optional<LexResult> keyword(std::string_view in) {
  LexCtx ctx(in);
  if (ctx.empty()) {
    return {};
  }
  uint8_t start = ctx.peek();
  if ('a' <= start && start <= 'z') {
    ctx.take(1);
  } else {
    return {};
  }
  while (auto lexed = idchar(ctx.next())) {
    ctx.take(*lexed);
  }
  return ctx.lexed();
}

} // anonymous namespace

void Lexer::skipSpace() {
  while (true) {
    if (auto ctx = annotation(next())) {
      pos += ctx->span.size();
      annotations.push_back(ctx->annotation);
      continue;
    }
    if (auto ctx = space(next())) {
      pos += ctx->span.size();
      continue;
    }
    break;
  }
}

bool Lexer::takeLParen() {
  if (LexCtx(next()).startsWith("("sv)) {
    ++pos;
    advance();
    return true;
  }
  return false;
}

bool Lexer::takeRParen() {
  if (LexCtx(next()).startsWith(")"sv)) {
    ++pos;
    advance();
    return true;
  }
  return false;
}

std::optional<std::string> Lexer::takeString() {
  if (auto result = str(next())) {
    pos += result->span.size();
    advance();
    if (result->str) {
      return result->str;
    }
    // Remove quotes.
    return std::string(result->span.substr(1, result->span.size() - 2));
  }
  return std::nullopt;
}

std::optional<Name> Lexer::takeID() {
  if (auto result = ident(next())) {
    pos += result->span.size();
    advance();
    if (result->str) {
      return Name(*result->str);
    }
    if (result->isStr) {
      // Remove '$' and quotes.
      return Name(result->span.substr(2, result->span.size() - 3));
    }
    // Remove '$'.
    return Name(result->span.substr(1));
  }
  return std::nullopt;
}

std::optional<std::string_view> Lexer::takeKeyword() {
  if (auto result = keyword(next())) {
    pos += result->span.size();
    advance();
    return result->span;
  }
  return std::nullopt;
}

bool Lexer::takeKeyword(std::string_view expected) {
  if (auto result = keyword(next()); result && result->span == expected) {
    pos += expected.size();
    advance();
    return true;
  }
  return false;
}

std::optional<uint64_t> Lexer::takeOffset() {
  if (auto result = keyword(next())) {
    if (result->span.substr(0, 7) != "offset="sv) {
      return std::nullopt;
    }
    Lexer subLexer(result->span.substr(7));
    if (auto o = subLexer.takeU64()) {
      pos += result->span.size();
      advance();
      return o;
    }
  }
  return std::nullopt;
}

std::optional<uint32_t> Lexer::takeAlign() {
  if (auto result = keyword(next())) {
    if (result->span.substr(0, 6) != "align="sv) {
      return std::nullopt;
    }
    Lexer subLexer(result->span.substr(6));
    if (auto o = subLexer.takeU32()) {
      if (Bits::popCount(*o) != 1) {
        return std::nullopt;
      }
      pos += result->span.size();
      advance();
      return o;
    }
  }
  return std::nullopt;
}

template<typename T> std::optional<T> Lexer::takeU() {
  static_assert(std::is_integral_v<T> && std::is_unsigned_v<T>);
  if (auto result = integer(next()); result && result->isUnsigned<T>()) {
    pos += result->span.size();
    advance();
    return T(result->n);
  }
  // TODO: Add error production for unsigned overflow.
  return std::nullopt;
}

template<typename T> std::optional<T> Lexer::takeS() {
  static_assert(std::is_integral_v<T> && std::is_signed_v<T>);
  if (auto result = integer(next()); result && result->isSigned<T>()) {
    pos += result->span.size();
    advance();
    return T(result->n);
  }
  return std::nullopt;
}

template<typename T> std::optional<T> Lexer::takeI() {
  static_assert(std::is_integral_v<T> && std::is_unsigned_v<T>);
  if (auto result = integer(next())) {
    if (result->isUnsigned<T>() || result->isSigned<std::make_signed_t<T>>()) {
      pos += result->span.size();
      advance();
      return T(result->n);
    }
  }
  return std::nullopt;
}

template std::optional<uint64_t> Lexer::takeU<uint64_t>();
template std::optional<int64_t> Lexer::takeS<int64_t>();
template std::optional<uint64_t> Lexer::takeI<uint64_t>();
template std::optional<uint32_t> Lexer::takeU<uint32_t>();
template std::optional<int32_t> Lexer::takeS<int32_t>();
template std::optional<uint32_t> Lexer::takeI<uint32_t>();
template std::optional<uint16_t> Lexer::takeU<uint16_t>();
template std::optional<int16_t> Lexer::takeS<int16_t>();
template std::optional<uint16_t> Lexer::takeI<uint16_t>();
template std::optional<uint8_t> Lexer::takeU<uint8_t>();
template std::optional<int8_t> Lexer::takeS<int8_t>();
template std::optional<uint8_t> Lexer::takeI<uint8_t>();

std::optional<double> Lexer::takeF64() {
  constexpr int signif = 52;
  constexpr uint64_t payloadMask = (1ull << signif) - 1;
  constexpr uint64_t nanDefault = 1ull << (signif - 1);
  if (auto result = float_(next())) {
    double d = result->d;
    if (std::isnan(d)) {
      // Inject payload.
      uint64_t payload = result->nanPayload ? *result->nanPayload : nanDefault;
      if (payload == 0 || payload > payloadMask) {
        // TODO: Add error production for out-of-bounds payload.
        return std::nullopt;
      }
      uint64_t bits;
      static_assert(sizeof(bits) == sizeof(d));
      memcpy(&bits, &d, sizeof(bits));
      bits = (bits & ~payloadMask) | payload;
      memcpy(&d, &bits, sizeof(bits));
    }
    pos += result->span.size();
    advance();
    return d;
  }
  if (auto result = integer(next())) {
    pos += result->span.size();
    advance();
    if (result->sign == Neg) {
      if (result->n == 0) {
        return -0.0;
      }
      return double(int64_t(result->n));
    }
    return double(result->n);
  }
  return std::nullopt;
}

std::optional<float> Lexer::takeF32() {
  constexpr int signif = 23;
  constexpr uint32_t payloadMask = (1u << signif) - 1;
  constexpr uint64_t nanDefault = 1ull << (signif - 1);
  if (auto result = float_(next())) {
    float f = result->d;
    if (std::isnan(f)) {
      // Validate and inject payload.
      uint64_t payload = result->nanPayload ? *result->nanPayload : nanDefault;
      if (payload == 0 || payload > payloadMask) {
        // TODO: Add error production for out-of-bounds payload.
        return std::nullopt;
      }
      uint32_t bits;
      static_assert(sizeof(bits) == sizeof(f));
      memcpy(&bits, &f, sizeof(bits));
      bits = (bits & ~payloadMask) | payload;
      memcpy(&f, &bits, sizeof(bits));
    }
    pos += result->span.size();
    advance();
    return f;
  }
  if (auto result = integer(next())) {
    pos += result->span.size();
    advance();
    if (result->sign == Neg) {
      if (result->n == 0) {
        return -0.0f;
      }
      return float(int64_t(result->n));
    }
    return float(result->n);
  }
  return std::nullopt;
}

TextPos Lexer::position(const char* c) const {
  assert(size_t(c - buffer.data()) <= buffer.size());
  TextPos pos{1, 0};
  for (const char* p = buffer.data(); p != c; ++p) {
    if (*p == '\n') {
      pos.line++;
      pos.col = 0;
    } else {
      pos.col++;
    }
  }
  return pos;
}

bool TextPos::operator==(const TextPos& other) const {
  return line == other.line && col == other.col;
}

std::ostream& operator<<(std::ostream& os, const TextPos& pos) {
  return os << pos.line << ":" << pos.col;
}

} // namespace wasm::WATParser