1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
/*
* Copyright 2023 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "wat-parser.h"
#include "contexts.h"
#include "ir/names.h"
#include "lexer.h"
#include "parsers.h"
#include "pass.h"
#include "wasm-type.h"
#include "wasm.h"
// The WebAssembly text format is recursive in the sense that elements may be
// referred to before they are declared. Furthermore, elements may be referred
// to by index or by name. As a result, we need to parse text modules in
// multiple phases.
//
// In the first phase, we find all of the module element declarations and
// record, but do not interpret, the input spans of their corresponding
// definitions. This phase establishes the indices and names of each module
// element so that subsequent phases can look them up.
//
// The second phase parses type definitions to construct the types used in the
// module. This has to be its own phase because we have no way to refer to a
// type before it has been built along with all the other types, unlike for
// other module elements that can be referred to by name before their
// definitions have been parsed.
//
// The third phase further parses and constructs types implicitly defined by
// type uses in functions, blocks, and call_indirect instructions. These
// implicitly defined types may be referred to by index elsewhere.
//
// The fourth phase parses and sets the types of globals, functions, and other
// top-level module elements. These types need to be set before we parse
// instructions because they determine the types of instructions such as
// global.get and ref.func.
//
// The fifth and final phase parses the remaining contents of all module
// elements, including instructions.
//
// Each phase of parsing gets its own context type that is passed to the
// individual parsing functions. There is a parsing function for each element of
// the grammar given in the spec. Parsing functions are templatized so that they
// may be passed the appropriate context type and return the correct result type
// for each phase.
namespace wasm::WATParser {
namespace {
Result<IndexMap> createIndexMap(Lexer& in, const std::vector<DefPos>& defs) {
IndexMap indices;
for (auto& def : defs) {
if (def.name.is()) {
if (!indices.insert({def.name, def.index}).second) {
return in.err(def.pos, "duplicate element name");
}
}
}
return indices;
}
template<typename Ctx>
Result<> parseDefs(Ctx& ctx,
const std::vector<DefPos>& defs,
MaybeResult<> (*parser)(Ctx&)) {
for (auto& def : defs) {
ctx.index = def.index;
WithPosition with(ctx, def.pos);
if (auto parsed = parser(ctx)) {
CHECK_ERR(parsed);
} else {
auto im = import_(ctx);
assert(im);
CHECK_ERR(im);
}
}
return Ok{};
}
void propagateDebugLocations(Module& wasm) {
// Copy debug locations from parents or previous siblings to expressions that
// do not already have their own debug locations.
PassRunner runner(&wasm);
runner.add("propagate-debug-locs");
// The parser should not be responsible for validation.
runner.setIsNested(true);
runner.run();
}
Result<> doParseModule(Module& wasm, Lexer& input, bool allowExtra) {
// Parse module-level declarations.
ParseDeclsCtx decls(input, wasm);
CHECK_ERR(module(decls));
if (!allowExtra && !decls.in.empty()) {
return decls.in.err("Unexpected tokens after module");
}
auto typeIndices = createIndexMap(decls.in, decls.subtypeDefs);
CHECK_ERR(typeIndices);
// Parse type definitions.
std::vector<HeapType> types;
std::unordered_map<HeapType, std::unordered_map<Name, Index>> typeNames;
{
TypeBuilder builder(decls.subtypeDefs.size());
ParseTypeDefsCtx ctx(input, builder, *typeIndices);
for (auto& typeDef : decls.typeDefs) {
WithPosition with(ctx, typeDef.pos);
CHECK_ERR(deftype(ctx));
}
auto built = builder.build();
if (auto* err = built.getError()) {
std::stringstream msg;
msg << "invalid type: " << err->reason;
return ctx.in.err(decls.typeDefs[err->index].pos, msg.str());
}
types = *built;
// Record type names on the module and in typeNames.
for (size_t i = 0; i < types.size(); ++i) {
auto& names = ctx.names[i];
auto& fieldNames = names.fieldNames;
if (names.name.is() || fieldNames.size()) {
wasm.typeNames.insert({types[i], names});
auto& fieldIdxMap = typeNames[types[i]];
for (auto [idx, name] : fieldNames) {
fieldIdxMap.insert({name, idx});
}
}
}
}
// Parse implicit type definitions and map typeuses without explicit types to
// the correct types.
std::unordered_map<Index, HeapType> implicitTypes;
{
ParseImplicitTypeDefsCtx ctx(input, types, implicitTypes, *typeIndices);
for (Index pos : decls.implicitTypeDefs) {
WithPosition with(ctx, pos);
CHECK_ERR(typeuse(ctx));
}
}
{
// Parse module-level types.
ParseModuleTypesCtx ctx(input,
wasm,
types,
implicitTypes,
decls.implicitElemIndices,
*typeIndices);
CHECK_ERR(parseDefs(ctx, decls.funcDefs, func));
CHECK_ERR(parseDefs(ctx, decls.tableDefs, table));
CHECK_ERR(parseDefs(ctx, decls.memoryDefs, memory));
CHECK_ERR(parseDefs(ctx, decls.globalDefs, global));
CHECK_ERR(parseDefs(ctx, decls.elemDefs, elem));
CHECK_ERR(parseDefs(ctx, decls.tagDefs, tag));
}
{
// Parse definitions.
// TODO: Parallelize this.
ParseDefsCtx ctx(input,
wasm,
types,
implicitTypes,
typeNames,
decls.implicitElemIndices,
*typeIndices);
CHECK_ERR(parseDefs(ctx, decls.tableDefs, table));
CHECK_ERR(parseDefs(ctx, decls.globalDefs, global));
CHECK_ERR(parseDefs(ctx, decls.startDefs, start));
CHECK_ERR(parseDefs(ctx, decls.elemDefs, elem));
CHECK_ERR(parseDefs(ctx, decls.dataDefs, data));
for (Index i = 0; i < decls.funcDefs.size(); ++i) {
ctx.index = i;
auto* f = wasm.functions[i].get();
WithPosition with(ctx, decls.funcDefs[i].pos);
ctx.setSrcLoc(decls.funcDefs[i].annotations);
if (!f->imported()) {
CHECK_ERR(ctx.visitFunctionStart(f));
}
if (auto parsed = func(ctx)) {
CHECK_ERR(parsed);
} else {
auto im = import_(ctx);
assert(im);
CHECK_ERR(im);
}
if (!f->imported()) {
CHECK_ERR(ctx.irBuilder.visitEnd());
}
}
// Parse exports.
// TODO: It would be more technically correct to interleave these properly
// with the implicit inline exports in other module field definitions.
for (auto pos : decls.exportDefs) {
WithPosition with(ctx, pos);
auto parsed = export_(ctx);
CHECK_ERR(parsed);
assert(parsed);
}
}
propagateDebugLocations(wasm);
input = decls.in;
return Ok{};
}
} // anonymous namespace
Result<> parseModule(Module& wasm, std::string_view in) {
Lexer lexer(in);
return doParseModule(wasm, lexer, false);
}
Result<> parseModule(Module& wasm, Lexer& lexer) {
return doParseModule(wasm, lexer, true);
}
Result<Expression*> parseExpression(Module& wasm, Lexer& lexer) {
ParseDefsCtx ctx(lexer, wasm, {}, {}, {}, {}, {});
auto e = expr(ctx);
CHECK_ERR(e);
lexer = ctx.in;
return *e;
}
Result<Literal> parseConst(Lexer& lexer) {
Module wasm;
ParseDefsCtx ctx(lexer, wasm, {}, {}, {}, {}, {});
auto inst = foldedinstr(ctx);
CHECK_ERR(inst);
auto expr = ctx.irBuilder.build();
if (auto* err = expr.getErr()) {
return lexer.err(err->msg);
}
auto* e = *expr;
if (!e->is<Const>() && !e->is<RefNull>() && !e->is<RefI31>()) {
return lexer.err("expected constant");
}
lexer = ctx.in;
return getLiteralFromConstExpression(e);
}
} // namespace wasm::WATParser
|