summaryrefslogtreecommitdiff
path: root/src/passes/AbstractTypeRefining.cpp
blob: 5094488516cb48ae5ef5627201ff0360a8b417cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
/*
 * Copyright 2023 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//
// Refine types based on global information about abstract types, that is, types
// that are not created anywhere (no struct.new etc.).
//
// In trapsNeverHappen mode, if we see a cast to $B and the type hierarchy is
// this:
//
//   $A :> $B :> $C
//
// and $B has no struct.new instructions, and we are in closed world, then we
// can infer that the cast must be to $C. That is necessarily so since we will
// not trap by assumption, and $C or a subtype of it is all that remains
// possible.
//
// Even without trapsNeverHappen we can optimize certain cases. When we see a
// cast to a type that is never created, nor any subtype is created, then it
// must fail unless it allows null.
//

#include "ir/module-utils.h"
#include "ir/subtypes.h"
#include "ir/type-updating.h"
#include "ir/utils.h"
#include "pass.h"
#include "wasm-type.h"
#include "wasm.h"

namespace wasm {

namespace {

using Types = std::unordered_set<HeapType>;

// Gather all types in StructNews.
struct NewFinder : public PostWalker<NewFinder> {
  Types& types;

  NewFinder(Types& types) : types(types) {}

  void visitStructNew(StructNew* curr) {
    auto type = curr->type;
    if (type != Type::unreachable) {
      types.insert(type.getHeapType());
    }
  }
};

struct AbstractTypeRefining : public Pass {
  // Changes types by refining them. We never add new non-nullable locals here
  // (even if we refine a type to a bottom type, we only change the heap type
  // there, not nullability).
  bool requiresNonNullableLocalFixups() override { return false; }

  // The types that are created (have a struct.new).
  Types createdTypes;

  // The types that are created, or have a subtype that is created.
  Types createdTypesOrSubTypes;

  // A map of a cast type to refine and the type to refine it to.
  TypeMapper::TypeUpdates refinableTypes;

  bool trapsNeverHappen;

  void run(Module* module) override {
    if (!module->features.hasGC()) {
      return;
    }

    if (!getPassOptions().closedWorld) {
      Fatal() << "AbstractTypeRefining requires --closed-world";
    }

    trapsNeverHappen = getPassOptions().trapsNeverHappen;

    // First, find all the created types (that have a struct.new) both in module
    // code and in functions.
    NewFinder(createdTypes).walkModuleCode(module);

    ModuleUtils::ParallelFunctionAnalysis<Types> analysis(
      *module, [&](Function* func, Types& types) {
        if (!func->imported()) {
          NewFinder(types).walk(func->body);
        }
      });

    for (auto& [_, types] : analysis.map) {
      for (auto type : types) {
        createdTypes.insert(type);
      }
    }

    // Assume all public types are created, which makes them non-abstract and
    // hence ignored below.
    // TODO: In principle we could assume such types are not created outside the
    //       module, given closed world, but we'd also need to make sure that
    //       we don't need to make any changes to public types that refer to
    //       them.
    for (auto type : ModuleUtils::getPublicHeapTypes(*module)) {
      createdTypes.insert(type);
    }

    SubTypes subTypes(*module);

    // Compute createdTypesOrSubTypes by starting with the created types and
    // then propagating subtypes.
    createdTypesOrSubTypes = createdTypes;
    for (auto type : subTypes.getSubTypesFirstSort()) {
      // If any of our subtypes are created, so are we.
      for (auto subType : subTypes.getImmediateSubTypes(type)) {
        if (createdTypesOrSubTypes.count(subType)) {
          createdTypesOrSubTypes.insert(type);
          break;
        }
      }
    }

    if (trapsNeverHappen) {
      computeAbstractTypes(subTypes);
    }

    // Use what we found about abstract types and never-created types to
    // optimize.
    optimize(module, subTypes);
  }

  void computeAbstractTypes(const SubTypes& subTypes) {
    // Abstract types are those with no news, i.e., the complement of
    // |createdTypes|. As mentioned above, we can only optimize this case if
    // traps never happen.
    // TODO: We could do some of this even if traps are possible. If an abstract
    //       type has no casts at all, then no traps are relevant, and we could
    //       remove it from the module. That might also make sense in MergeTypes
    //       perhaps (which atm will not merge such types if they add fields,
    //       in particular).
    Types abstractTypes;
    for (auto type : subTypes.types) {
      if (createdTypes.count(type) == 0) {
        abstractTypes.insert(type);
      }
    }

    // We found abstract types. Next, find which of them are refinable. We
    // need an abstract type to have a single subtype, to which we will switch
    // all of their casts.
    //
    // Do this depth-first, so that we visit subtypes first. That will handle
    // chains where we want to refine a type A to a subtype of a subtype of
    // it.
    for (auto type : subTypes.getSubTypesFirstSort()) {
      if (!abstractTypes.count(type)) {
        continue;
      }

      std::optional<HeapType> refinedType;
      auto& typeSubTypes = subTypes.getImmediateSubTypes(type);
      if (typeSubTypes.size() == 1) {
        // There is only a single possibility, so we can definitely use that
        /// one.
        refinedType = typeSubTypes[0];
      } else if (!typeSubTypes.empty()) {
        // There are multiple possibilities. However, perhaps only one of them
        // is relevant, if nothing is ever created of the others or their
        // subtypes.
        for (auto subType : typeSubTypes) {
          if (createdTypesOrSubTypes.count(subType)) {
            if (!refinedType) {
              // This is the first relevant thing, and hopefully will remain
              // the only one.
              refinedType = subType;
            } else {
              // We've seen more than one as relevant, so we have failed to
              // find a singleton.
              refinedType = std::nullopt;
              break;
            }
          }
        }
      }
      if (refinedType) {
        // Propagate anything from the child, to handle chains.
        auto iter = refinableTypes.find(*refinedType);
        if (iter != refinableTypes.end()) {
          *refinedType = iter->second;
        }

        refinableTypes[type] = *refinedType;
      }
    }
  }

  void optimize(Module* module, const SubTypes& subTypes) {
    // To optimize we rewrite types. That is, if we want to optimize all casts
    // of $A to instead cast to the refined type $B, we can do that by simply
    // replacing all appearances of $A with $B. That is possible here since we
    // only optimize when we know $A is never created, and we are removing all
    // casts to it, which means no other references to it are needed - so we can
    // just rewrite all references to $A to point to $B. Doing such a rewrite
    // will also remove the unneeded type from the type section, which is nice
    // for code size.
    //
    // Even though this pass removes types, it does not on its own inhibit
    // further optimizations. In more detail, a possible issue could have been
    // something like this: imagine that we replace all $A with $B, and we had
    // types like this:
    //
    //  $C = [.., $A, ..]
    //  $D = [.., $B, ..]
    //
    // After replacing $A with $B, we cause $C and $D to be structurally
    // identical. If we merged $C and $D then we might lose some optimization
    // potential (perhaps different values are written to each, and GUFA or
    // another pass can optimize each separately, but not if they were merged).
    // However, the type rewriter will create a single new rec group for all new
    // types anyhow, so they all remain distinct from each other. The only thing
    // that would actually merge them is if we run TypeMerging, which is not run
    // by default exactly for this reason, that it can limit optimizations.
    // Thus, this pass does only "safe" merging, that cannot limit later
    // optimizations - merging $A and $B is of course fine as one of them was
    // not even used anywhere.

    TypeMapper::TypeUpdates mapping;

    for (auto type : subTypes.types) {
      if (!type.isStruct()) {
        // TODO: support arrays and funcs
        continue;
      }

      // Add a mapping of types that are never created (and none of their
      // subtypes) to the bottom type. This is valid because all locations of
      // that type, like a local variable, will only contain null at runtime.
      // Likewise, if we have a ref.test of such a type, we can only be looking
      // for a null at best. This can be seen as "refining" uses of these
      // never-created types to the bottom type.
      //
      // We check this first as it is the most powerful change.
      if (createdTypesOrSubTypes.count(type) == 0) {
        mapping[type] = type.getBottom();
        continue;
      }

      // Otherwise, apply a refining if we found one before.
      if (auto iter = refinableTypes.find(type); iter != refinableTypes.end()) {
        mapping[type] = iter->second;
      }
    }

    if (mapping.empty()) {
      return;
    }

    // A TypeMapper that handles the patterns we have in our mapping, where we
    // end up mapping a type to a *subtype*. We need to properly create
    // supertypes while doing this rewriting. For example, say we have this:
    //
    //  A :> B :> C
    //
    // Say we see B is never created, so we want to map B to its subtype C. C's
    // supertype must now be A.
    class AbstractTypeRefiningTypeMapper : public TypeMapper {
    public:
      AbstractTypeRefiningTypeMapper(Module& wasm, const TypeUpdates& mapping)
        : TypeMapper(wasm, mapping) {}

      std::optional<HeapType> getDeclaredSuperType(HeapType oldType) override {
        auto super = oldType.getDeclaredSuperType();

        // Go up the chain of supertypes, skipping things we are mapping away,
        // as those things will not appear in the output. This skips B in the
        // example above.
        while (super && mapping.count(*super)) {
          super = super->getDeclaredSuperType();
        }
        return super;
      }
    };

    AbstractTypeRefiningTypeMapper(*module, mapping).map();

    // Refinalize to propagate the type changes we made. For example, a refined
    // cast may lead to a struct.get reading a more refined type using that
    // type.
    ReFinalize().run(getPassRunner(), module);
  }
};

} // anonymous namespace

Pass* createAbstractTypeRefiningPass() { return new AbstractTypeRefining(); }

} // namespace wasm