summaryrefslogtreecommitdiff
path: root/src/passes/CoalesceLocals.cpp
blob: 2063a20db2a5a0e5270fc80e80c0cf4cf070d231 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
/*
 * Copyright 2016 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


//
// Coalesce locals, in order to reduce the total number of locals. This
// is similar to register allocation, however, there is never any
// spilling, and there isn't a fixed number of locals.
//


#include <algorithm>
#include <memory>
#include <unordered_set>

#include "wasm.h"
#include "pass.h"
#include "ast_utils.h"
#include "cfg/cfg-traversal.h"
#include "support/learning.h"
#ifdef CFG_PROFILE
#include "support/timing.h"
#endif

namespace wasm {

// A set of locals. This is optimized for comparisons,
// mergings, and iteration on elements, assuming that there
// may be a great many potential elements but actual sets
// may be fairly small. Specifically, we use a sorted
// vector.
struct LocalSet : std::vector<Index> {
  LocalSet() {}

  LocalSet merge(const LocalSet& other) const {
    LocalSet ret;
    ret.resize(size() + other.size());
    Index i = 0, j = 0, t = 0;
    while (i < size() && j < other.size()) {
      auto left = (*this)[i];
      auto right = other[j];
      if (left < right) {
        ret[t++] = left;
        i++;
      } else if (left > right) {
        ret[t++] = right;
        j++;
      } else {
        ret[t++] = left;
        i++;
        j++;
      }
    }
    while (i < size()) {
      ret[t++] = (*this)[i];
      i++;
    }
    while (j < other.size()) {
      ret[t++] = other[j];
      j++;
    }
    ret.resize(t);
    return ret;
  }

  // TODO: binary search in all the following

  void insert(Index x) {
    for (Index i = 0; i < size(); i++) {
      auto seen = (*this)[i];
      if (seen == x) return;
      if (seen > x) {
        resize(size() + 1);
        for (Index j = size() - 1; j > i; j--) {
          (*this)[j] = (*this)[j - 1];
        }
        (*this)[i] = x;
        return;
      }
    }
    // we didn't find anything larger
    push_back(x);
  }

  bool erase(Index x) {
    for (Index i = 0; i < size(); i++) {
      if ((*this)[i] == x) {
        for (Index j = i + 1; j < size(); j++) {
          (*this)[j - 1] = (*this)[j];
        }
        resize(size() - 1);
        return true;
      }
    }
    return false;
  }

  bool has(Index x) {
    for (Index i = 0; i < size(); i++) {
      if ((*this)[i] == x) return true;
    }
    return false;
  }

  void verify() const {
    for (Index i = 1; i < size(); i++) {
      assert((*this)[i - 1] < (*this)[i]);
    }
  }

  void dump(const char* str = nullptr) const {
    std::cout << "LocalSet " << (str ? str : "") << ": ";
    for (auto x : *this) std::cout << x << " ";
    std::cout << '\n';
  }
};

// a liveness-relevant action
struct Action {
  enum What {
    Get, Set
  };
  What what;
  Index index; // the local index read or written
  Expression** origin; // the origin
  bool effective; // whether a store is actually effective, i.e., may be read

  Action(What what, Index index, Expression** origin) : what(what), index(index), origin(origin), effective(false) {}

  bool isGet() { return what == Get; }
  bool isSet() { return what == Set; }
};

// information about liveness in a basic block
struct Liveness {
  LocalSet start, end; // live locals at the start and end
  std::vector<Action> actions; // actions occurring in this block

  void dump(Function* func) {
    if (actions.empty()) return;
    std::cout << "    actions:\n";
    for (auto& action : actions) {
      std::cout << "      " << (action.isGet() ? "get" : "set") << " " << func->getLocalName(action.index) << "\n";
    }
  }
};

struct CoalesceLocals : public WalkerPass<CFGWalker<CoalesceLocals, Visitor<CoalesceLocals>, Liveness>> {
  bool isFunctionParallel() override { return true; }

  Pass* create() override { return new CoalesceLocals; }

  Index numLocals;

  // cfg traversal work

  static void doVisitGetLocal(CoalesceLocals* self, Expression** currp) {
    auto* curr = (*currp)->cast<GetLocal>();
    self->currBasicBlock->contents.actions.emplace_back(Action::Get, curr->index, currp);
  }

  static void doVisitSetLocal(CoalesceLocals* self, Expression** currp) {
    auto* curr = (*currp)->cast<SetLocal>();
    self->currBasicBlock->contents.actions.emplace_back(Action::Set, curr->index, currp);

    // if this is a copy, note it
    auto* get = curr->value->dynCast<GetLocal>();
    if (get) self->addCopy(curr->index, get->index);
  }

  // main entry point

  void doWalkFunction(Function* func);

  void flowLiveness();

  void calculateInterferences();

  void calculateInterferences(const LocalSet& locals);

  // merge starts of a list of blocks, adding new interferences as necessary. return
  // whether anything changed vs an old state (which indicates further processing is necessary).
  bool mergeStartsAndCheckChange(std::vector<BasicBlock*>& blocks, LocalSet& old, LocalSet& ret);

  void scanLivenessThroughActions(std::vector<Action>& actions, LocalSet& live);

  void pickIndicesFromOrder(std::vector<Index>& order, std::vector<Index>& indices);

  virtual void pickIndices(std::vector<Index>& indices); // returns a vector of oldIndex => newIndex

  void applyIndices(std::vector<Index>& indices, Expression* root);

  // interference state

  std::vector<bool> interferences; // canonicalized - accesses should check (low, high)
  std::unordered_set<BasicBlock*> liveBlocks;

  void interfere(Index i, Index j) {
    if (i == j) return;
    interferences[std::min(i, j) * numLocals + std::max(i, j)] = 1;
  }

  void interfereLowHigh(Index low, Index high) { // optimized version where you know that low < high
    assert(low < high);
    interferences[low * numLocals + high] = 1;
  }

  bool interferes(Index i, Index j) {
    return interferences[std::min(i, j) * numLocals + std::max(i, j)];
  }

  // copying state

  std::vector<uint8_t> copies; // canonicalized - accesses should check (low, high)

  void addCopy(Index i, Index j) {
    auto k = std::min(i, j) * numLocals + std::max(i, j);
    copies[k] = std::min(copies[k], uint8_t(254)) + 1;
  }

  bool getCopies(Index i, Index j) {
    return copies[std::min(i, j) * numLocals + std::max(i, j)];
  }
};

void CoalesceLocals::doWalkFunction(Function* func) {
  numLocals = func->getNumLocals();
  copies.resize(numLocals * numLocals);
  std::fill(copies.begin(), copies.end(), 0);
  // collect initial liveness info
  WalkerPass<CFGWalker<CoalesceLocals, Visitor<CoalesceLocals>, Liveness>>::doWalkFunction(func);
  // ignore links to dead blocks, so they don't confuse us and we can see their stores are all ineffective
  liveBlocks = findLiveBlocks();
  unlinkDeadBlocks(liveBlocks);
#ifdef CFG_DEBUG
  dumpCFG("the cfg");
#endif
  // flow liveness across blocks
#ifdef CFG_PROFILE
  static Timer timer("flow");
  timer.start();
#endif
  flowLiveness();
#ifdef CFG_PROFILE
  timer.stop();
  timer.dump();
#endif
  // use liveness to find interference
  calculateInterferences();
  // pick new indices
  std::vector<Index> indices;
  pickIndices(indices);
  // apply indices
  applyIndices(indices, func->body);
}

void CoalesceLocals::flowLiveness() {
  interferences.resize(numLocals * numLocals);
  std::fill(interferences.begin(), interferences.end(), 0);
  // keep working while stuff is flowing
  std::unordered_set<BasicBlock*> queue;
  for (auto& curr : basicBlocks) {
    if (liveBlocks.count(curr.get()) == 0) continue; // ignore dead blocks
    queue.insert(curr.get());
    // do the first scan through the block, starting with nothing live at the end, and updating the liveness at the start
    scanLivenessThroughActions(curr->contents.actions, curr->contents.start);
  }
  // at every point in time, we assume we already noted interferences between things already known alive at the end, and scanned back through the block using that
  while (queue.size() > 0) {
    auto iter = queue.begin();
    auto* curr = *iter;
    queue.erase(iter);
    LocalSet live;
    if (!mergeStartsAndCheckChange(curr->out, curr->contents.end, live)) continue;
#ifdef CFG_DEBUG
    std::cout << "change noticed at end of " << debugIds[curr] << " from " << curr->contents.end.size() << " to " << live.size() << " (out of " << numLocals << ")\n";
#endif
    assert(curr->contents.end.size() < live.size());
    curr->contents.end = live;
    scanLivenessThroughActions(curr->contents.actions, live);
    // liveness is now calculated at the start. if something
    // changed, all predecessor blocks need recomputation
    if (curr->contents.start == live) continue;
#ifdef CFG_DEBUG
    std::cout << "change noticed at start of " << debugIds[curr] << " from " << curr->contents.start.size() << " to " << live.size() << ", more work to do\n";
#endif
    assert(curr->contents.start.size() < live.size());
    curr->contents.start = live;
    for (auto* in : curr->in) {
      queue.insert(in);
    }
  }
#ifdef CFG_DEBUG
  std::hash<std::vector<bool>> hasher;
  std::cout << getFunction()->name << ": interference hash: " << hasher(*(std::vector<bool>*)&interferences) << "\n";
  for (Index i = 0; i < numLocals; i++) {
    std::cout << "int for " << getFunction()->getLocalName(i) << " [" << i << "]: ";
    for (Index j = 0; j < numLocals; j++) {
      if (interferes(i, j)) std::cout << getFunction()->getLocalName(j) << " ";
    }
    std::cout << "\n";
  }
#endif
}

// merge starts of a list of blocks. return
// whether anything changed vs an old state (which indicates further processing is necessary).
bool CoalesceLocals::mergeStartsAndCheckChange(std::vector<BasicBlock*>& blocks, LocalSet& old, LocalSet& ret) {
  if (blocks.size() == 0) return false;
  ret = blocks[0]->contents.start;
  if (blocks.size() > 1) {
    // more than one, so we must merge
    for (Index i = 1; i < blocks.size(); i++) {
      ret = ret.merge(blocks[i]->contents.start);
    }
  }
  return old != ret;
}

void CoalesceLocals::scanLivenessThroughActions(std::vector<Action>& actions, LocalSet& live) {
  // move towards the front
  for (int i = int(actions.size()) - 1; i >= 0; i--) {
    auto& action = actions[i];
    if (action.isGet()) {
      live.insert(action.index);
    } else {
      live.erase(action.index);
    }
  }
}

void CoalesceLocals::calculateInterferences() {
  for (auto& curr : basicBlocks) {
    if (liveBlocks.count(curr.get()) == 0) continue; // ignore dead blocks
    // everything coming in might interfere, as it might come from a different block
    auto live = curr->contents.end;
    calculateInterferences(live);
    // scan through the block itself
    auto& actions = curr->contents.actions;
    for (int i = int(actions.size()) - 1; i >= 0; i--) {
      auto& action = actions[i];
      auto index = action.index;
      if (action.isGet()) {
        // new live local, interferes with all the rest
        live.insert(index);
        for (auto i : live) {
          interfere(i, index);
        }
      } else {
        if (live.erase(index)) {
          action.effective = true;
        }
      }
    }
  }
  // Params have a value on entry, so mark them as live, as variables
  // live at the entry expect their zero-init value.
  LocalSet start = entry->contents.start;
  auto numParams = getFunction()->getNumParams();
  for (Index i = 0; i < numParams; i++) {
    start.insert(i);
  }
  calculateInterferences(start);
}

void CoalesceLocals::calculateInterferences(const LocalSet& locals) {
  Index size = locals.size();
  for (Index i = 0; i < size; i++) {
    for (Index j = i + 1; j < size; j++) {
      interfereLowHigh(locals[i], locals[j]);
    }
  }
}

// Indices decision making

void CoalesceLocals::pickIndicesFromOrder(std::vector<Index>& order, std::vector<Index>& indices) {
  // simple greedy coloring
  // TODO: take into account eliminated copies
  // TODO: take into account distribution (99-1 is better than 50-50 with two registers, for gzip)
  std::vector<WasmType> types;
  std::vector<bool> newInterferences; // new index * numLocals => list of all interferences of locals merged to it
  std::vector<uint8_t> newCopies; // new index * numLocals => list of all copies of locals merged to it
  indices.resize(numLocals);
  types.resize(numLocals);
  newInterferences.resize(numLocals * numLocals);
  newCopies.resize(numLocals * numLocals);
  std::fill(newInterferences.begin(), newInterferences.end(), 0);
  std::fill(newCopies.begin(), newCopies.end(), 0);
  Index nextFree = 0;
  // we can't reorder parameters, they are fixed in order, and cannot coalesce
  auto numParams = getFunction()->getNumParams();
  Index i = 0;
  for (; i < numParams; i++) {
    assert(order[i] == i); // order must leave the params in place
    indices[i] = i;
    types[i] = getFunction()->getLocalType(i);
    for (Index j = numParams; j < numLocals; j++) {
      newInterferences[numLocals * i + j] = interferes(i, j);
      newCopies[numLocals * i + j] = getCopies(i, j);
    }
    nextFree++;
  }
  for (; i < numLocals; i++) {
    Index actual = order[i];
    Index found = -1;
    uint8_t foundCopies = -1;
    for (Index j = 0; j < nextFree; j++) {
      if (!newInterferences[j * numLocals + actual] && getFunction()->getLocalType(actual) == types[j]) {
        // this does not interfere, so it might be what we want. but pick the one eliminating the most copies
        auto currCopies = newCopies[j * numLocals + actual];
        if (found == Index(-1) || currCopies > foundCopies) {
          indices[actual] = found = j;
          foundCopies = currCopies;
        }
      }
    }
    if (found == Index(-1)) {
      indices[actual] = found = nextFree;
      types[found] = getFunction()->getLocalType(actual);
      nextFree++;
    }
    // merge new interferences and copies for the new index
    for (Index k = i + 1; k < numLocals; k++) {
      auto j = order[k]; // go in the order, we only need to update for those we will see later
      newInterferences[found * numLocals + j] = newInterferences[found * numLocals + j] | interferes(actual, j);
      newCopies[found * numLocals + j] += getCopies(actual, j);
    }
  }
}

void CoalesceLocals::pickIndices(std::vector<Index>& indices) {
  if (numLocals == 0) return;
  if (numLocals == 1) {
    indices.push_back(0);
    return;
  }
  // first try the natural order. this is less arbitrary than it seems, as the program
  // may have a natural order of locals inherent in it.
  std::vector<Index> order;
  order.resize(numLocals);
  for (Index i = 0; i < numLocals; i++) {
    order[i] = i;
  }
  pickIndicesFromOrder(order, indices);
  auto maxIndex = *std::max_element(indices.begin(), indices.end());
  // next try the reverse order. this both gives us anothe chance at something good,
  // and also the very naturalness of the simple order may be quite suboptimal
  auto numParams = getFunction()->getNumParams();
  for (Index i = numParams; i < numLocals; i++) {
    order[i] = numParams + numLocals - 1 - i;
  }
  std::vector<Index> reverseIndices;
  pickIndicesFromOrder(order, reverseIndices);
  auto reverseMaxIndex = *std::max_element(reverseIndices.begin(), reverseIndices.end());
  if (reverseMaxIndex < maxIndex) {
    indices.swap(reverseIndices);
  }
}

void CoalesceLocals::applyIndices(std::vector<Index>& indices, Expression* root) {
  assert(indices.size() == numLocals);
  for (auto& curr : basicBlocks) {
    auto& actions = curr->contents.actions;
    for (auto& action : actions) {
      if (action.isGet()) {
        auto* get = (*action.origin)->cast<GetLocal>();
        get->index = indices[get->index];
      } else {
        auto* set = (*action.origin)->cast<SetLocal>();
        set->index = indices[set->index];
        // in addition, we can optimize out redundant copies and ineffective sets
        GetLocal* get;
        if ((get = set->value->dynCast<GetLocal>()) && get->index == set->index) {
          if (set->isTee()) {
            *action.origin = get;
          } else {
            ExpressionManipulator::nop(set);
          }
        } else if (!action.effective) {
          *action.origin = set->value; // value may have no side effects, further optimizations can eliminate it
          if (!set->isTee()) {
            // we need to drop it
            Drop* drop = ExpressionManipulator::convert<SetLocal, Drop>(set);
            drop->value = *action.origin;
            *action.origin = drop;
          }
        }
      }
    }
  }
  // update type list
  auto numParams = getFunction()->getNumParams();
  Index newNumLocals = 0;
  for (auto index : indices) {
    newNumLocals = std::max(newNumLocals, index + 1);
  }
  auto oldVars = getFunction()->vars;
  getFunction()->vars.resize(newNumLocals - numParams);
  for (Index index = numParams; index < numLocals; index++) {
    Index newIndex = indices[index];
    if (newIndex >= numParams) {
      getFunction()->vars[newIndex - numParams] = oldVars[index - numParams];
    }
  }
  // names are gone
  getFunction()->localNames.clear();
  getFunction()->localIndices.clear();
}

struct CoalesceLocalsWithLearning : public CoalesceLocals {
  virtual Pass* create() override { return new CoalesceLocalsWithLearning; }

  virtual void pickIndices(std::vector<Index>& indices) override;
};

void CoalesceLocalsWithLearning::pickIndices(std::vector<Index>& indices) {
  if (getFunction()->getNumVars() <= 1) {
    // nothing to think about here
    CoalesceLocals::pickIndices(indices);
    return;
  }

  struct Order : public std::vector<Index> {
    void setFitness(double f) { fitness = f; }
    double getFitness() { return fitness; }
    void dump(std::string text) {
      std::cout << text + ": ( ";
      for (Index i = 0; i < size(); i++) std::cout << (*this)[i] << " ";
      std::cout << ")\n";
      std::cout << "of quality: " << getFitness() << "\n";
    }
  private:
    double fitness;
  };

  struct Generator {
    Generator(CoalesceLocalsWithLearning* parent) : parent(parent), noise(42) {}

    void calculateFitness(Order* order) {
      // apply the order
      std::vector<Index> indices; // the phenotype
      parent->pickIndicesFromOrder(*order, indices);
      auto maxIndex = *std::max_element(indices.begin(), indices.end());
      assert(maxIndex <= parent->numLocals);
      // main part of fitness is the number of locals
      double fitness = parent->numLocals - maxIndex; // higher fitness is better
      // secondarily, it is nice to not reorder locals unnecessarily
      double fragment = 1.0 / (2.0 * parent->numLocals);
      for (Index i = 0; i < parent->numLocals; i++) {
        if ((*order)[i] == i) fitness += fragment; // boost for each that wasn't moved
      }
      order->setFitness(fitness);
    }

    Order* makeRandom() {
      auto* ret = new Order;
      ret->resize(parent->numLocals);
      for (Index i = 0; i < parent->numLocals; i++) {
        (*ret)[i] = i;
      }
      if (first) {
        // as the first guess, use the natural order. this is not arbitrary for two reasons.
        // first, there may be an inherent order in the input (frequent indices are lower,
        // etc.). second, by ensuring we start with the natural order, we ensure we are at
        // least as good as the non-learning variant.
        first = false;
      } else {
        // leave params alone, shuffle the rest
        std::shuffle(ret->begin() + parent->getFunction()->getNumParams(), ret->end(), noise);
      }
      calculateFitness(ret);
#ifdef CFG_LEARN_DEBUG
      order->dump("new rando");
#endif
      return ret;
    }

    Order* makeMixture(Order* left, Order* right) {
      // perturb left using right. this is useful since
      // we don't care about absolute locations, relative ones matter more,
      // and a true merge of two vectors could obscure that (e.g.
      // a.......... and ..........a would merge a into the middle, for no
      // reason), and cause a lot of unnecessary noise
      Index size = left->size();
      Order reverseRight; // reverseRight[x] is the index of x in right
      reverseRight.resize(size);
      for (Index i = 0; i < size; i++) {
        reverseRight[(*right)[i]] = i;
      }
      auto* ret = new Order;
      *ret = *left;
      assert(size >= 1);
      for (Index i = parent->getFunction()->getNumParams(); i < size - 1; i++) {
        // if (i, i + 1) is in reverse order in right, flip them
        if (reverseRight[(*ret)[i]] > reverseRight[(*ret)[i + 1]]) {
          std::swap((*ret)[i], (*ret)[i + 1]);
          i++; // if we don't skip, we might end up pushing an element all the way to the end, which is not very perturbation-y
        }
      }
      calculateFitness(ret);
#ifdef CFG_LEARN_DEBUG
      ret->dump("new mixture");
#endif
      return ret;
    }

  private:
    CoalesceLocalsWithLearning* parent;
    std::mt19937 noise;
    bool first = true;
  };

#ifdef CFG_LEARN_DEBUG
  std::cout << "[learning for " << getFunction()->name << "]\n";
#endif
  auto numVars = this->getFunction()->getNumVars();
  const int GENERATION_SIZE = std::min(Index(numVars * (numVars - 1)), Index(20));
  Generator generator(this);
  GeneticLearner<Order, double, Generator> learner(generator, GENERATION_SIZE);
#ifdef CFG_LEARN_DEBUG
  learner.getBest()->dump("first best");
#endif
  // keep working while we see improvement
  auto oldBest = learner.getBest()->getFitness();
  while (1) {
    learner.runGeneration();
    auto newBest = learner.getBest()->getFitness();
    if (newBest == oldBest) break; // unlikely we can improve
    oldBest = newBest;
#ifdef CFG_LEARN_DEBUG
    learner.getBest()->dump("current best");
#endif
  }
#ifdef CFG_LEARN_DEBUG
  learner.getBest()->dump("the best");
#endif
  this->pickIndicesFromOrder(*learner.getBest(), indices); // TODO: cache indices in Orders, at the cost of more memory?
}

// declare passes

Pass *createCoalesceLocalsPass() {
  return new CoalesceLocals();
}

Pass *createCoalesceLocalsWithLearningPass() {
  return new CoalesceLocalsWithLearning();
}

} // namespace wasm