1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
|
/*
* Copyright 2021 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Find struct fields that are always written to with a constant value, and
// replace gets of them with that value.
//
// For example, if we have a vtable of type T, and we always create it with one
// of the fields containing a ref.func of the same function F, and there is no
// write to that field of a different value (even using a subtype of T), then
// anywhere we see a get of that field we can place a ref.func of F.
//
// FIXME: This pass assumes a closed world. When we start to allow multi-module
// wasm GC programs we need to check for type escaping.
//
#include "ir/module-utils.h"
#include "ir/properties.h"
#include "ir/utils.h"
#include "pass.h"
#include "support/unique_deferring_queue.h"
#include "wasm-builder.h"
#include "wasm-traversal.h"
#include "wasm.h"
namespace wasm {
namespace {
// A nominal type always knows who its supertype is, if there is one; this class
// provides the list of immediate subtypes.
struct SubTypes {
SubTypes(Module& wasm) {
std::vector<HeapType> types;
std::unordered_map<HeapType, Index> typeIndices;
ModuleUtils::collectHeapTypes(wasm, types, typeIndices);
for (auto type : types) {
note(type);
}
}
const std::unordered_set<HeapType>& getSubTypes(HeapType type) {
return typeSubTypes[type];
}
private:
// Add a type to the graph.
void note(HeapType type) {
HeapType super;
if (type.getSuperType(super)) {
typeSubTypes[super].insert(type);
}
}
// Maps a type to its subtypes.
std::unordered_map<HeapType, std::unordered_set<HeapType>> typeSubTypes;
};
// Represents data about what constant values are possible in a particular
// place. There may be no values, or one, or many, or if a non-constant value is
// possible, then all we can say is that the value is "unknown" - it can be
// anything.
//
// Currently this just looks for a single constant value, and even two constant
// values are treated as unknown. It may be worth optimizing more than that TODO
struct PossibleConstantValues {
// Note a written value as we see it, and update our internal knowledge based
// on it and all previous values noted.
void note(Literal curr) {
if (!noted) {
// This is the first value.
value = curr;
noted = true;
return;
}
// This is a subsequent value. Check if it is different from all previous
// ones.
if (curr != value) {
noteUnknown();
}
}
// Notes a value that is unknown - it can be anything. We have failed to
// identify a constant value here.
void noteUnknown() {
value = Literal(Type::none);
noted = true;
}
// Combine the information in a given PossibleConstantValues to this one. This
// is the same as if we have called note*() on us with all the history of
// calls to that other object.
//
// Returns whether we changed anything.
bool combine(const PossibleConstantValues& other) {
if (!other.noted) {
return false;
}
if (!noted) {
*this = other;
return other.noted;
}
if (!isConstant()) {
return false;
}
if (!other.isConstant() || getConstantValue() != other.getConstantValue()) {
noteUnknown();
return true;
}
return false;
}
// Check if all the values are identical and constant.
bool isConstant() const { return noted && value.type.isConcrete(); }
// Returns the single constant value.
Literal getConstantValue() const {
assert(isConstant());
return value;
}
// Returns whether we have ever noted a value.
bool hasNoted() const { return noted; }
void dump(std::ostream& o) {
o << '[';
if (!hasNoted()) {
o << "unwritten";
} else if (!isConstant()) {
o << "unknown";
} else {
o << value;
}
o << ']';
}
private:
// Whether we have noted any values at all.
bool noted = false;
// The one value we have seen, if there is one. If we realize there is no
// single constant value here, we make this have a non-concrete (impossible)
// type to indicate that. Otherwise, a concrete type indicates we have a
// constant value.
Literal value;
};
// A vector of PossibleConstantValues. One such vector will be used per struct
// type, where each element in the vector represents a field. We always assume
// that the vectors are pre-initialized to the right length before accessing any
// data, which this class enforces using assertions, and which is implemented in
// StructValuesMap.
struct StructValues : public std::vector<PossibleConstantValues> {
PossibleConstantValues& operator[](size_t index) {
assert(index < size());
return std::vector<PossibleConstantValues>::operator[](index);
}
const PossibleConstantValues& operator[](size_t index) const {
assert(index < size());
return std::vector<PossibleConstantValues>::operator[](index);
}
};
// Map of types to information about the values their fields can take.
// Concretely, this maps a type to a StructValues which has one element per
// field.
struct StructValuesMap : public std::unordered_map<HeapType, StructValues> {
// When we access an item, if it does not already exist, create it with a
// vector of the right length for that type.
StructValues& operator[](HeapType type) {
auto inserted = insert({type, {}});
auto& values = inserted.first->second;
if (inserted.second) {
values.resize(type.getStruct().fields.size());
}
return values;
}
void dump(std::ostream& o) {
o << "dump " << this << '\n';
for (auto& kv : (*this)) {
auto type = kv.first;
auto& vec = kv.second;
o << "dump " << type << " " << &vec << ' ';
for (auto x : vec) {
x.dump(o);
o << " ";
};
o << '\n';
}
}
};
// Map of functions to their field value infos. We compute those in parallel,
// then later we will merge them all.
using FunctionStructValuesMap = std::unordered_map<Function*, StructValuesMap>;
// Scan each function to note all its writes to struct fields.
//
// We track information from struct.new and struct.set separately, because in
// struct.new we know more about the type - we know the actual exact type being
// written to, and not just that it is of a subtype of the instruction's type,
// which helps later.
struct Scanner : public WalkerPass<PostWalker<Scanner>> {
bool isFunctionParallel() override { return true; }
Pass* create() override {
return new Scanner(functionNewInfos, functionSetInfos);
}
Scanner(FunctionStructValuesMap& functionNewInfos,
FunctionStructValuesMap& functionSetInfos)
: functionNewInfos(functionNewInfos), functionSetInfos(functionSetInfos) {}
void visitStructNew(StructNew* curr) {
auto type = curr->type;
if (type == Type::unreachable) {
return;
}
// Note writes to all the fields of the struct.
auto heapType = type.getHeapType();
auto& values = functionNewInfos[getFunction()][heapType];
auto& fields = heapType.getStruct().fields;
for (Index i = 0; i < fields.size(); i++) {
if (curr->isWithDefault()) {
values[i].note(Literal::makeZero(fields[i].type));
} else {
noteExpression(curr->operands[i], heapType, i, functionNewInfos);
}
}
}
void visitStructSet(StructSet* curr) {
auto type = curr->ref->type;
if (type == Type::unreachable) {
return;
}
// Note a write to this field of the struct.
noteExpression(
curr->value, type.getHeapType(), curr->index, functionSetInfos);
}
private:
FunctionStructValuesMap& functionNewInfos;
FunctionStructValuesMap& functionSetInfos;
// Note a value, checking whether it is a constant or not.
void noteExpression(Expression* expr,
HeapType type,
Index index,
FunctionStructValuesMap& valuesMap) {
expr =
Properties::getFallthrough(expr, getPassOptions(), getModule()->features);
// Ignore copies: when we set a value to a field from that same field, no
// new values are actually introduced.
//
// Note that this is only sound by virtue of the overall analysis in this
// pass: the object read from may be of a subclass, and so subclass values
// may be actually written here. But as our analysis considers subclass
// values too (as it must) then that is safe. That is, if a subclass of $A
// adds a value X that can be loaded from (struct.get $A $b), then consider
// a copy
//
// (struct.set $A $b (struct.get $A $b))
//
// Our analysis will figure out that X can appear in that copy's get, and so
// the copy itself does not add any information about values.
//
// TODO: This may be extensible to a copy from a subtype by the above
// analysis (but this is already entering the realm of diminishing
// returns).
if (auto* get = expr->dynCast<StructGet>()) {
if (get->index == index && get->ref->type != Type::unreachable &&
get->ref->type.getHeapType() == type) {
return;
}
}
auto& info = valuesMap[getFunction()][type][index];
if (!Properties::isConstantExpression(expr)) {
info.noteUnknown();
} else {
info.note(Properties::getLiteral(expr));
}
}
};
// Optimize struct gets based on what we've learned about writes.
//
// TODO Aside from writes, we could use information like whether any struct of
// this type has even been created (to handle the case of struct.sets but
// no struct.news).
struct FunctionOptimizer : public WalkerPass<PostWalker<FunctionOptimizer>> {
bool isFunctionParallel() override { return true; }
Pass* create() override { return new FunctionOptimizer(infos); }
FunctionOptimizer(StructValuesMap& infos) : infos(infos) {}
void visitStructGet(StructGet* curr) {
auto type = curr->ref->type;
if (type == Type::unreachable) {
return;
}
Builder builder(*getModule());
// Find the info for this field, and see if we can optimize. First, see if
// there is any information for this heap type at all. If there isn't, it is
// as if nothing was ever noted for that field.
PossibleConstantValues info;
assert(!info.hasNoted());
auto iter = infos.find(type.getHeapType());
if (iter != infos.end()) {
// There is information on this type, fetch it.
info = iter->second[curr->index];
}
if (!info.hasNoted()) {
// This field is never written at all. That means that we do not even
// construct any data of this type, and so it is a logic error to reach
// this location in the code. (Unless we are in an open-world
// situation, which we assume we are not in.) Replace this get with a
// trap. Note that we do not need to care about the nullability of the
// reference, as if it should have trapped, we are replacing it with
// another trap, which we allow to reorder (but we do need to care about
// side effects in the reference, so keep it around).
replaceCurrent(builder.makeSequence(builder.makeDrop(curr->ref),
builder.makeUnreachable()));
changed = true;
return;
}
// If the value is not a constant, then it is unknown and we must give up.
if (!info.isConstant()) {
return;
}
// We can do this! Replace the get with a trap on a null reference using a
// ref.as_non_null (we need to trap as the get would have done so), plus the
// constant value. (Leave it to further optimizations to get rid of the
// ref.)
replaceCurrent(builder.makeSequence(
builder.makeDrop(builder.makeRefAs(RefAsNonNull, curr->ref)),
builder.makeConstantExpression(info.getConstantValue())));
changed = true;
}
void doWalkFunction(Function* func) {
WalkerPass<PostWalker<FunctionOptimizer>>::doWalkFunction(func);
// If we changed anything, we need to update parent types as types may have
// changed.
if (changed) {
ReFinalize().walkFunctionInModule(func, getModule());
}
}
private:
StructValuesMap& infos;
bool changed = false;
};
struct ConstantFieldPropagation : public Pass {
void run(PassRunner* runner, Module* module) override {
if (getTypeSystem() != TypeSystem::Nominal) {
Fatal() << "ConstantFieldPropagation requires nominal typing";
}
// Find and analyze all writes inside each function.
FunctionStructValuesMap functionNewInfos, functionSetInfos;
for (auto& func : module->functions) {
// Initialize the data for each function, so that we can operate on this
// structure in parallel without modifying it.
functionNewInfos[func.get()];
functionSetInfos[func.get()];
}
Scanner scanner(functionNewInfos, functionSetInfos);
scanner.run(runner, module);
scanner.walkModuleCode(module);
// Combine the data from the functions.
auto combine = [](const FunctionStructValuesMap& functionInfos,
StructValuesMap& combinedInfos) {
for (auto& kv : functionInfos) {
const StructValuesMap& infos = kv.second;
for (auto& kv : infos) {
auto type = kv.first;
auto& info = kv.second;
for (Index i = 0; i < info.size(); i++) {
combinedInfos[type][i].combine(info[i]);
}
}
}
};
StructValuesMap combinedNewInfos, combinedSetInfos;
combine(functionNewInfos, combinedNewInfos);
combine(functionSetInfos, combinedSetInfos);
// Handle subtyping. |combinedInfo| so far contains data that represents
// each struct.new and struct.set's operation on the struct type used in
// that instruction. That is, if we do a struct.set to type T, the value was
// noted for type T. But our actual goal is to answer questions about
// struct.gets. Specifically, when later we see:
//
// (struct.get $A x (REF-1))
//
// Then we want to be aware of all the relevant struct.sets, that is, the
// sets that can write data that this get reads. Given a set
//
// (struct.set $B x (REF-2) (..value..))
//
// then
//
// 1. If $B is a subtype of $A, it is relevant: the get might read from a
// struct of type $B (i.e., REF-1 and REF-2 might be identical, and both
// be a struct of type $B).
// 2. If $B is a supertype of $A that still has the field x then it may
// also be relevant: since $A is a subtype of $B, the set may write to a
// struct of type $A (and again, REF-1 and REF-2 may be identical).
//
// Thus, if either $A <: $B or $B <: $A then we must consider the get and
// set to be relevant to each other. To make our later lookups for gets
// efficient, we therefore propagate information about the possible values
// in each field to both subtypes and supertypes.
//
// struct.new on the other hand knows exactly what type is being written to,
// and so given a get of $A and a new of $B, the new is relevant for the get
// iff $A is a subtype of $B, so we only need to propagate in one direction
// there, to supertypes.
//
// TODO: A topological sort could avoid repeated work here perhaps.
SubTypes subTypes(*module);
auto propagate = [&subTypes](StructValuesMap& combinedInfos,
bool toSubTypes) {
UniqueDeferredQueue<HeapType> work;
for (auto& kv : combinedInfos) {
auto type = kv.first;
work.push(type);
}
while (!work.empty()) {
auto type = work.pop();
auto& infos = combinedInfos[type];
// Propagate shared fields to the supertype.
HeapType superType;
if (type.getSuperType(superType)) {
auto& superInfos = combinedInfos[superType];
auto& superFields = superType.getStruct().fields;
for (Index i = 0; i < superFields.size(); i++) {
if (superInfos[i].combine(infos[i])) {
work.push(superType);
}
}
}
if (toSubTypes) {
// Propagate shared fields to the subtypes.
auto numFields = type.getStruct().fields.size();
for (auto subType : subTypes.getSubTypes(type)) {
auto& subInfos = combinedInfos[subType];
for (Index i = 0; i < numFields; i++) {
if (subInfos[i].combine(infos[i])) {
work.push(subType);
}
}
}
}
}
};
propagate(combinedNewInfos, false);
propagate(combinedSetInfos, true);
// Combine both sources of information to the final information that gets
// care about.
StructValuesMap combinedInfos = std::move(combinedNewInfos);
for (auto& kv : combinedSetInfos) {
auto type = kv.first;
auto& info = kv.second;
for (Index i = 0; i < info.size(); i++) {
combinedInfos[type][i].combine(info[i]);
}
}
// Optimize.
// TODO: Skip this if we cannot optimize anything
FunctionOptimizer(combinedInfos).run(runner, module);
// TODO: Actually remove the field from the type, where possible? That might
// be best in another pass.
}
};
} // anonymous namespace
Pass* createConstantFieldPropagationPass() {
return new ConstantFieldPropagation();
}
} // namespace wasm
|