1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/*
* Copyright 2020 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Instrument the wasm to convert NaN values at runtime into 0s. That is, every
// operation that might produce a NaN will go through a helper function which
// filters out NaNs (replacing them with 0). This ensures that NaNs are never
// consumed by any instructions, which is useful when fuzzing between VMs that
// differ on wasm's nondeterminism around NaNs.
//
#include "ir/names.h"
#include "ir/properties.h"
#include "pass.h"
#include "wasm-builder.h"
#include "wasm.h"
namespace wasm {
struct DeNaN : public WalkerPass<
ControlFlowWalker<DeNaN, UnifiedExpressionVisitor<DeNaN>>> {
// Adds calls.
bool addsEffects() override { return true; }
Name deNan32, deNan64, deNan128;
void visitExpression(Expression* expr) {
// If the expression returns a floating-point value, ensure it is not a
// NaN. If we can do this at compile time, do it now, which is useful for
// initializations of global (which we can't do a function call in). Note
// that we don't instrument local.gets, which would cause problems if we
// ran this pass more than once (the added functions use gets, and we don't
// want to instrument them).
if (expr->is<LocalGet>()) {
return;
}
// If the result just falls through without being modified, then we've
// already fixed it up earlier.
if (Properties::isResultFallthrough(expr)) {
return;
}
Builder builder(*getModule());
Expression* replacement = nullptr;
auto* c = expr->dynCast<Const>();
if (expr->type == Type::f32) {
if (c && c->value.isNaN()) {
replacement = builder.makeConst(float(0));
} else if (!c) {
replacement = builder.makeCall(deNan32, {expr}, Type::f32);
}
} else if (expr->type == Type::f64) {
if (c && c->value.isNaN()) {
replacement = builder.makeConst(double(0));
} else if (!c) {
replacement = builder.makeCall(deNan64, {expr}, Type::f64);
}
} else if (expr->type == Type::v128) {
if (c && hasNaNLane(c)) {
uint8_t zero[16] = {};
replacement = builder.makeConst(Literal(zero));
} else if (!c) {
replacement = builder.makeCall(deNan128, {expr}, Type::v128);
}
}
if (replacement) {
// We can't do this outside of a function, like in a global initializer,
// where a call would be illegal.
if (replacement->is<Const>() || getFunction()) {
replaceCurrent(replacement);
} else {
std::cerr << "warning: cannot de-nan outside of function context\n";
}
}
}
void visitFunction(Function* func) {
if (func->imported()) {
return;
}
// Instrument all locals as they enter the function.
Builder builder(*getModule());
std::vector<Expression*> fixes;
auto num = func->getNumParams();
for (Index i = 0; i < num; i++) {
if (func->getLocalType(i) == Type::f32) {
fixes.push_back(builder.makeLocalSet(
i,
builder.makeCall(
deNan32, {builder.makeLocalGet(i, Type::f32)}, Type::f32)));
} else if (func->getLocalType(i) == Type::f64) {
fixes.push_back(builder.makeLocalSet(
i,
builder.makeCall(
deNan64, {builder.makeLocalGet(i, Type::f64)}, Type::f64)));
} else if (func->getLocalType(i) == Type::v128) {
fixes.push_back(builder.makeLocalSet(
i,
builder.makeCall(
deNan128, {builder.makeLocalGet(i, Type::v128)}, Type::v128)));
}
}
if (!fixes.empty()) {
fixes.push_back(func->body);
func->body = builder.makeBlock(fixes);
// Merge blocks so we don't add an unnecessary one.
PassRunner runner(getModule(), getPassOptions());
runner.setIsNested(true);
runner.add("merge-blocks");
runner.run();
}
}
void doWalkModule(Module* module) {
// Pick names for the helper functions.
deNan32 = Names::getValidFunctionName(*module, "deNan32");
deNan64 = Names::getValidFunctionName(*module, "deNan64");
deNan128 = Names::getValidFunctionName(*module, "deNan128");
ControlFlowWalker<DeNaN, UnifiedExpressionVisitor<DeNaN>>::doWalkModule(
module);
// Add helper functions after the walk, so they are not instrumented.
addFunc(module, deNan32, Type::f32, Literal(float(0)), EqFloat32);
addFunc(module, deNan64, Type::f64, Literal(double(0)), EqFloat64);
if (module->features.hasSIMD()) {
uint8_t zero128[16] = {};
addFunc(module, deNan128, Type::v128, Literal(zero128));
}
}
// Add a de-NaN-ing helper function.
void addFunc(Module* module,
Name name,
Type type,
Literal literal,
std::optional<BinaryOp> op = {}) {
Builder builder(*module);
auto func = Builder::makeFunction(name, Signature(type, type), {});
// Compare the value to itself to check if it is a NaN, and return 0 if
// so:
//
// (if (result f*)
// (f*.eq
// (local.get $0)
// (local.get $0)
// )
// (local.get $0)
// (f*.const 0)
// )
Expression* condition;
if (type != Type::v128) {
// Generate a simple condition.
assert(op);
condition = builder.makeBinary(
*op, builder.makeLocalGet(0, type), builder.makeLocalGet(0, type));
} else {
assert(!op);
// v128 is trickier as the 128 bits may contain f32s or f64s, and we
// need to check for nans both ways in principle. However, the f32 NaN
// pattern is a superset of f64, since it checks less bits (8 bit
// exponent vs 11), and it is checked in more places (4 32-bit values vs
// 2 64-bit ones), so we can just check that. That is, this reduces to 4
// checks of f32s, but is otherwise the same as a check of a single f32.
//
// However there is additional complexity, which is that if we do
// EqVecF32x4 then we get all-1s for each case where we compare equal.
// That itself is a NaN pattern, which means that running this pass
// twice would interfere with itself. To avoid that we'd need a way to
// detect our previous instrumentation and not instrument it, but that
// is tricky (we can't depend on function names etc. while fuzzing).
// Instead, extract the lanes and use f32 checks.
auto getLane = [&](Index index) {
return builder.makeSIMDExtract(
ExtractLaneVecF32x4, builder.makeLocalGet(0, type), index);
};
auto getLaneCheck = [&](Index index) {
return builder.makeBinary(EqFloat32, getLane(index), getLane(index));
};
auto* firstTwo =
builder.makeBinary(AndInt32, getLaneCheck(0), getLaneCheck(1));
auto* lastTwo =
builder.makeBinary(AndInt32, getLaneCheck(2), getLaneCheck(3));
condition = builder.makeBinary(AndInt32, firstTwo, lastTwo);
}
func->body = builder.makeIf(
condition, builder.makeLocalGet(0, type), builder.makeConst(literal));
module->addFunction(std::move(func));
};
// Check if a contant v128 may contain f32 or f64 NaNs.
bool hasNaNLane(Const* c) {
assert(c->type == Type::v128);
auto value = c->value;
// Compute if all f32s are equal to themselves.
auto test32 = value.eqF32x4(value);
test32 = test32.allTrueI32x4();
return !test32.getInteger();
}
};
Pass* createDeNaNPass() { return new DeNaN(); }
} // namespace wasm
|