summaryrefslogtreecommitdiff
path: root/src/passes/HeapStoreOptimization.cpp
blob: 605caba41c1170ef975955965b0338b5da204d42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
/*
 * Copyright 2024 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//
// Optimizes heap (GC) stores.
//
// TODO: Add dead store elimination / load forwarding here.
//

#include "cfg/cfg-traversal.h"
#include "ir/effects.h"
#include "ir/local-graph.h"
#include "pass.h"
#include "wasm-builder.h"
#include "wasm.h"

namespace wasm {

namespace {

// In each basic block we will store the relevant heap store operations and
// other actions that matter to our analysis.
struct Info {
  std::vector<Expression**> actions;
};

struct HeapStoreOptimization
  : public WalkerPass<
      CFGWalker<HeapStoreOptimization, Visitor<HeapStoreOptimization>, Info>> {
  bool isFunctionParallel() override { return true; }

  // Locals are not modified here.
  bool requiresNonNullableLocalFixups() override { return false; }

  std::unique_ptr<Pass> create() override {
    return std::make_unique<HeapStoreOptimization>();
  }

  // Branches outside of the function can be ignored, as we only look at local
  // state in the function. (This may need to change if we do more general dead
  // store elimination.)
  bool ignoreBranchesOutsideOfFunc = true;

  // Store struct.sets and blocks, as we can find patterns among those.
  void addAction() {
    if (currBasicBlock) {
      currBasicBlock->contents.actions.push_back(getCurrentPointer());
    }
  }
  void visitStructSet(StructSet* curr) { addAction(); }
  void visitBlock(Block* curr) { addAction(); }

  void visitFunction(Function* curr) {
    // Now that the walk is complete and we have a CFG, find things to optimize.
    for (auto& block : basicBlocks) {
      for (auto** currp : block->contents.actions) {
        auto* curr = *currp;
        if (auto* set = curr->dynCast<StructSet>()) {
          optimizeStructSet(set, currp);
        } else if (auto* block = curr->dynCast<Block>()) {
          optimizeBlock(block);
        } else {
          WASM_UNREACHABLE("bad action");
        }
      }
    }
  }

  // Optimize a struct.set. Receives also a pointer to where it is referred to,
  // so we can replace it (which we do if we optimize).
  void optimizeStructSet(StructSet* curr, Expression** currp) {
    // If our reference is a tee of a struct.new, we may be able to fold the
    // stored value into the new itself:
    //
    //  (struct.set (local.tee $x (struct.new X Y Z)) X')
    // =>
    //  (local.set $x (struct.new X' Y Z))
    //
    if (auto* tee = curr->ref->dynCast<LocalSet>()) {
      if (auto* new_ = tee->value->dynCast<StructNew>()) {
        if (optimizeSubsequentStructSet(new_, curr, tee)) {
          // Success, so we do not need the struct.set any more, and the tee
          // can just be a set instead of us.
          tee->makeSet();
          *currp = tee;
        }
      }
    }
  }

  // Similar to the above with struct.set whose reference is a tee of a new, we
  // can do the same for subsequent sets in a list:
  //
  //  (local.set $x (struct.new X Y Z))
  //  (struct.set (local.get $x) X')
  // =>
  //  (local.set $x (struct.new X' Y Z))
  //
  // We also handle other struct.sets immediately after this one. If the
  // instruction following the new is not a struct.set we push the new down if
  // possible.
  void optimizeBlock(Block* curr) {
    auto& list = curr->list;

    for (Index i = 0; i < list.size(); i++) {
      auto* localSet = list[i]->dynCast<LocalSet>();
      if (!localSet) {
        continue;
      }
      auto* new_ = localSet->value->dynCast<StructNew>();
      if (!new_) {
        continue;
      }

      // This local.set of a struct.new looks good. Find struct.sets after it to
      // optimize.
      Index localSetIndex = i;
      for (Index j = localSetIndex + 1; j < list.size(); j++) {

        // Check that the next instruction is a struct.set on the same local as
        // the struct.new.
        auto* structSet = list[j]->dynCast<StructSet>();
        auto* localGet =
          structSet ? structSet->ref->dynCast<LocalGet>() : nullptr;
        if (!structSet || !localGet || localGet->index != localSet->index) {
          // Any time the pattern no longer matches, we try to push the
          // struct.new further down but if it is not possible we stop
          // optimizing possible struct.sets for this struct.new.
          if (trySwap(list, localSetIndex, j)) {
            // Update the index and continue to try again.
            localSetIndex = j;
            continue;
          }
          break;
        }

        // The pattern matches, try to optimize.
        if (!optimizeSubsequentStructSet(new_, structSet, localSet)) {
          break;
        } else {
          // Success. Replace the set with a nop, and continue to perhaps
          // optimize more.
          ExpressionManipulator::nop(structSet);
        }
      }
    }
  }

  // Helper function for optimizeHeapStores. Tries pushing the struct.new at
  // index i down to index j, swapping it with the instruction already at j, so
  // that it is closer to (potential) later struct.sets.
  bool trySwap(ExpressionList& list, Index i, Index j) {
    if (j == list.size() - 1) {
      // There is no reason to swap with the last element of the list as it
      // won't match the pattern because there wont be anything after. This also
      // avoids swapping an instruction that does not leave anything in the
      // stack by one that could leave something, and that which would be
      // incorrect.
      return false;
    }

    if (list[j]->is<LocalSet>() &&
        list[j]->dynCast<LocalSet>()->value->is<StructNew>()) {
      // Don't swap two struct.new instructions to avoid going back and forth.
      return false;
    }
    // Check if the two expressions can be swapped safely considering their
    // effects.
    auto firstEffects = effects(list[i]);
    auto secondEffects = effects(list[j]);
    if (secondEffects.invalidates(firstEffects)) {
      return false;
    }

    std::swap(list[i], list[j]);
    return true;
  }

  // Given a struct.new and a struct.set that occurs right after it, and that
  // applies to the same data, try to apply the set during the new. This can be
  // either with a nested tee:
  //
  //  (struct.set
  //    (local.tee $x (struct.new X Y Z))
  //    X'
  //  )
  // =>
  //  (local.set $x (struct.new X' Y Z))
  //
  // or without:
  //
  //  (local.set $x (struct.new X Y Z))
  //  (struct.set (local.get $x) X')
  // =>
  //  (local.set $x (struct.new X' Y Z))
  //
  // Returns true if we succeeded.
  bool optimizeSubsequentStructSet(StructNew* new_,
                                   StructSet* set,
                                   LocalSet* localSet) {
    // Leave unreachable code for DCE, to avoid updating types here.
    if (new_->type == Type::unreachable || set->type == Type::unreachable) {
      return false;
    }

    auto index = set->index;
    auto& operands = new_->operands;
    auto refLocalIndex = localSet->index;

    // Check for effects that prevent us moving the struct.set's value (X' in
    // the function comment) into its new position in the struct.new. First, it
    // must be ok to move it past the local.set (otherwise, it might read from
    // memory using that local, and depend on the struct.new having already
    // occurred; or, if it writes to that local, then it would cross another
    // write).
    auto setValueEffects = effects(set->value);
    if (setValueEffects.localsRead.count(refLocalIndex) ||
        setValueEffects.localsWritten.count(refLocalIndex)) {
      return false;
    }

    // We must move the set's value past indexes greater than it (Y and Z in
    // the example in the comment on this function). If this is not with_default
    // then we must check for effects.
    // TODO When this function is called repeatedly in a sequence this can
    //      become quadratic - perhaps we should memoize (though, struct sizes
    //      tend to not be ridiculously large).
    if (!new_->isWithDefault()) {
      for (Index i = index + 1; i < operands.size(); i++) {
        auto operandEffects = effects(operands[i]);
        if (operandEffects.invalidates(setValueEffects)) {
          // TODO: we could use locals to reorder everything
          return false;
        }
      }
    }

    // We must also be careful of branches out from the value that skip the
    // local.set, see below.
    if (canSkipLocalSet(set, setValueEffects, localSet)) {
      return false;
    }

    // We can optimize here!
    Builder builder(*getModule());

    // If this was with_default then we add default values now. That does
    // increase code size in some cases (if there are many values, and few sets
    // that get removed), but in general this optimization is worth it.
    if (new_->isWithDefault()) {
      auto& fields = new_->type.getHeapType().getStruct().fields;
      for (auto& field : fields) {
        auto zero = Literal::makeZero(field.type);
        operands.push_back(builder.makeConstantExpression(zero));
      }
    }

    // See if we need to keep the old value.
    if (effects(operands[index]).hasUnremovableSideEffects()) {
      operands[index] =
        builder.makeSequence(builder.makeDrop(operands[index]), set->value);
    } else {
      operands[index] = set->value;
    }

    return true;
  }

  // We must be careful of branches that skip the local.set. For example:
  //
  //  (block $out
  //    (local.set $x (struct.new X Y Z))
  //    (struct.set (local.get $x) (..br $out..))  ;; X' here has a br
  //  )
  //  ..local.get $x..
  //
  // Note how we do the local.set first. Imagine we optimized to this:
  //
  //  (block $out
  //    (local.set $x (struct.new (..br $out..) Y Z))
  //  )
  //  ..local.get $x..
  //
  // Now the br happens first, skipping the local.set entirely, and the use
  // later down will not get the proper value. This is the problem we must
  // detect here.
  //
  // We are given a struct.set, the computed effects of its value (the caller
  // already has those, so this is an optimization to avoid recomputation), and
  // the local.set.
  bool canSkipLocalSet(StructSet* set,
                       const EffectAnalyzer& setValueEffects,
                       LocalSet* localSet) {
    // First, if the set's value cannot branch at all, then we have no problem.
    if (!setValueEffects.transfersControlFlow()) {
      return false;
    }

    // We may branch, so do an analysis using a LocalGraph. We will check
    // whether it is valid to move the local.set to where the struct.set is, so
    // we provide StructSet as the query class.
    //
    // It is valid to reuse the LocalGraph many times because the optimization
    // that we do in this pass does not generate new, dangerous control flow. We
    // only optimize if moving a LocalSet is valid, and that does not invalidate
    // any other one.
    if (!localGraph) {
      localGraph.emplace(getFunction(), getModule(), StructSet::SpecificId);
    }
    auto badGets = localGraph->canMoveSet(localSet, set);
    if (badGets.size() == 0) {
      // No problems at all.
      return false;
    }
    // It is ok to have a local.get in the struct.set itself, as if we optimize
    // then that local.get goes away anyhow, that is,
    //
    //   (local.set $x (struct.new X Y Z))
    //   (struct.set (local.get $x) (X'))
    //  =>
    //   (local.set $x (struct.new X' Y Z))
    //
    // Both the local.get and the struct.set are removed.
    if (badGets.size() >= 2) {
      return true;
    }
    return *badGets.begin() != set->ref;
  }

  EffectAnalyzer effects(Expression* expr) {
    return EffectAnalyzer(getPassOptions(), *getModule(), expr);
  }

private:
  // A local graph that is constructed the first time we need it.
  std::optional<LazyLocalGraph> localGraph;
};

} // anonymous namespace

Pass* createHeapStoreOptimizationPass() { return new HeapStoreOptimization(); }

} // namespace wasm