1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Inlining.
//
// This uses some simple heuristics to decide when to inline.
//
// Two versions are provided: inlining and inlining-optimizing. You
// probably want the optimizing version, which will optimize locations
// we inlined into, as inlining by itself creates a block to house the
// inlined code, some temp locals, etc., which can usually be removed
// by optimizations. Note that the two versions use the same heuristics,
// so we don't take into account the overhead if you don't optimize
// afterwards. The non-optimizing version is mainly useful for debugging,
// or if you intend to run a full set of optimizations anyhow on
// everything later.
//
#include <atomic>
#include "wasm.h"
#include "pass.h"
#include "wasm-builder.h"
#include "ir/literal-utils.h"
#include "ir/module-utils.h"
#include "ir/utils.h"
#include "parsing.h"
#include "passes/opt-utils.h"
namespace wasm {
// A limit on how big a function to inline when being careful about size
static const int CAREFUL_SIZE_LIMIT = 15;
// A limit on how big a function to inline when being more flexible. In
// particular it's nice that with this limit we can inline the clamp
// functions (i32s-div, f64-to-int, etc.), that can affect perf.
static const int FLEXIBLE_SIZE_LIMIT = 20;
// A size so small that after optimizations, the inlined code will be
// smaller than the call instruction itself. 2 is a safe number because
// there is no risk of things like
// (func $reverse (param $x i32) (param $y i32)
// (call $something (get_local $y) (get_local $x))
// )
// in which case the reversing of the params means we'll possibly need
// a block and a temp local. But that takes at least 3 nodes, and 2 < 3.
// More generally, with 2 items we may have a get_local, but no way to
// require it to be saved instead of directly consumed.
static const int INLINING_OPTIMIZING_WILL_DECREASE_SIZE_LIMIT = 2;
// Useful into on a function, helping us decide if we can inline it
struct FunctionInfo {
std::atomic<Index> calls;
Index size;
std::atomic<bool> lightweight;
bool usedGlobally; // in a table or export
FunctionInfo() {
calls = 0;
size = 0;
lightweight = true;
usedGlobally = false;
}
bool worthInlining(PassOptions& options) {
// if it's big, it's just not worth doing (TODO: investigate more)
if (size > FLEXIBLE_SIZE_LIMIT) return false;
// if it's so small we have a guarantee that after we optimize the
// size will not increase, inline it
if (size <= INLINING_OPTIMIZING_WILL_DECREASE_SIZE_LIMIT) return true;
// if it has one use, then inlining it would likely reduce code size
// since we are just moving code around, + optimizing, so worth it
// if small enough that we are pretty sure its ok
if (calls == 1 && !usedGlobally && size <= CAREFUL_SIZE_LIMIT) return true;
// more than one use, so we can't eliminate it after inlining,
// so only worth it if we really care about speed and don't care
// about size, and if it's lightweight so a good candidate for
// speeding us up.
return options.optimizeLevel >= 3 && options.shrinkLevel == 0 && lightweight;
}
};
typedef std::unordered_map<Name, FunctionInfo> NameInfoMap;
struct FunctionInfoScanner : public WalkerPass<PostWalker<FunctionInfoScanner>> {
bool isFunctionParallel() override { return true; }
FunctionInfoScanner(NameInfoMap* infos) : infos(infos) {}
FunctionInfoScanner* create() override {
return new FunctionInfoScanner(infos);
}
void visitLoop(Loop* curr) {
// having a loop is not lightweight
(*infos)[getFunction()->name].lightweight = false;
}
void visitCall(Call* curr) {
assert(infos->count(curr->target) > 0); // can't add a new element in parallel
(*infos)[curr->target].calls++;
// having a call is not lightweight
(*infos)[getFunction()->name].lightweight = false;
}
void visitFunction(Function* curr) {
(*infos)[curr->name].size = Measurer::measure(curr->body);
}
private:
NameInfoMap* infos;
};
struct InliningAction {
Expression** callSite;
Function* contents;
InliningAction(Expression** callSite, Function* contents) : callSite(callSite), contents(contents) {}
};
struct InliningState {
std::unordered_set<Name> worthInlining;
std::unordered_map<Name, std::vector<InliningAction>> actionsForFunction; // function name => actions that can be performed in it
};
struct Planner : public WalkerPass<PostWalker<Planner>> {
bool isFunctionParallel() override { return true; }
Planner(InliningState* state) : state(state) {}
Planner* create() override {
return new Planner(state);
}
void visitCall(Call* curr) {
// plan to inline if we know this is valid to inline, and if the call is
// actually performed - if it is dead code, it's pointless to inline.
// we also cannot inline ourselves.
if (state->worthInlining.count(curr->target) &&
curr->type != unreachable &&
curr->target != getFunction()->name) {
// nest the call in a block. that way the location of the pointer to the call will not
// change even if we inline multiple times into the same function, otherwise
// call1(call2()) might be a problem
auto* block = Builder(*getModule()).makeBlock(curr);
replaceCurrent(block);
assert(state->actionsForFunction.count(getFunction()->name) > 0); // can't add a new element in parallel
state->actionsForFunction[getFunction()->name].emplace_back(&block->list[0], getModule()->getFunction(curr->target));
}
}
void doWalkFunction(Function* func) {
walk(func->body);
}
private:
InliningState* state;
};
// Core inlining logic. Modifies the outside function (adding locals as
// needed), and returns the inlined code.
static Expression* doInlining(Module* module, Function* into, InliningAction& action) {
Function* from = action.contents;
auto* call = (*action.callSite)->cast<Call>();
Builder builder(*module);
auto* block = Builder(*module).makeBlock();
block->name = Name(std::string("__inlined_func$") + from->name.str);
*action.callSite = block;
// set up a locals mapping
struct Updater : public PostWalker<Updater> {
std::map<Index, Index> localMapping;
Name returnName;
Builder* builder;
void visitReturn(Return* curr) {
replaceCurrent(builder->makeBreak(returnName, curr->value));
}
void visitGetLocal(GetLocal* curr) {
curr->index = localMapping[curr->index];
}
void visitSetLocal(SetLocal* curr) {
curr->index = localMapping[curr->index];
}
} updater;
updater.returnName = block->name;
updater.builder = &builder;
for (Index i = 0; i < from->getNumLocals(); i++) {
updater.localMapping[i] = builder.addVar(into, from->getLocalType(i));
}
// assign the operands into the params
for (Index i = 0; i < from->params.size(); i++) {
block->list.push_back(builder.makeSetLocal(updater.localMapping[i], call->operands[i]));
}
// zero out the vars (as we may be in a loop, and may depend on their zero-init value
for (Index i = 0; i < from->vars.size(); i++) {
block->list.push_back(builder.makeSetLocal(updater.localMapping[from->getVarIndexBase() + i], LiteralUtils::makeZero(from->vars[i], *module)));
}
// generate and update the inlined contents
auto* contents = ExpressionManipulator::copy(from->body, *module);
updater.walk(contents);
block->list.push_back(contents);
block->type = call->type;
// if the function returned a value, we just set the block containing the
// inlined code to have that type. or, if the function was void and
// contained void, that is fine too. a bad case is a void function in which
// we have unreachable code, so we would be replacing a void call with an
// unreachable; we need to handle
if (contents->type == unreachable && block->type == none) {
// make the block reachable by adding a break to it
block->list.push_back(builder.makeBreak(block->name));
}
return block;
}
struct Inlining : public Pass {
// whether to optimize where we inline
bool optimize = false;
// the information for each function. recomputed in each iteraction
NameInfoMap infos;
Index iterationNumber;
void run(PassRunner* runner, Module* module) override {
Index numFunctions = module->functions.size();
// keep going while we inline, to handle nesting. TODO: optimize
iterationNumber = 0;
// no point to do more iterations than the number of functions, as
// it means we infinitely recursing (which should
// be very rare in practice, but it is possible that a recursive call
// can look like it is worth inlining)
while (iterationNumber <= numFunctions) {
#ifdef INLINING_DEBUG
std::cout << "inlining loop iter " << iterationNumber << " (numFunctions: " << numFunctions << ")\n";
#endif
calculateInfos(module);
if (!iteration(runner, module)) {
return;
}
iterationNumber++;
}
}
void calculateInfos(Module* module) {
infos.clear();
// fill in info, as we operate on it in parallel (each function to its own entry)
for (auto& func : module->functions) {
infos[func->name];
}
PassRunner runner(module);
runner.setIsNested(true);
runner.add<FunctionInfoScanner>(&infos);
runner.run();
// fill in global uses
// anything exported or used in a table should not be inlined
for (auto& ex : module->exports) {
if (ex->kind == ExternalKind::Function) {
infos[ex->value].usedGlobally = true;
}
}
for (auto& segment : module->table.segments) {
for (auto name : segment.data) {
infos[name].usedGlobally = true;
}
}
}
bool iteration(PassRunner* runner, Module* module) {
// decide which to inline
InliningState state;
ModuleUtils::iterDefinedFunctions(*module, [&](Function* func) {
if (infos[func->name].worthInlining(runner->options)) {
state.worthInlining.insert(func->name);
}
});
if (state.worthInlining.size() == 0) return false;
// fill in actionsForFunction, as we operate on it in parallel (each function to its own entry)
for (auto& func : module->functions) {
state.actionsForFunction[func->name];
}
// find and plan inlinings
{
PassRunner runner(module);
runner.setIsNested(true);
runner.add<Planner>(&state);
runner.run();
}
// perform inlinings TODO: parallelize
std::unordered_map<Name, Index> inlinedUses; // how many uses we inlined
std::unordered_set<Function*> inlinedInto; // which functions were inlined into
for (auto& func : module->functions) {
// if we've inlined a function, don't inline into it in this iteration,
// avoid risk of races
// note that we do not risk stalling progress, as each iteration() will
// inline at least one call before hitting this
if (inlinedUses.count(func->name)) continue;
for (auto& action : state.actionsForFunction[func->name]) {
auto* inlinedFunction = action.contents;
// if we've inlined into a function, don't inline it in this iteration,
// avoid risk of races
// note that we do not risk stalling progress, as each iteration() will
// inline at least one call before hitting this
if (inlinedInto.count(inlinedFunction)) continue;
Name inlinedName = inlinedFunction->name;
#ifdef INLINING_DEBUG
std::cout << "inline " << inlinedName << " into " << func->name << '\n';
#endif
doInlining(module, func.get(), action);
inlinedUses[inlinedName]++;
inlinedInto.insert(func.get());
assert(inlinedUses[inlinedName] <= infos[inlinedName].calls);
}
}
// anything we inlined into may now have non-unique label names, fix it up
for (auto func : inlinedInto) {
wasm::UniqueNameMapper::uniquify(func->body);
}
if (optimize && inlinedInto.size() > 0) {
OptUtils::optimizeAfterInlining(inlinedInto, module, runner);
}
// remove functions that we no longer need after inlining
auto& funcs = module->functions;
funcs.erase(std::remove_if(funcs.begin(), funcs.end(), [&](const std::unique_ptr<Function>& curr) {
auto name = curr->name;
auto& info = infos[name];
bool canRemove = inlinedUses.count(name) && inlinedUses[name] == info.calls && !info.usedGlobally;
#ifdef INLINING_DEBUG
if (canRemove) std::cout << "removing " << name << '\n';
#endif
return canRemove;
}), funcs.end());
// return whether we did any work
return inlinedUses.size() > 0;
}
};
Pass* createInliningPass() {
return new Inlining();
}
Pass* createInliningOptimizingPass() {
auto* ret = new Inlining();
ret->optimize = true;
return ret;
}
} // namespace wasm
|