summaryrefslogtreecommitdiff
path: root/src/passes/MergeBlocks.cpp
blob: e0c5e575a37c889015393a77741d56e40f18ab4e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
/*
 * Copyright 2015 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//
// Merges blocks to their parents.
//
// We merge both entire blocks when possible, as well as loop tails, like
//  (block
//   (loop $child
//    (br_if $child (..)
//    (call $foo)
//   )
//  )
// Here we can move the call into the outer block. Doing so may let
// the inner block become a single expression, and usually outer
// blocks are larger anyhow. (This also helps readability.)
//
// We also restructure blocks in order to enable such merging. For
// example,
//
//  (i32.store
//    (block
//      (call $foo)
//      (i32.load (i32.const 100))
//    )
//    (i32.const 0)
//  )
//
// can be transformed into
//
//  (block
//    (call $foo)
//    (i32.store
//      (block
//        (i32.load (i32.const 100))
//      )
//      (i32.const 0)
//    )
//  )
//
// after which the internal block can go away, and
// the new external block might be mergeable. This is always
// worth it if the internal block ends up with 1 item.
// For the second operand,
//
//  (i32.store
//    (i32.const 100)
//    (block
//      (call $foo)
//      (i32.load (i32.const 200))
//    )
//  )
//
// The order of operations requires that the first execute
// before. We can do the same operation, but only if the
// first has no side effects, or the code we are moving out
// has no side effects.
// If we can do this to both operands, we can generate a
// single outside block.
//

#include <ir/branch-utils.h>
#include <ir/effects.h>
#include <ir/iteration.h>
#include <ir/utils.h>
#include <pass.h>
#include <support/small_vector.h>
#include <wasm-builder.h>
#include <wasm.h>

namespace wasm {

// Looks for reasons we can't remove the values from breaks to an origin. This
// is run when we know the value sent to that block is dropped, so the value is
// not needed, but some corner cases stop us (for example, if there is a switch
// targeting us, we can't do it - we can't remove the value from the switch's
// other targets).
struct ProblemFinder
  : public ControlFlowWalker<ProblemFinder,
                             UnifiedExpressionVisitor<ProblemFinder>> {
  Name origin;
  bool foundProblem = false;
  // count br_ifs, and dropped br_ifs. if they don't match, then a br_if flow
  // value is used, and we can't drop it
  Index brIfs = 0;
  Index droppedBrIfs = 0;
  PassOptions& passOptions;

  ProblemFinder(PassOptions& passOptions) : passOptions(passOptions) {}

  void visitExpression(Expression* curr) {
    if (auto* drop = curr->dynCast<Drop>()) {
      if (auto* br = drop->value->dynCast<Break>()) {
        if (br->name == origin && br->condition) {
          droppedBrIfs++;
        }
      }
      return;
    }

    if (auto* br = curr->dynCast<Break>()) {
      if (br->name == origin) {
        if (br->condition) {
          brIfs++;
        }
        // if the value has side effects, we can't remove it
        if (EffectAnalyzer(passOptions, *getModule(), br->value)
              .hasSideEffects()) {
          foundProblem = true;
        }
      }
      return;
    }

    if (auto* tryy = curr->dynCast<TryTable>()) {
      auto num = tryy->catchTags.size();
      for (Index i = 0; i < num; i++) {
        if (tryy->catchDests[i] == origin) {
          // This try_table branches to the origin we care about. We know the
          // value being sent to the block is dropped, so we'd like to stop
          // anything from being sent to it. We can stop a ref from being sent,
          // so if that is enough to remove all the values, then we can
          // optimize here. In other words, if this is a catch_all_ref (which
          // can only send a ref) or this is a catch_ref of a specific tag that
          // has no contents (so if we remove the ref, nothing remains), then we
          // can optimize, but if this is is a catch of a tag *with* contents
          // then those contents stop us.
          //
          // TODO: We could also support cases where the target block has
          //       multiple values, and remove just ref at the end. That might
          //       make more sense in TupleOptimization though as it would need
          //       to track uses of parts of a tuple.
          if (!tryy->catchTags[i] ||
              getModule()->getTag(tryy->catchTags[i])->sig.params.size() == 0) {
            // There must be a ref here, otherwise there is no value being sent
            // at all, and we should not be running ProblemFinder at all.
            assert(tryy->catchRefs[i]);
          } else {
            // Anything else is a problem.
            foundProblem = true;
            return;
          }
        }
      }
      return;
    }

    // Any other branch type - switch, br_on, etc. - is not handled yet.
    BranchUtils::operateOnScopeNameUses(curr, [&](Name& name) {
      if (name == origin) {
        foundProblem = true;
      }
    });
  }

  bool found() {
    assert(brIfs >= droppedBrIfs);
    return foundProblem || brIfs > droppedBrIfs;
  }
};

// Drops values from breaks to an origin.
// While doing so it can create new blocks, so optimize blocks as well.
struct BreakValueDropper : public ControlFlowWalker<BreakValueDropper> {
  Name origin;
  PassOptions& passOptions;
  BranchUtils::BranchSeekerCache& branchInfo;

  BreakValueDropper(PassOptions& passOptions,
                    BranchUtils::BranchSeekerCache& branchInfo)
    : passOptions(passOptions), branchInfo(branchInfo) {}

  void visitBlock(Block* curr);

  void visitBreak(Break* curr) {
    if (curr->value && curr->name == origin) {
      Builder builder(*getModule());
      auto* value = curr->value;
      if (value->type == Type::unreachable) {
        // the break isn't even reached
        replaceCurrent(value);
        return;
      }
      curr->value = nullptr;
      curr->finalize();
      replaceCurrent(builder.makeSequence(builder.makeDrop(value), curr));
    }
  }

  void visitDrop(Drop* curr) {
    // if we dropped a br_if whose value we removed, then we are now dropping a
    // (block (drop value) (br_if)) with type none, which does not need a drop
    // likewise, unreachable does not need to be dropped, so we just leave drops
    // of concrete values
    if (!curr->value->type.isConcrete()) {
      replaceCurrent(curr->value);
    }
  }

  void visitTryTable(TryTable* curr) {
    auto num = curr->catchTags.size();
    for (Index i = 0; i < num; i++) {
      if (curr->catchDests[i] == origin) {
        // Remove the existing ref being sent.
        assert(curr->catchRefs[i]);
        curr->catchRefs[i] = false;
        curr->sentTypes[i] = Type::none;
      }
    }
  }
};

// Checks for code after an unreachable element.
static bool hasDeadCode(Block* block) {
  auto& list = block->list;
  auto size = list.size();
  for (size_t i = 1; i < size; i++) {
    if (list[i - 1]->type == Type::unreachable) {
      return true;
    }
  }
  return false;
}

// Given a dropped block, see if we can simplify it by optimizing the drop into
// the block, removing the return value while doin so. Returns whether we
// succeeded.
static bool optimizeDroppedBlock(Drop* drop,
                                 Block* block,
                                 Module& wasm,
                                 PassOptions& options,
                                 BranchUtils::BranchSeekerCache& branchInfo) {
  assert(drop->value == block);
  if (block->name.is()) {
    // There may be breaks: see if we can remove their values.
    Expression* expression = block;
    ProblemFinder finder(options);
    finder.setModule(&wasm);
    finder.origin = block->name;
    finder.walk(expression);
    if (finder.found()) {
      // We found a problem that blocks us.
      return false;
    }

    // Success. Fix up breaks before continuing to handle the drop itself.
    BreakValueDropper fixer(options, branchInfo);
    fixer.origin = block->name;
    fixer.setModule(&wasm);
    fixer.walk(expression);
  }

  // Optimize by removing the block. Reuse the drop, if we still need it.
  auto* last = block->list.back();
  if (last->type.isConcrete()) {
    drop->value = last;
    drop->finalize();
    block->list.back() = drop;
  }
  // Remove the old type, which was from the value we just removed.
  block->finalize(Type::none);
  return true;
}

// Core block optimizer routine. Returns true when we optimize.
static bool optimizeBlock(Block* curr,
                          Module* module,
                          PassOptions& passOptions,
                          BranchUtils::BranchSeekerCache& branchInfo) {
  auto& list = curr->list;
  // Main merging loop.
  bool more = true;
  bool changed = false;
  while (more) {
    more = false;
    for (size_t i = 0; i < list.size(); i++) {
      auto* child = list[i];
      // The child block, if there is one.
      Block* childBlock = child->dynCast<Block>();
      // If we are merging an inner block of a loop, then we must not
      // merge things before and including the name of the loop, moving
      // those out would break things.
      Loop* loop = nullptr;
      // To to handle a non-block child.
      if (!childBlock) {
        // If we have a child that is (drop (block ..)) then we can move the
        // drop into the block, and remove br values. This allows more merging.
        if (auto* drop = list[i]->dynCast<Drop>()) {
          childBlock = drop->value->dynCast<Block>();
          if (childBlock &&
              optimizeDroppedBlock(
                drop, childBlock, *module, passOptions, branchInfo)) {
            child = list[i] = childBlock;
            more = true;
            changed = true;
          } else {
            childBlock = nullptr;
          }
        } else if ((loop = list[i]->dynCast<Loop>())) {
          // We can merge a loop's "tail" - if the body is a block and has
          // instructions at the end that do not branch back.
          childBlock = loop->body->dynCast<Block>();
          // TODO: handle (loop (loop - the bodies of loops may not be blocks
        }
      }
      // If no block, we can't do anything.
      if (!childBlock) {
        continue;
      }
      auto& childList = childBlock->list;
      auto childSize = childList.size();
      if (childSize == 0) {
        continue;
      }
      // If the child has items after an unreachable, ignore it - dce should
      // have been run, and we prefer to not handle the complexity here.
      if (hasDeadCode(childBlock)) {
        continue;
      }
      // In some cases we can remove only the head or the tail of the block,
      // and must keep some things in the child block.
      Index keepStart = childSize;
      Index keepEnd = 0;
      // For a block with a name, we may only be able to remove a head, up
      // to the first item that branches to the block.
      if (childBlock->name.is()) {
        // If it has a concrete value, then breaks may be sending it a value,
        // and we'd need to handle that. TODO
        if (childBlock->type.isConcrete()) {
          continue;
        }
        auto childName = childBlock->name;
        for (size_t j = 0; j < childSize; j++) {
          auto* item = childList[j];
          if (branchInfo.hasBranch(item, childName)) {
            // We can't remove this from the child.
            keepStart = j;
            keepEnd = childSize;
            break;
          }
        }
      }
      // For a loop, we may only be able to remove a tail
      if (loop) {
        auto childName = loop->name;
        for (auto j = int(childSize - 1); j >= 0; j--) {
          auto* item = childList[j];
          if (BranchUtils::BranchSeeker::has(item, childName)) {
            // We can't remove this from the child.
            keepStart = 0;
            keepEnd = std::max(Index(j + 1), keepEnd);
            break;
          }
        }
        // If we can only do part of the block, and if the block has a flowing
        // value, we would need special handling for that - not worth it,
        // probably TODO
        // FIXME is this not handled by the drop later down?
        if (keepEnd < childSize && childList.back()->type.isConcrete()) {
          continue;
        }
      }
      // Maybe there's nothing to do, if we must keep it all in the
      // child anyhow.
      if (keepStart == 0 && keepEnd == childSize) {
        continue;
      }
      // There is something to do!
      bool keepingPart = keepStart < keepEnd;
      // Create a new merged list, and fill in the code before the child block
      // we are merging in. It is efficient to use a small vector here because
      // most blocks are fairly small, and this way we copy once into the arena
      // we use for Block lists a single time at the end (arena allocations
      // can't be freed, so any temporary allocations while we add to the list
      // would end up wasted).
      SmallVector<Expression*, 10> merged;
      for (size_t j = 0; j < i; j++) {
        merged.push_back(list[j]);
      }
      // Add the head of the block - the things at the start we do
      // not need to keep.
      for (Index j = 0; j < keepStart; j++) {
        merged.push_back(childList[j]);
      }
      // If we can't merge it all, keep and filter the child.
      if (keepingPart) {
        merged.push_back(child);
        // Filter the child.
        ExpressionList filtered(module->allocator);
        for (Index j = keepStart; j < keepEnd; j++) {
          filtered.push_back(childList[j]);
        }
        // Add the tail of the block - the things at the end we do
        // not need to keep.
        for (Index j = keepEnd; j < childSize; j++) {
          merged.push_back(childList[j]);
        }
        // Update the child.
        childList.swap(filtered);
        // We may have removed unreachable items.
        childBlock->finalize();
        if (loop) {
          loop->finalize();
        }
        // Note that we modify the child block here, which invalidates info
        // in branchInfo. However, as we have scanned the parent, we have
        // already forgotten the child's info, so there is nothing to do here
        // for the child.
        // (We also don't need to do anything for the parent - we move code
        // from a child into the parent, but that doesn't change the total
        // branches in the parent.)
      }
      // Add the rest of the parent block after the child.
      for (size_t j = i + 1; j < list.size(); j++) {
        merged.push_back(list[j]);
      }
      // if we merged a concrete element in the middle, drop it
      if (!merged.empty()) {
        auto* last = merged.back();
        for (auto*& item : merged) {
          if (item != last && item->type.isConcrete()) {
            Builder builder(*module);
            item = builder.makeDrop(item);
          }
        }
      }
      list.set(merged);
      more = true;
      changed = true;
      break;
    }
  }
  if (changed) {
    curr->finalize(curr->type);
  }
  return changed;
}

void BreakValueDropper::visitBlock(Block* curr) {
  optimizeBlock(curr, getModule(), passOptions, branchInfo);
}

struct MergeBlocks
  : public WalkerPass<
      PostWalker<MergeBlocks, UnifiedExpressionVisitor<MergeBlocks>>> {
  bool isFunctionParallel() override { return true; }

  std::unique_ptr<Pass> create() override {
    return std::make_unique<MergeBlocks>();
  }

  bool refinalize = false;

  BranchUtils::BranchSeekerCache branchInfo;

  void visitBlock(Block* curr) {
    optimizeBlock(curr, getModule(), getPassOptions(), branchInfo);
  }

  void visitDrop(Drop* curr) {
    if (auto* block = curr->value->dynCast<Block>()) {
      if (optimizeDroppedBlock(
            curr, block, *getModule(), getPassOptions(), branchInfo)) {
        replaceCurrent(block);
        refinalize = true;
      }
    }
  }

  // given
  // (curr
  //  (block=child
  //   (..more..)
  //   (back)
  //  )
  //  (..other..children..)
  // )
  // if child is a block, we can move this around to
  // (block
  //  (..more..)
  //  (curr
  //   (back)
  //   (..other..children..)
  //  )
  // )
  // at which point the block is on the outside and potentially mergeable with
  // an outer block
  Block* optimize(Expression* curr,
                  Expression*& child,
                  Block* outer = nullptr,
                  Expression** dependency1 = nullptr,
                  Expression** dependency2 = nullptr) {
    if (!child) {
      return outer;
    }
    if ((dependency1 && *dependency1) || (dependency2 && *dependency2)) {
      // there are dependencies, things we must be reordered through. make sure
      // no problems there
      EffectAnalyzer childEffects(getPassOptions(), *getModule(), child);
      if (dependency1 && *dependency1 &&
          EffectAnalyzer(getPassOptions(), *getModule(), *dependency1)
            .invalidates(childEffects)) {
        return outer;
      }
      if (dependency2 && *dependency2 &&
          EffectAnalyzer(getPassOptions(), *getModule(), *dependency2)
            .invalidates(childEffects)) {
        return outer;
      }
    }
    if (auto* block = child->dynCast<Block>()) {
      if (!block->name.is() && block->list.size() >= 2) {
        auto* back = block->list.back();
        if (back->type == Type::unreachable) {
          // curr is not reachable, dce could remove it; don't try anything
          // fancy here
          return outer;
        }
        // We are going to replace the block with the final element, so they
        // should be identically typed. Note that we could check for subtyping
        // here, but it would not help in the general case: we know that this
        // block has no breaks (as confirmed above), and so the local-subtyping
        // pass will turn its type into that of its final element, if the final
        // element has a more specialized type. (If we did want to handle that,
        // we'd need to then run a ReFinalize after everything, which would add
        // more complexity here.)
        if (block->type != back->type) {
          return outer;
        }
        child = back;
        refinalize = true;
        if (outer == nullptr) {
          // reuse the block, move it out
          block->list.back() = curr;
          // we want the block outside to have the same type as curr had
          block->finalize(curr->type);
          replaceCurrent(block);
          return block;
        } else {
          // append to an existing outer block
          assert(outer->list.back() == curr);
          outer->list.pop_back();
          for (Index i = 0; i < block->list.size() - 1; i++) {
            outer->list.push_back(block->list[i]);
          }
          outer->list.push_back(curr);
        }
      }
    }
    return outer;
  }

  // Default optimizations for simple cases. Complex things are overridden
  // below.
  void visitExpression(Expression* curr) {
    // Control flow need special handling. Those we can optimize are handled
    // below.
    if (Properties::isControlFlowStructure(curr)) {
      return;
    }

    // As we go through the children, to move things to the outside means
    // moving them past the children before them:
    //
    //  (parent
    //   (child1
    //    (A)
    //    (B)
    //   )
    //   (child2
    //
    // If we move (A) out of parent, then that is fine (further things moved
    // out would appear after it). But if we leave (B) in its current position
    // then if we try to move anything from child2 out of parent then we must
    // move those things past (B). We use a vector to track the effects of the
    // children, where it contains the effects of what was left in the child
    // after optimization.
    std::vector<EffectAnalyzer> childEffects;

    ChildIterator iterator(curr);
    auto numChildren = iterator.getNumChildren();

    // Find the last block among the children, as all we are trying to do here
    // is move the contents of blocks outwards.
    Index lastBlock = -1;
    for (Index i = 0; i < numChildren; i++) {
      if (iterator.getChild(i)->is<Block>()) {
        lastBlock = i;
      }
    }
    if (lastBlock == Index(-1)) {
      // There are no blocks at all, so there is nothing to optimize.
      return;
    }

    // We'll only compute effects up to the child before the last block, since
    // we have nothing to optimize afterwards, which sets a maximum size on the
    // vector.
    if (lastBlock > 0) {
      childEffects.reserve(lastBlock);
    }

    // The outer block that will replace us, containing the contents moved out
    // and then ourselves, assuming we manage to optimize.
    Block* outerBlock = nullptr;

    for (Index i = 0; i <= lastBlock; i++) {
      auto* child = iterator.getChild(i);
      auto* block = child->dynCast<Block>();

      auto continueEarly = [&]() {
        // When we continue early, after failing to find anything to optimize,
        // the effects we need to note for the child are simply those of the
        // child in its original form.
        childEffects.emplace_back(getPassOptions(), *getModule(), child);
      };

      // If there is no block, or it is one that might have branches, or it is
      // too small for us to remove anything from (we cannot remove the last
      // element), or if it has unreachable code (leave that for dce), then give
      // up.
      if (!block || block->name.is() || block->list.size() <= 1) {
        continueEarly();
        continue;
      }

      // Also give up if the block's last element has a different type than the
      // block, as that would mean we would change the type received by the
      // parent (which might cause its type to need to be updated, for example).
      // Leave this alone, as other passes will simplify this anyhow (using
      // refinalize).
      auto* back = block->list.back();
      if (block->type != back->type) {
        continueEarly();
        continue;
      }

      // The block seems to have the shape we want. Check for effects: we want
      // to move all the items out but the last one, so they must all cross over
      // anything we need to move past.
      //
      // In principle we could also handle the case where we can move out only
      // some of the block items. However, that would be more complex (we'd need
      // to allocate a new block sometimes), it is rare, and it may not always
      // be helpful (we wouldn't actually be getting rid of the child block -
      // although, in the binary format such blocks tend to vanish anyhow).
      bool fail = false;
      for (auto* blockChild : block->list) {
        if (blockChild == back) {
          break;
        }
        EffectAnalyzer blockChildEffects(
          getPassOptions(), *getModule(), blockChild);
        for (auto& effects : childEffects) {
          if (blockChildEffects.invalidates(effects)) {
            fail = true;
            break;
          }
        }
        if (fail) {
          break;
        }
      }
      if (fail) {
        continueEarly();
        continue;
      }

      // Wonderful, we can do this! Move our items to an outer block, reusing
      // this one if there isn't one already.
      if (!outerBlock) {
        // Leave all the items there, just remove the last one which will remain
        // where it was.
        block->list.pop_back();
        outerBlock = block;
      } else {
        // Move the items to the existing outer block.
        for (auto* blockChild : block->list) {
          if (blockChild == back) {
            break;
          }
          outerBlock->list.push_back(blockChild);
        }
      }

      // Set the back element as the new child, replacing the block that was
      // there.
      iterator.getChild(i) = back;

      // If there are further elements, we need to know what effects the
      // remaining code has, as if they move they'll move past it.
      if (i < lastBlock) {
        childEffects.emplace_back(getPassOptions(), *getModule(), back);
      }
    }

    if (outerBlock) {
      // We moved items outside, which means we must replace ourselves with the
      // block.
      outerBlock->list.push_back(curr);
      outerBlock->finalize(curr->type);
      replaceCurrent(outerBlock);
      refinalize = true;
    }
  }

  void visitIf(If* curr) {
    // We can move code out of the condition, but not any of the other children.
    optimize(curr, curr->condition);
  }

  void visitThrow(Throw* curr) {
    Block* outer = nullptr;
    for (Index i = 0; i < curr->operands.size(); i++) {
      if (EffectAnalyzer(getPassOptions(), *getModule(), curr->operands[i])
            .hasSideEffects()) {
        return;
      }
      outer = optimize(curr, curr->operands[i], outer);
    }
  }

  void visitFunction(Function* curr) {
    if (refinalize) {
      ReFinalize().walkFunctionInModule(curr, getModule());
    }
  }
};

Pass* createMergeBlocksPass() { return new MergeBlocks(); }

} // namespace wasm