1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
/*
* Copyright 2022 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Condensing a module with multiple memories into a module with a single memory
// for browsers that don’t support multiple memories.
//
// This pass also disables multimemory so that the target features section in
// the emitted module does not report the use of MultiMemories. Disabling the
// multimemory feature also prevents later passes from adding additional
// memories.
//
// The offset computation in function maybeMakeBoundsCheck is not precise
// according to the spec. In the spec offsets do not overflow as
// twos-complement, but i32.add does. Concretely, a load from address 1000 with
// offset 0xffffffff should actually trap, as the combined number is greater
// than 32 bits. But with an add, 1000 + 0xffffffff = 999 due to overflow, which
// would not trap. In theory we could compute like the spec, by expanding the
// i32s to i64s and adding there (where we won't overflow), but we don't have
// i128s to handle i64 overflow.
//
// The Atomic instructions memory.atomic.wait and memory.atomic.notify, have
// browser engine implementations that predate the still-in-progress threads
// spec (https://github.com/WebAssembly/threads). And whether or not
// atomic.notify should trap for out-of-bounds addresses remains an open issue
// (https://github.com/WebAssembly/threads/issues/105). For now, we are using
// the same semantics as v8, which is to bounds check all Atomic instructions
// the same way and trap for out-of-bounds.
#include "ir/abstract.h"
#include "ir/module-utils.h"
#include "ir/names.h"
#include "wasm-builder.h"
#include <pass.h>
#include <wasm.h>
namespace wasm {
struct MultiMemoryLowering : public Pass {
Module* wasm = nullptr;
// The name of the single memory that exists after this pass is run
Name combinedMemory;
// The type of the single memory
Type pointerType;
// Used to indicate the type of the single memory when creating instructions
// (memory.grow, memory.size) for that memory
Builder::MemoryInfo memoryInfo;
// If the combined memory is shared
bool isShared;
// If the combined memory is imported
bool isImported;
// If the combined memory is exported
bool isExported = false;
// If the combined memory should be imported, the following two
// properties will be set
Name module;
Name base;
// The initial page size of the combined memory
Address totalInitialPages;
// The max page size of the combined memory
Address totalMaxPages;
// There is no offset for the first memory, so offsetGlobalNames will always
// have a size that is one less than the count of memories at the time this
// pass is run. Use helper getOffsetGlobal(Index) to index the vector
// conveniently without having to manipulate the index directly
std::vector<Name> offsetGlobalNames;
// Maps from the name of the memory to its index as seen in the
// module->memories vector
std::unordered_map<Name, Index> memoryIdxMap;
// A vector of the memory size function names that were created proactively
// for each memory
std::vector<Name> memorySizeNames;
// A vector of the memory grow functions that were created proactively for
// each memory
std::vector<Name> memoryGrowNames;
bool checkBounds = false;
MultiMemoryLowering(bool checkBounds) : checkBounds(checkBounds) {}
struct Replacer : public WalkerPass<PostWalker<Replacer>> {
MultiMemoryLowering& parent;
Builder builder;
Replacer(MultiMemoryLowering& parent, Module& wasm)
: parent(parent), builder(wasm) {}
// Avoid visiting the custom functions added by the parent pass
// MultiMemoryLowering
void walkFunction(Function* func) {
for (Name funcName : parent.memorySizeNames) {
if (funcName == func->name) {
return;
}
}
for (Name funcName : parent.memoryGrowNames) {
if (funcName == func->name) {
return;
}
}
Super::walkFunction(func);
}
void visitMemoryGrow(MemoryGrow* curr) {
auto idx = parent.memoryIdxMap.at(curr->memory);
Name funcName = parent.memoryGrowNames[idx];
replaceCurrent(builder.makeCall(funcName, {curr->delta}, curr->type));
}
void visitMemorySize(MemorySize* curr) {
auto idx = parent.memoryIdxMap.at(curr->memory);
Name funcName = parent.memorySizeNames[idx];
replaceCurrent(builder.makeCall(funcName, {}, curr->type));
}
Expression* addOffsetGlobal(Expression* toExpr, Name memory) {
auto memoryIdx = parent.memoryIdxMap.at(memory);
auto offsetGlobal = parent.getOffsetGlobal(memoryIdx);
Expression* returnExpr;
if (offsetGlobal) {
returnExpr = builder.makeBinary(
Abstract::getBinary(parent.pointerType, Abstract::Add),
builder.makeGlobalGet(offsetGlobal, parent.pointerType),
toExpr);
} else {
returnExpr = toExpr;
}
return returnExpr;
}
Expression* makeAddGtuTrap(Expression* leftOperand,
Expression* rightOperand,
Expression* limit) {
Expression* gtuTrap = builder.makeIf(
builder.makeBinary(
Abstract::getBinary(parent.pointerType, Abstract::GtU),
builder.makeBinary(
Abstract::getBinary(parent.pointerType, Abstract::Add),
leftOperand,
rightOperand),
limit),
builder.makeUnreachable());
return gtuTrap;
}
Expression* makeAddGtuMemoryTrap(Expression* leftOperand,
Expression* rightOperand,
Name memory) {
auto memoryIdx = parent.memoryIdxMap.at(memory);
Name memorySizeFunc = parent.memorySizeNames[memoryIdx];
Expression* gtuMemoryTrap = makeAddGtuTrap(
leftOperand,
rightOperand,
builder.makeCall(memorySizeFunc, {}, parent.pointerType));
return gtuMemoryTrap;
}
template<typename T>
Expression* makePtrBoundsCheck(T* curr, Index ptrIdx, Index bytes) {
Expression* boundsCheck = makeAddGtuMemoryTrap(
builder.makeBinary(
// ptr + offset (ea from wasm spec) + bit width
Abstract::getBinary(parent.pointerType, Abstract::Add),
builder.makeLocalGet(ptrIdx, parent.pointerType),
builder.makeConstPtr(curr->offset, parent.pointerType)),
builder.makeConstPtr(bytes, parent.pointerType),
curr->memory);
return boundsCheck;
}
Expression* makeDataSegmentBoundsCheck(MemoryInit* curr,
Index sizeIdx,
Index offsetIdx) {
auto* segment = parent.wasm->getDataSegment(curr->segment);
Expression* addGtuTrap = makeAddGtuTrap(
builder.makeLocalGet(offsetIdx, parent.pointerType),
builder.makeLocalGet(sizeIdx, parent.pointerType),
builder.makeConstPtr(segment->data.size(), parent.pointerType));
return addGtuTrap;
}
template<typename T> Expression* getPtr(T* curr, Index bytes) {
Expression* ptrValue = addOffsetGlobal(curr->ptr, curr->memory);
if (parent.checkBounds) {
Index ptrIdx = Builder::addVar(getFunction(), parent.pointerType);
Expression* ptrSet = builder.makeLocalSet(ptrIdx, ptrValue);
Expression* boundsCheck = makePtrBoundsCheck(curr, ptrIdx, bytes);
Expression* ptrGet = builder.makeLocalGet(ptrIdx, parent.pointerType);
return builder.makeBlock({ptrSet, boundsCheck, ptrGet});
}
return ptrValue;
}
template<typename T>
Expression* getDest(T* curr,
Name memory,
Index sizeIdx = Index(-1),
Expression* localSet = nullptr,
Expression* additionalCheck = nullptr) {
Expression* destValue = addOffsetGlobal(curr->dest, memory);
if (parent.checkBounds) {
Expression* sizeSet = builder.makeLocalSet(sizeIdx, curr->size);
Index destIdx = Builder::addVar(getFunction(), parent.pointerType);
Expression* destSet = builder.makeLocalSet(destIdx, destValue);
Expression* boundsCheck = makeAddGtuMemoryTrap(
builder.makeLocalGet(destIdx, parent.pointerType),
builder.makeLocalGet(sizeIdx, parent.pointerType),
memory);
std::vector<Expression*> exprs = {
destSet, localSet, sizeSet, boundsCheck};
if (additionalCheck) {
exprs.push_back(additionalCheck);
}
Expression* destGet = builder.makeLocalGet(destIdx, parent.pointerType);
exprs.push_back(destGet);
return builder.makeBlock(exprs);
}
return destValue;
}
Expression* getSource(MemoryCopy* curr,
Index sizeIdx = Index(-1),
Index sourceIdx = Index(-1)) {
Expression* sourceValue =
addOffsetGlobal(curr->source, curr->sourceMemory);
if (parent.checkBounds) {
Expression* boundsCheck = makeAddGtuMemoryTrap(
builder.makeLocalGet(sourceIdx, parent.pointerType),
builder.makeLocalGet(sizeIdx, parent.pointerType),
curr->sourceMemory);
Expression* sourceGet =
builder.makeLocalGet(sourceIdx, parent.pointerType);
std::vector<Expression*> exprs = {boundsCheck, sourceGet};
return builder.makeBlock(exprs);
}
return sourceValue;
}
void visitMemoryInit(MemoryInit* curr) {
if (parent.checkBounds) {
Index offsetIdx = Builder::addVar(getFunction(), parent.pointerType);
Index sizeIdx = Builder::addVar(getFunction(), parent.pointerType);
curr->dest =
getDest(curr,
curr->memory,
sizeIdx,
builder.makeLocalSet(offsetIdx, curr->offset),
makeDataSegmentBoundsCheck(curr, sizeIdx, offsetIdx));
curr->offset = builder.makeLocalGet(offsetIdx, parent.pointerType);
curr->size = builder.makeLocalGet(sizeIdx, parent.pointerType);
} else {
curr->dest = getDest(curr, curr->memory);
}
setMemory(curr);
}
void visitMemoryCopy(MemoryCopy* curr) {
if (parent.checkBounds) {
Index sourceIdx = Builder::addVar(getFunction(), parent.pointerType);
Index sizeIdx = Builder::addVar(getFunction(), parent.pointerType);
curr->dest = getDest(curr,
curr->destMemory,
sizeIdx,
builder.makeLocalSet(sourceIdx, curr->source));
curr->source = getSource(curr, sizeIdx, sourceIdx);
curr->size = builder.makeLocalGet(sizeIdx, parent.pointerType);
} else {
curr->dest = getDest(curr, curr->destMemory);
curr->source = getSource(curr);
}
curr->destMemory = parent.combinedMemory;
curr->sourceMemory = parent.combinedMemory;
}
void visitMemoryFill(MemoryFill* curr) {
if (parent.checkBounds) {
Index valueIdx = Builder::addVar(getFunction(), parent.pointerType);
Index sizeIdx = Builder::addVar(getFunction(), parent.pointerType);
curr->dest = getDest(curr,
curr->memory,
sizeIdx,
builder.makeLocalSet(valueIdx, curr->value));
curr->value = builder.makeLocalGet(valueIdx, parent.pointerType);
curr->size = builder.makeLocalGet(sizeIdx, parent.pointerType);
} else {
curr->dest = getDest(curr, curr->memory);
}
setMemory(curr);
}
template<typename T> void setMemory(T* curr) {
curr->memory = parent.combinedMemory;
}
void visitLoad(Load* curr) {
curr->ptr = getPtr(curr, curr->bytes);
setMemory(curr);
}
void visitStore(Store* curr) {
curr->ptr = getPtr(curr, curr->bytes);
setMemory(curr);
}
void visitSIMDLoad(SIMDLoad* curr) {
curr->ptr = getPtr(curr, curr->getMemBytes());
setMemory(curr);
}
void visitSIMDLoadSplat(SIMDLoad* curr) {
curr->ptr = getPtr(curr, curr->getMemBytes());
setMemory(curr);
}
void visitSIMDLoadExtend(SIMDLoad* curr) {
curr->ptr = getPtr(curr, curr->getMemBytes());
setMemory(curr);
}
void visitSIMDLoadZero(SIMDLoad* curr) {
curr->ptr = getPtr(curr, curr->getMemBytes());
setMemory(curr);
}
void visitSIMDLoadStoreLane(SIMDLoadStoreLane* curr) {
curr->ptr = getPtr(curr, curr->getMemBytes());
setMemory(curr);
}
void visitAtomicRMW(AtomicRMW* curr) {
curr->ptr = getPtr(curr, curr->bytes);
setMemory(curr);
}
void visitAtomicCmpxchg(AtomicCmpxchg* curr) {
curr->ptr = getPtr(curr, curr->bytes);
setMemory(curr);
}
void visitAtomicWait(AtomicWait* curr) {
Index bytes;
switch (curr->expectedType.getBasic()) {
case Type::i32: {
bytes = 4;
break;
}
case Type::i64: {
bytes = 8;
break;
}
default:
WASM_UNREACHABLE("unexpected type");
}
curr->ptr = getPtr(curr, bytes);
setMemory(curr);
}
void visitAtomicNotify(AtomicNotify* curr) {
curr->ptr = getPtr(curr, Index(4));
setMemory(curr);
}
};
void run(Module* module) override {
module->features.disable(FeatureSet::MultiMemory);
// If there are no memories or 1 memory, skip this pass
if (module->memories.size() <= 1) {
return;
}
this->wasm = module;
prepCombinedMemory();
makeOffsetGlobals();
adjustActiveDataSegmentOffsets();
createMemorySizeFunctions();
createMemoryGrowFunctions();
removeExistingMemories();
addCombinedMemory();
if (isExported) {
updateMemoryExports();
}
Replacer(*this, *wasm).run(getPassRunner(), wasm);
}
// Returns the global name for the given idx. There is no global for the first
// idx, so an empty name is returned
Name getOffsetGlobal(Index idx) {
// There is no offset global for the first memory
if (idx == 0) {
return Name();
}
// Since there is no offset global for the first memory, we need to
// subtract one when indexing into the offsetGlobalName vector
return offsetGlobalNames[idx - 1];
}
size_t getInitialOffset(Index idx) {
if (idx == 0) {
return 0;
}
auto* g = wasm->getGlobal(getOffsetGlobal(idx));
return g->init->cast<Const>()->value.getUnsigned();
}
// Whether the idx represents the last memory. Since there is no offset global
// for the first memory, the last memory is represented by the size of
// offsetGlobalNames
bool isLastMemory(Index idx) { return idx == offsetGlobalNames.size(); }
Memory& getFirstMemory() { return *wasm->memories[0]; }
void prepCombinedMemory() {
pointerType = getFirstMemory().addressType;
memoryInfo = pointerType == Type::i32 ? Builder::MemoryInfo::Memory32
: Builder::MemoryInfo::Memory64;
isShared = getFirstMemory().shared;
isImported = getFirstMemory().imported();
for (auto& memory : wasm->memories) {
// We are assuming that each memory is configured the same as the first
// and assert if any of the memories does not match this configuration
assert(memory->shared == isShared);
assert(memory->addressType == pointerType);
// TODO: handle memory import for memories other than the first
if (memory->name != getFirstMemory().name && memory->imported()) {
Fatal() << "MultiMemoryLowering: only the first memory can be imported";
}
// Calculating the total initial and max page size for the combined memory
// by totaling the initial and max page sizes for the memories in the
// module
totalInitialPages = totalInitialPages + memory->initial;
if (memory->hasMax()) {
totalMaxPages = totalMaxPages + memory->max;
}
}
// Ensuring valid initial and max page sizes that do not exceed the number
// of pages addressable by the pointerType
Address maxSize =
pointerType == Type::i32 ? Memory::kMaxSize32 : Memory::kMaxSize64;
if (totalMaxPages > maxSize || totalMaxPages == 0) {
totalMaxPages = Memory::kUnlimitedSize;
}
if (totalInitialPages > totalMaxPages) {
totalInitialPages = totalMaxPages;
}
// Save the module and base to set on the combinedMemory
if (isImported) {
module = getFirstMemory().module;
base = getFirstMemory().base;
}
// Ensuring only the first memory is an exported memory
for (auto& exp : wasm->exports) {
if (exp->kind == ExternalKind::Memory &&
exp->value == getFirstMemory().name) {
isExported = true;
} else if (exp->kind == ExternalKind::Memory) {
Fatal() << "MultiMemoryLowering: only the first memory can be exported";
}
}
// Creating the combined memory name so we can reference the combined memory
// in subsequent instructions before it is added to the module
combinedMemory = Names::getValidMemoryName(*wasm, "combined_memory");
}
void makeOffsetGlobals() {
auto addGlobal = [&](Name name, size_t offset) {
auto global = Builder::makeGlobal(
name,
pointerType,
Builder(*wasm).makeConst(Literal::makeFromInt64(offset, pointerType)),
Builder::Mutable);
wasm->addGlobal(std::move(global));
};
size_t offsetRunningTotal = 0;
for (Index i = 0; i < wasm->memories.size(); i++) {
auto& memory = wasm->memories[i];
memoryIdxMap[memory->name] = i;
// We don't need a page offset global for the first memory as it's always
// 0
if (i != 0) {
Name name = Names::getValidGlobalName(
*wasm, memory->name.toString() + "_byte_offset");
offsetGlobalNames.push_back(std::move(name));
addGlobal(name, offsetRunningTotal * Memory::kPageSize);
}
offsetRunningTotal += memory->initial;
}
}
// TODO: Add a trap for segments that have a non-constant offset that would
// have been out of bounds at runtime but is in bounds after multi-memory
// lowering
void adjustActiveDataSegmentOffsets() {
Builder builder(*wasm);
ModuleUtils::iterActiveDataSegments(*wasm, [&](DataSegment* dataSegment) {
auto idx = memoryIdxMap.at(dataSegment->memory);
dataSegment->memory = combinedMemory;
auto* offset = dataSegment->offset->dynCast<Const>();
assert(offset && "TODO: handle non-const segment offsets");
size_t originalOffset = offset->value.getUnsigned();
auto memOffset = getInitialOffset(idx);
offset->value = Literal(int32_t(originalOffset + memOffset));
});
}
void createMemorySizeFunctions() {
for (Index i = 0; i < wasm->memories.size(); i++) {
auto function = memorySize(i, wasm->memories[i]->name);
memorySizeNames.push_back(function->name);
wasm->addFunction(std::move(function));
}
}
void createMemoryGrowFunctions() {
for (Index i = 0; i < wasm->memories.size(); i++) {
auto function = memoryGrow(i, wasm->memories[i]->name);
memoryGrowNames.push_back(function->name);
wasm->addFunction(std::move(function));
}
}
// This function replaces memory.grow instruction calls in the wasm module.
// Because the multiple discrete memories are lowered into a single memory,
// we need to adjust offsets as a particular memory receives an
// instruction to grow.
std::unique_ptr<Function> memoryGrow(Index memIdx, Name memoryName) {
Builder builder(*wasm);
Name name = memoryName.toString() + "_grow";
Name functionName = Names::getValidFunctionName(*wasm, name);
auto function = Builder::makeFunction(
functionName, Signature(pointerType, pointerType), {});
function->setLocalName(0, "page_delta");
auto pageSizeConst = [&]() {
return builder.makeConst(Literal(Memory::kPageSize));
};
auto getOffsetDelta = [&]() {
return builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Mul),
builder.makeLocalGet(0, pointerType),
pageSizeConst());
};
auto getMoveSource = [&](Name global) {
return builder.makeGlobalGet(global, pointerType);
};
Expression* functionBody;
Index sizeLocal = -1;
Index returnLocal =
Builder::addVar(function.get(), "return_size", pointerType);
functionBody = builder.blockify(builder.makeLocalSet(
returnLocal, builder.makeCall(memorySizeNames[memIdx], {}, pointerType)));
if (!isLastMemory(memIdx)) {
sizeLocal = Builder::addVar(function.get(), "memory_size", pointerType);
functionBody = builder.blockify(
functionBody,
builder.makeLocalSet(
sizeLocal, builder.makeMemorySize(combinedMemory, memoryInfo)));
}
// Attempt to grow the combinedMemory. If -1 returns, enough memory could
// not be allocated, so return -1.
functionBody = builder.blockify(
functionBody,
builder.makeIf(
builder.makeBinary(
EqInt32,
builder.makeMemoryGrow(
builder.makeLocalGet(0, pointerType), combinedMemory, memoryInfo),
builder.makeConst(-1)),
builder.makeReturn(builder.makeConst(-1))));
// If we are not growing the last memory, then we need to copy data,
// shifting it over to accomodate the increase from page_delta
if (!isLastMemory(memIdx)) {
// This offset is the starting pt for copying
auto offsetGlobalName = getOffsetGlobal(memIdx + 1);
functionBody = builder.blockify(
functionBody,
builder.makeMemoryCopy(
// destination
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Add),
getMoveSource(offsetGlobalName),
getOffsetDelta()),
// source
getMoveSource(offsetGlobalName),
// size
builder.makeBinary(
Abstract::getBinary(pointerType, Abstract::Sub),
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Mul),
builder.makeLocalGet(sizeLocal, pointerType),
pageSizeConst()),
getMoveSource(offsetGlobalName)),
combinedMemory,
combinedMemory));
}
// Adjust the offsets of the globals impacted by the memory.grow call
for (Index i = memIdx; i < offsetGlobalNames.size(); i++) {
auto& offsetGlobalName = offsetGlobalNames[i];
functionBody = builder.blockify(
functionBody,
builder.makeGlobalSet(
offsetGlobalName,
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Add),
getMoveSource(offsetGlobalName),
getOffsetDelta())));
}
functionBody = builder.blockify(
functionBody, builder.makeLocalGet(returnLocal, pointerType));
function->body = functionBody;
return function;
}
// This function replaces memory.size instructions with a function that can
// return the size of each memory as if each was discrete and separate.
std::unique_ptr<Function> memorySize(Index memIdx, Name memoryName) {
Builder builder(*wasm);
Name name = memoryName.toString() + "_size";
Name functionName = Names::getValidFunctionName(*wasm, name);
auto function = Builder::makeFunction(
functionName, Signature(Type::none, pointerType), {});
Expression* functionBody;
auto pageSizeConst = [&]() {
return builder.makeConst(Literal(Memory::kPageSize));
};
auto getOffsetInPageUnits = [&](Name global) {
return builder.makeBinary(
Abstract::getBinary(pointerType, Abstract::DivU),
builder.makeGlobalGet(global, pointerType),
pageSizeConst());
};
// offsetGlobalNames does not keep track of a global for the offset of
// wasm->memories[0] because it's always 0. As a result, the below
// calculations that involve offsetGlobalNames are intrinsically "offset".
// Thus, offsetGlobalNames[0] is the offset for wasm->memories[1] and
// the size of wasm->memories[0].
if (memIdx == 0) {
auto offsetGlobalName = getOffsetGlobal(1);
functionBody = builder.blockify(
builder.makeReturn(getOffsetInPageUnits(offsetGlobalName)));
} else if (isLastMemory(memIdx)) {
auto offsetGlobalName = getOffsetGlobal(memIdx);
functionBody = builder.blockify(builder.makeReturn(
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Sub),
builder.makeMemorySize(combinedMemory, memoryInfo),
getOffsetInPageUnits(offsetGlobalName))));
} else {
auto offsetGlobalName = getOffsetGlobal(memIdx);
auto nextOffsetGlobalName = getOffsetGlobal(memIdx + 1);
functionBody = builder.blockify(builder.makeReturn(
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Sub),
getOffsetInPageUnits(nextOffsetGlobalName),
getOffsetInPageUnits(offsetGlobalName))));
}
function->body = functionBody;
return function;
}
void removeExistingMemories() {
wasm->removeMemories([&](Memory* curr) { return true; });
}
void addCombinedMemory() {
auto memory = Builder::makeMemory(combinedMemory);
memory->shared = isShared;
memory->addressType = pointerType;
memory->initial = totalInitialPages;
memory->max = totalMaxPages;
if (isImported) {
memory->base = base;
memory->module = module;
}
wasm->addMemory(std::move(memory));
}
void updateMemoryExports() {
for (auto& exp : wasm->exports) {
if (exp->kind == ExternalKind::Memory) {
// We checked in prepCombinedMemory that any memory exports are for
// the first memory, so setting the exports to the combinedMemory means
// calling JS will not have to worry about offsets
exp->value = combinedMemory;
}
}
}
};
Pass* createMultiMemoryLoweringPass() { return new MultiMemoryLowering(false); }
Pass* createMultiMemoryLoweringWithBoundsChecksPass() {
return new MultiMemoryLowering(true);
}
} // namespace wasm
|