1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
/*
* Copyright 2022 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Condensing a module with multiple memories into a module with a single memory
// for browsers that don’t support multiple memories.
//
// This pass also disables multi-memories so that the target features section in
// the emitted module does not report the use of MultiMemories. Disabling the
// multi-memories feature also prevents later passes from adding additional
// memories.
//
// Also worth noting that we are diverging from the spec with regards to
// handling load and store instructions. We are not trapping if the offset +
// write size is larger than the length of the memory's data. Warning:
// out-of-bounds loads and stores can read junk out of or corrupt other
// memories instead of trapping.
#include "ir/module-utils.h"
#include "ir/names.h"
#include "wasm-builder.h"
#include <pass.h>
#include <wasm.h>
namespace wasm {
struct MultiMemoryLowering : public Pass {
Module* wasm = nullptr;
// The name of the single memory that exists after this pass is run
Name combinedMemory;
// The type of the single memory
Type pointerType;
// Used to indicate the type of the single memory when creating instructions
// (memory.grow, memory.size) for that memory
Builder::MemoryInfo memoryInfo;
// If the combined memory is shared
bool isShared;
// The initial page size of the combined memory
Address totalInitialPages;
// The max page size of the combined memory
Address totalMaxPages;
// There is no offset for the first memory, so offsetGlobalNames will always
// have a size that is one less than the count of memories at the time this
// pass is run. Use helper getOffsetGlobal(Index) to index the vector
// conveniently without having to manipulate the index directly
std::vector<Name> offsetGlobalNames;
// Maps from the name of the memory to its index as seen in the
// module->memories vector
std::unordered_map<Name, Index> memoryIdxMap;
// A vector of the memory size function names that were created proactively
// for each memory
std::vector<Name> memorySizeNames;
// A vector of the memory grow functions that were created proactively for
// each memory
std::vector<Name> memoryGrowNames;
void run(Module* module) override {
module->features.disable(FeatureSet::MultiMemories);
// If there are no memories or 1 memory, skip this pass
if (module->memories.size() <= 1) {
return;
}
this->wasm = module;
prepCombinedMemory();
addOffsetGlobals();
adjustActiveDataSegmentOffsets();
createMemorySizeFunctions();
createMemoryGrowFunctions();
removeExistingMemories();
addCombinedMemory();
struct Replacer : public WalkerPass<PostWalker<Replacer>> {
MultiMemoryLowering& parent;
Builder builder;
Replacer(MultiMemoryLowering& parent, Module& wasm)
: parent(parent), builder(wasm) {}
// Avoid visiting the custom functions added by the parent pass
// MultiMemoryLowering
void walkFunction(Function* func) {
for (Name funcName : parent.memorySizeNames) {
if (funcName == func->name) {
return;
}
}
for (Name funcName : parent.memoryGrowNames) {
if (funcName == func->name) {
return;
}
}
super::walkFunction(func);
}
void visitMemoryGrow(MemoryGrow* curr) {
auto idx = parent.memoryIdxMap.at(curr->memory);
Name funcName = parent.memoryGrowNames[idx];
replaceCurrent(builder.makeCall(funcName, {curr->delta}, curr->type));
}
void visitMemorySize(MemorySize* curr) {
auto idx = parent.memoryIdxMap.at(curr->memory);
Name funcName = parent.memorySizeNames[idx];
replaceCurrent(builder.makeCall(funcName, {}, curr->type));
}
// TODO: Add an option to add bounds checks.
void visitLoad(Load* curr) {
auto idx = parent.memoryIdxMap.at(curr->memory);
auto global = parent.getOffsetGlobal(idx);
curr->memory = parent.combinedMemory;
if (!global) {
return;
}
curr->ptr = builder.makeBinary(
Abstract::getBinary(parent.pointerType, Abstract::Add),
builder.makeGlobalGet(global, parent.pointerType),
curr->ptr);
}
// We diverge from the spec here and are not trapping if the offset + type
// / 8 is larger than the length of the memory's data. Warning,
// out-of-bounds loads and stores can read junk out of or corrupt other
// memories instead of trapping
void visitStore(Store* curr) {
auto idx = parent.memoryIdxMap.at(curr->memory);
auto global = parent.getOffsetGlobal(idx);
curr->memory = parent.combinedMemory;
if (!global) {
return;
}
curr->ptr = builder.makeBinary(
Abstract::getBinary(parent.pointerType, Abstract::Add),
builder.makeGlobalGet(global, parent.pointerType),
curr->ptr);
}
};
Replacer(*this, *wasm).run(getPassRunner(), wasm);
}
// Returns the global name for the given idx. There is no global for the first
// idx, so an empty name is returned
Name getOffsetGlobal(Index idx) {
// There is no offset global for the first memory
if (idx == 0) {
return Name();
}
// Since there is no offset global for the first memory, we need to
// subtract one when indexing into the offsetGlobalName vector
return offsetGlobalNames[idx - 1];
}
// Whether the idx represents the last memory. Since there is no offset global
// for the first memory, the last memory is represented by the size of
// offsetGlobalNames
bool isLastMemory(Index idx) { return idx == offsetGlobalNames.size(); }
void prepCombinedMemory() {
pointerType = wasm->memories[0]->indexType;
memoryInfo = pointerType == Type::i32 ? Builder::MemoryInfo::Memory32
: Builder::MemoryInfo::Memory64;
isShared = wasm->memories[0]->shared;
for (auto& memory : wasm->memories) {
// We are assuming that each memory is configured the same as the first
// and assert if any of the memories does not match this configuration
assert(memory->shared == isShared);
assert(memory->indexType == pointerType);
// Calculating the total initial and max page size for the combined memory
// by totaling the initial and max page sizes for the memories in the
// module
totalInitialPages = totalInitialPages + memory->initial;
if (memory->hasMax()) {
totalMaxPages = totalMaxPages + memory->max;
}
}
// Ensuring valid initial and max page sizes that do not exceed the number
// of pages addressable by the pointerType
Address maxSize =
pointerType == Type::i32 ? Memory::kMaxSize32 : Memory::kMaxSize64;
if (totalMaxPages > maxSize || totalMaxPages == 0) {
totalMaxPages = Memory::kUnlimitedSize;
}
if (totalInitialPages > totalMaxPages) {
totalInitialPages = totalMaxPages;
}
// Creating the combined memory name so we can reference the combined memory
// in subsequent instructions before it is added to the module
combinedMemory = Names::getValidMemoryName(*wasm, "combined_memory");
}
void addOffsetGlobals() {
auto addGlobal = [&](Name name, size_t offset) {
auto global = Builder::makeGlobal(
name,
pointerType,
Builder(*wasm).makeConst(Literal::makeFromInt64(offset, pointerType)),
Builder::Mutable);
wasm->addGlobal(std::move(global));
};
size_t offsetRunningTotal = 0;
for (Index i = 0; i < wasm->memories.size(); i++) {
auto& memory = wasm->memories[i];
memoryIdxMap[memory->name] = i;
// We don't need a page offset global for the first memory as it's always
// 0
if (i != 0) {
Name name = Names::getValidGlobalName(
*wasm, memory->name.toString() + "_byte_offset");
offsetGlobalNames.push_back(std::move(name));
addGlobal(name, offsetRunningTotal * Memory::kPageSize);
}
offsetRunningTotal += memory->initial;
}
}
void adjustActiveDataSegmentOffsets() {
Builder builder(*wasm);
ModuleUtils::iterActiveDataSegments(*wasm, [&](DataSegment* dataSegment) {
assert(dataSegment->offset->is<Const>() &&
"TODO: handle non-const segment offsets");
auto idx = memoryIdxMap.at(dataSegment->memory);
dataSegment->memory = combinedMemory;
// No need to update the offset of data segments for the first memory
if (idx != 0) {
auto offsetGlobalName = getOffsetGlobal(idx);
assert(wasm->features.hasExtendedConst());
dataSegment->offset = builder.makeBinary(
Abstract::getBinary(pointerType, Abstract::Add),
builder.makeGlobalGet(offsetGlobalName, pointerType),
dataSegment->offset);
}
});
}
void createMemorySizeFunctions() {
for (Index i = 0; i < wasm->memories.size(); i++) {
auto function = memorySize(i, wasm->memories[i]->name);
memorySizeNames.push_back(function->name);
wasm->addFunction(std::move(function));
}
}
void createMemoryGrowFunctions() {
for (Index i = 0; i < wasm->memories.size(); i++) {
auto function = memoryGrow(i, wasm->memories[i]->name);
memoryGrowNames.push_back(function->name);
wasm->addFunction(std::move(function));
}
}
// This function replaces memory.grow instruction calls in the wasm module.
// Because the multiple discrete memories are lowered into a single memory,
// we need to adjust offsets as a particular memory receives an
// instruction to grow.
std::unique_ptr<Function> memoryGrow(Index memIdx, Name memoryName) {
Builder builder(*wasm);
Name name = memoryName.toString() + "_grow";
Name functionName = Names::getValidFunctionName(*wasm, name);
auto function = Builder::makeFunction(
functionName, Signature(pointerType, pointerType), {});
function->setLocalName(0, "page_delta");
auto pageSizeConst = [&]() {
return builder.makeConst(Literal(Memory::kPageSize));
};
auto getOffsetDelta = [&]() {
return builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Mul),
builder.makeLocalGet(0, pointerType),
pageSizeConst());
};
auto getMoveSource = [&](Name global) {
return builder.makeGlobalGet(global, pointerType);
};
Expression* functionBody;
Index sizeLocal = -1;
Index returnLocal =
Builder::addVar(function.get(), "return_size", pointerType);
functionBody = builder.blockify(builder.makeLocalSet(
returnLocal, builder.makeCall(memorySizeNames[memIdx], {}, pointerType)));
if (!isLastMemory(memIdx)) {
sizeLocal = Builder::addVar(function.get(), "memory_size", pointerType);
functionBody = builder.blockify(
functionBody,
builder.makeLocalSet(
sizeLocal, builder.makeMemorySize(combinedMemory, memoryInfo)));
}
// TODO: Check the result of makeMemoryGrow for errors and return the error
// instead
functionBody = builder.blockify(
functionBody,
builder.makeDrop(builder.makeMemoryGrow(
builder.makeLocalGet(0, pointerType), combinedMemory, memoryInfo)));
// If we are not growing the last memory, then we need to copy data,
// shifting it over to accomodate the increase from page_delta
if (!isLastMemory(memIdx)) {
// This offset is the starting pt for copying
auto offsetGlobalName = getOffsetGlobal(memIdx + 1);
functionBody = builder.blockify(
functionBody,
builder.makeMemoryCopy(
// destination
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Add),
getMoveSource(offsetGlobalName),
getOffsetDelta()),
// source
getMoveSource(offsetGlobalName),
// size
builder.makeBinary(
Abstract::getBinary(pointerType, Abstract::Sub),
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Mul),
builder.makeLocalGet(sizeLocal, pointerType),
pageSizeConst()),
getMoveSource(offsetGlobalName)),
combinedMemory,
combinedMemory));
}
// Adjust the offsets of the globals impacted by the memory.grow call
for (Index i = memIdx; i < offsetGlobalNames.size(); i++) {
auto& offsetGlobalName = offsetGlobalNames[i];
functionBody = builder.blockify(
functionBody,
builder.makeGlobalSet(
offsetGlobalName,
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Add),
getMoveSource(offsetGlobalName),
getOffsetDelta())));
}
functionBody = builder.blockify(
functionBody, builder.makeLocalGet(returnLocal, pointerType));
function->body = functionBody;
return function;
}
// This function replaces memory.size instructions with a function that can
// return the size of each memory as if each was discrete and separate.
std::unique_ptr<Function> memorySize(Index memIdx, Name memoryName) {
Builder builder(*wasm);
Name name = memoryName.toString() + "_size";
Name functionName = Names::getValidFunctionName(*wasm, name);
auto function = Builder::makeFunction(
functionName, Signature(Type::none, pointerType), {});
Expression* functionBody;
auto pageSizeConst = [&]() {
return builder.makeConst(Literal(Memory::kPageSize));
};
auto getOffsetInPageUnits = [&](Name global) {
return builder.makeBinary(
Abstract::getBinary(pointerType, Abstract::DivU),
builder.makeGlobalGet(global, pointerType),
pageSizeConst());
};
// offsetGlobalNames does not keep track of a global for the offset of
// wasm->memories[0] because it's always 0. As a result, the below
// calculations that involve offsetGlobalNames are intrinsically "offset".
// Thus, offsetGlobalNames[0] is the offset for wasm->memories[1] and
// the size of wasm->memories[0].
if (memIdx == 0) {
auto offsetGlobalName = getOffsetGlobal(1);
functionBody = builder.blockify(
builder.makeReturn(getOffsetInPageUnits(offsetGlobalName)));
} else if (isLastMemory(memIdx)) {
auto offsetGlobalName = getOffsetGlobal(memIdx);
functionBody = builder.blockify(builder.makeReturn(
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Sub),
builder.makeMemorySize(combinedMemory, memoryInfo),
getOffsetInPageUnits(offsetGlobalName))));
} else {
auto offsetGlobalName = getOffsetGlobal(memIdx);
auto nextOffsetGlobalName = getOffsetGlobal(memIdx + 1);
functionBody = builder.blockify(builder.makeReturn(
builder.makeBinary(Abstract::getBinary(pointerType, Abstract::Sub),
getOffsetInPageUnits(nextOffsetGlobalName),
getOffsetInPageUnits(offsetGlobalName))));
}
function->body = functionBody;
return function;
}
void removeExistingMemories() {
wasm->removeMemories([&](Memory* curr) { return true; });
}
void addCombinedMemory() {
auto memory = Builder::makeMemory(combinedMemory);
memory->shared = isShared;
memory->indexType = pointerType;
memory->initial = totalInitialPages;
memory->max = totalMaxPages;
wasm->addMemory(std::move(memory));
}
};
Pass* createMultiMemoryLoweringPass() { return new MultiMemoryLowering(); }
} // namespace wasm
|