1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
|
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Optimize combinations of instructions
//
#include <algorithm>
#include <cmath>
#include <type_traits>
#include <ir/abstract.h>
#include <ir/bits.h>
#include <ir/boolean.h>
#include <ir/cost.h>
#include <ir/drop.h>
#include <ir/effects.h>
#include <ir/eh-utils.h>
#include <ir/find_all.h>
#include <ir/gc-type-utils.h>
#include <ir/iteration.h>
#include <ir/literal-utils.h>
#include <ir/load-utils.h>
#include <ir/localize.h>
#include <ir/manipulation.h>
#include <ir/match.h>
#include <ir/ordering.h>
#include <ir/properties.h>
#include <ir/type-updating.h>
#include <ir/utils.h>
#include <pass.h>
#include <support/stdckdint.h>
#include <support/threads.h>
#include <wasm.h>
#include "call-utils.h"
// TODO: Use the new sign-extension opcodes where appropriate. This needs to be
// conditionalized on the availability of atomics.
namespace wasm {
static Index getBitsForType(Type type) {
if (!type.isNumber()) {
return -1;
}
return type.getByteSize() * 8;
}
static bool isSignedOp(BinaryOp op) {
switch (op) {
case LtSInt32:
case LeSInt32:
case GtSInt32:
case GeSInt32:
case LtSInt64:
case LeSInt64:
case GtSInt64:
case GeSInt64:
return true;
default:
return false;
}
}
// Useful information about locals
struct LocalInfo {
static const Index kUnknown = Index(-1);
Index maxBits;
Index signExtedBits;
};
struct LocalScanner : PostWalker<LocalScanner> {
std::vector<LocalInfo>& localInfo;
const PassOptions& passOptions;
LocalScanner(std::vector<LocalInfo>& localInfo,
const PassOptions& passOptions)
: localInfo(localInfo), passOptions(passOptions) {}
void doWalkFunction(Function* func) {
// prepare
localInfo.resize(func->getNumLocals());
for (Index i = 0; i < func->getNumLocals(); i++) {
auto& info = localInfo[i];
if (func->isParam(i)) {
info.maxBits = getBitsForType(func->getLocalType(i)); // worst-case
info.signExtedBits = LocalInfo::kUnknown; // we will never know anything
} else {
info.maxBits = info.signExtedBits = 0; // we are open to learning
}
}
// walk
PostWalker<LocalScanner>::doWalkFunction(func);
// finalize
for (Index i = 0; i < func->getNumLocals(); i++) {
auto& info = localInfo[i];
if (info.signExtedBits == LocalInfo::kUnknown) {
info.signExtedBits = 0;
}
}
}
void visitLocalSet(LocalSet* curr) {
auto* func = getFunction();
if (func->isParam(curr->index)) {
return;
}
auto type = getFunction()->getLocalType(curr->index);
if (type != Type::i32 && type != Type::i64) {
return;
}
// an integer var, worth processing
auto* value =
Properties::getFallthrough(curr->value, passOptions, *getModule());
auto& info = localInfo[curr->index];
info.maxBits = std::max(info.maxBits, Bits::getMaxBits(value, this));
auto signExtBits = LocalInfo::kUnknown;
if (Properties::getSignExtValue(value)) {
signExtBits = Properties::getSignExtBits(value);
} else if (auto* load = value->dynCast<Load>()) {
if (LoadUtils::isSignRelevant(load) && load->signed_) {
signExtBits = load->bytes * 8;
}
}
if (info.signExtedBits == 0) {
info.signExtedBits = signExtBits; // first info we see
} else if (info.signExtedBits != signExtBits) {
// contradictory information, give up
info.signExtedBits = LocalInfo::kUnknown;
}
}
// define this for the templated getMaxBits method. we know nothing here yet
// about locals, so return the maxes
Index getMaxBitsForLocal(LocalGet* get) { return getBitsForType(get->type); }
};
namespace {
// perform some final optimizations
struct FinalOptimizer : public PostWalker<FinalOptimizer> {
const PassOptions& passOptions;
FinalOptimizer(const PassOptions& passOptions) : passOptions(passOptions) {}
void visitBinary(Binary* curr) {
if (auto* replacement = optimize(curr)) {
replaceCurrent(replacement);
}
}
Binary* optimize(Binary* curr) {
using namespace Abstract;
using namespace Match;
{
Const* c;
if (matches(curr, binary(Add, any(), ival(&c)))) {
// normalize x + (-C) ==> x - C
if (c->value.isNegative()) {
c->value = c->value.neg();
curr->op = Abstract::getBinary(c->type, Sub);
}
// Wasm binary encoding uses signed LEBs, which slightly favor negative
// numbers: -64 is more efficient than +64 etc., as well as other powers
// of two 7 bits etc. higher. we therefore prefer x - -64 over x + 64.
// in theory we could just prefer negative numbers over positive, but
// that can have bad effects on gzip compression (as it would mean more
// subtractions than the more common additions).
int64_t value = c->value.getInteger();
if (value == 0x40LL || value == 0x2000LL || value == 0x100000LL ||
value == 0x8000000LL || value == 0x400000000LL ||
value == 0x20000000000LL || value == 0x1000000000000LL ||
value == 0x80000000000000LL || value == 0x4000000000000000LL) {
c->value = c->value.neg();
if (curr->op == Abstract::getBinary(c->type, Add)) {
curr->op = Abstract::getBinary(c->type, Sub);
} else {
curr->op = Abstract::getBinary(c->type, Add);
}
}
return curr;
}
}
return nullptr;
}
};
} // anonymous namespace
// Create a custom matcher for checking side effects
template<class Opt> struct PureMatcherKind {};
template<class Opt>
struct Match::Internal::KindTypeRegistry<PureMatcherKind<Opt>> {
using matched_t = Expression*;
using data_t = Opt*;
};
template<class Opt> struct Match::Internal::MatchSelf<PureMatcherKind<Opt>> {
bool operator()(Expression* curr, Opt* opt) {
return !opt->effects(curr).hasSideEffects();
}
};
// Main pass class
struct OptimizeInstructions
: public WalkerPass<PostWalker<OptimizeInstructions>> {
bool isFunctionParallel() override { return true; }
std::unique_ptr<Pass> create() override {
return std::make_unique<OptimizeInstructions>();
}
bool fastMath;
// In rare cases we make a change to a type, and will do a refinalize.
bool refinalize = false;
void doWalkFunction(Function* func) {
fastMath = getPassOptions().fastMath;
// First, scan locals.
{
LocalScanner scanner(localInfo, getPassOptions());
scanner.setModule(getModule());
scanner.walkFunction(func);
}
// Main walk.
Super::doWalkFunction(func);
if (refinalize) {
ReFinalize().walkFunctionInModule(func, getModule());
}
// Final optimizations.
{
FinalOptimizer optimizer(getPassOptions());
optimizer.walkFunction(func);
}
// Some patterns create blocks that can interfere 'catch' and 'pop', nesting
// the 'pop' into a block making it invalid.
EHUtils::handleBlockNestedPops(func, *getModule());
}
// Set to true when one of the visitors makes a change (either replacing the
// node or modifying it).
bool changed;
// Used to avoid recursion in replaceCurrent, see below.
bool inReplaceCurrent = false;
void replaceCurrent(Expression* rep) {
if (rep->type != getCurrent()->type) {
// This operation will change the type, so refinalize.
refinalize = true;
}
WalkerPass<PostWalker<OptimizeInstructions>>::replaceCurrent(rep);
// We may be able to apply multiple patterns as one may open opportunities
// for others. NB: patterns must not have cycles
// To avoid recursion, this uses the following pattern: the initial call to
// this method comes from one of the visit*() methods. We then loop in here,
// and if we are called again we set |changed| instead of recursing, so that
// we can loop on that value.
if (inReplaceCurrent) {
// We are in the loop below so just note a change and return to there.
changed = true;
return;
}
// Loop on further changes.
inReplaceCurrent = true;
do {
changed = false;
visit(getCurrent());
} while (changed);
inReplaceCurrent = false;
}
EffectAnalyzer effects(Expression* expr) {
return EffectAnalyzer(getPassOptions(), *getModule(), expr);
}
decltype(auto) pure(Expression** binder) {
using namespace Match::Internal;
return Matcher<PureMatcherKind<OptimizeInstructions>>(binder, this);
}
bool canReorder(Expression* a, Expression* b) {
return EffectAnalyzer::canReorder(getPassOptions(), *getModule(), a, b);
}
void visitBinary(Binary* curr) {
// If this contains dead code, don't bother trying to optimize it, the type
// might change (if might not be unreachable if just one arm is, for
// example). This optimization pass focuses on actually executing code.
if (curr->type == Type::unreachable) {
return;
}
if (shouldCanonicalize(curr)) {
canonicalize(curr);
}
{
// TODO: It is an ongoing project to port more transformations to the
// match API. Once most of the transformations have been ported, the
// `using namespace Match` can be hoisted to function scope and this extra
// block scope can be removed.
using namespace Match;
using namespace Abstract;
Builder builder(*getModule());
{
// try to get rid of (0 - ..), that is, a zero only used to negate an
// int. an add of a subtract can be flipped in order to remove it:
// (ival.add
// (ival.sub
// (ival.const 0)
// X
// )
// Y
// )
// =>
// (ival.sub
// Y
// X
// )
// Note that this reorders X and Y, so we need to be careful about that.
Expression *x, *y;
Binary* sub;
if (matches(
curr,
binary(Add, binary(&sub, Sub, ival(0), any(&x)), any(&y))) &&
canReorder(x, y)) {
sub->left = y;
sub->right = x;
return replaceCurrent(sub);
}
}
{
// The flip case is even easier, as no reordering occurs:
// (ival.add
// Y
// (ival.sub
// (ival.const 0)
// X
// )
// )
// =>
// (ival.sub
// Y
// X
// )
Expression* y;
Binary* sub;
if (matches(curr,
binary(Add, any(&y), binary(&sub, Sub, ival(0), any())))) {
sub->left = y;
return replaceCurrent(sub);
}
}
{
// try de-morgan's AND law,
// (eqz X) and (eqz Y) === eqz (X or Y)
// Note that the OR and XOR laws do not work here, as these
// are not booleans (we could check if they are, but a boolean
// would already optimize with the eqz anyhow, unless propagating).
// But for AND, the left is true iff X and Y are each all zero bits,
// and the right is true if the union of their bits is zero; same.
Unary* un;
Binary* bin;
Expression *x, *y;
if (matches(curr,
binary(&bin,
AndInt32,
unary(&un, EqZInt32, any(&x)),
unary(EqZInt32, any(&y))))) {
bin->op = OrInt32;
bin->left = x;
bin->right = y;
un->value = bin;
return replaceCurrent(un);
}
}
{
// x <<>> (C & (31 | 63)) ==> x <<>> C'
// x <<>> (y & (31 | 63)) ==> x <<>> y
// x <<>> (y & (32 | 64)) ==> x
// where '<<>>':
// '<<', '>>', '>>>'. 'rotl' or 'rotr'
BinaryOp op;
Const* c;
Expression *x, *y;
// x <<>> C
if (matches(curr, binary(&op, any(&x), ival(&c))) &&
Abstract::hasAnyShift(op)) {
// truncate RHS constant to effective size as:
// i32(x) <<>> const(C & 31))
// i64(x) <<>> const(C & 63))
c->value = c->value.and_(
Literal::makeFromInt32(c->type.getByteSize() * 8 - 1, c->type));
// x <<>> 0 ==> x
if (c->value.isZero()) {
return replaceCurrent(x);
}
}
if (matches(curr,
binary(&op, any(&x), binary(And, any(&y), ival(&c)))) &&
Abstract::hasAnyShift(op)) {
// i32(x) <<>> (y & 31) ==> x <<>> y
// i64(x) <<>> (y & 63) ==> x <<>> y
if ((c->type == Type::i32 && (c->value.geti32() & 31) == 31) ||
(c->type == Type::i64 && (c->value.geti64() & 63LL) == 63LL)) {
curr->cast<Binary>()->right = y;
return replaceCurrent(curr);
}
// i32(x) <<>> (y & C) ==> x, where (C & 31) == 0
// i64(x) <<>> (y & C) ==> x, where (C & 63) == 0
if (((c->type == Type::i32 && (c->value.geti32() & 31) == 0) ||
(c->type == Type::i64 && (c->value.geti64() & 63LL) == 0LL)) &&
!effects(y).hasSideEffects()) {
return replaceCurrent(x);
}
}
}
{
// -x + y ==> y - x
// where x, y are floating points
Expression *x, *y;
if (matches(curr, binary(Add, unary(Neg, any(&x)), any(&y))) &&
canReorder(x, y)) {
curr->op = Abstract::getBinary(curr->type, Sub);
curr->left = x;
std::swap(curr->left, curr->right);
return replaceCurrent(curr);
}
}
{
// x + (-y) ==> x - y
// x - (-y) ==> x + y
// where x, y are floating points
Expression* y;
if (matches(curr, binary(Add, any(), unary(Neg, any(&y)))) ||
matches(curr, binary(Sub, any(), unary(Neg, any(&y))))) {
curr->op = Abstract::getBinary(
curr->type,
curr->op == Abstract::getBinary(curr->type, Add) ? Sub : Add);
curr->right = y;
return replaceCurrent(curr);
}
}
{
// -x * -y ==> x * y
// where x, y are integers
Binary* bin;
Expression *x, *y;
if (matches(curr,
binary(&bin,
Mul,
binary(Sub, ival(0), any(&x)),
binary(Sub, ival(0), any(&y))))) {
bin->left = x;
bin->right = y;
return replaceCurrent(curr);
}
}
{
// -x * y ==> -(x * y)
// x * -y ==> -(x * y)
// where x, y are integers
Expression *x, *y;
if ((matches(curr,
binary(Mul, binary(Sub, ival(0), any(&x)), any(&y))) ||
matches(curr,
binary(Mul, any(&x), binary(Sub, ival(0), any(&y))))) &&
!x->is<Const>() && !y->is<Const>()) {
Builder builder(*getModule());
return replaceCurrent(
builder.makeBinary(Abstract::getBinary(curr->type, Sub),
builder.makeConst(Literal::makeZero(curr->type)),
builder.makeBinary(curr->op, x, y)));
}
}
{
if (getModule()->features.hasSignExt()) {
Const *c1, *c2;
Expression* x;
// i64(x) << 56 >> 56 ==> i64.extend8_s(x)
// i64(x) << 48 >> 48 ==> i64.extend16_s(x)
// i64(x) << 32 >> 32 ==> i64.extend32_s(x)
if (matches(curr,
binary(ShrSInt64,
binary(ShlInt64, any(&x), i64(&c1)),
i64(&c2))) &&
Bits::getEffectiveShifts(c1) == Bits::getEffectiveShifts(c2)) {
switch (64 - Bits::getEffectiveShifts(c1)) {
case 8:
return replaceCurrent(builder.makeUnary(ExtendS8Int64, x));
case 16:
return replaceCurrent(builder.makeUnary(ExtendS16Int64, x));
case 32:
return replaceCurrent(builder.makeUnary(ExtendS32Int64, x));
default:
break;
}
}
// i32(x) << 24 >> 24 ==> i32.extend8_s(x)
// i32(x) << 16 >> 16 ==> i32.extend16_s(x)
if (matches(curr,
binary(ShrSInt32,
binary(ShlInt32, any(&x), i32(&c1)),
i32(&c2))) &&
Bits::getEffectiveShifts(c1) == Bits::getEffectiveShifts(c2)) {
switch (32 - Bits::getEffectiveShifts(c1)) {
case 8:
return replaceCurrent(builder.makeUnary(ExtendS8Int32, x));
case 16:
return replaceCurrent(builder.makeUnary(ExtendS16Int32, x));
default:
break;
}
}
}
}
{
// unsigned(x) >= 0 => i32(1)
// TODO: Use getDroppedChildrenAndAppend() here, so we can optimize even
// if pure.
Const* c;
Expression* x;
if (matches(curr, binary(GeU, pure(&x), ival(&c))) &&
c->value.isZero()) {
c->value = Literal::makeOne(Type::i32);
c->type = Type::i32;
return replaceCurrent(c);
}
// unsigned(x) < 0 => i32(0)
if (matches(curr, binary(LtU, pure(&x), ival(&c))) &&
c->value.isZero()) {
c->value = Literal::makeZero(Type::i32);
c->type = Type::i32;
return replaceCurrent(c);
}
}
}
if (auto* ext = Properties::getAlmostSignExt(curr)) {
Index extraLeftShifts;
auto bits = Properties::getAlmostSignExtBits(curr, extraLeftShifts);
if (extraLeftShifts == 0) {
if (auto* load =
Properties::getFallthrough(ext, getPassOptions(), *getModule())
->dynCast<Load>()) {
// pattern match a load of 8 bits and a sign extend using a shl of
// 24 then shr_s of 24 as well, etc.
if (LoadUtils::canBeSigned(load) &&
((load->bytes == 1 && bits == 8) ||
(load->bytes == 2 && bits == 16))) {
// if the value falls through, we can't alter the load, as it
// might be captured in a tee
if (load->signed_ == true || load == ext) {
load->signed_ = true;
return replaceCurrent(ext);
}
}
}
}
// We can in some cases remove part of a sign extend, that is,
// (x << A) >> B => x << (A - B)
// If the sign-extend input cannot have a sign bit, we don't need it.
if (Bits::getMaxBits(ext, this) + extraLeftShifts < bits) {
return replaceCurrent(removeAlmostSignExt(curr));
}
// We also don't need it if it already has an identical-sized sign
// extend applied to it. That is, if it is already a sign-extended
// value, then another sign extend will do nothing. We do need to be
// careful of the extra shifts, though.
if (isSignExted(ext, bits) && extraLeftShifts == 0) {
return replaceCurrent(removeAlmostSignExt(curr));
}
} else if (curr->op == EqInt32 || curr->op == NeInt32) {
if (auto* c = curr->right->dynCast<Const>()) {
if (auto* ext = Properties::getSignExtValue(curr->left)) {
// We are comparing a sign extend to a constant, which means we can
// use a cheaper zero-extend in some cases. That is,
// (x << S) >> S ==/!= C => x & T ==/!= C
// where S and T are the matching values for sign/zero extend of the
// same size. For example, for an effective 8-bit value:
// (x << 24) >> 24 ==/!= C => x & 255 ==/!= C
//
// The key thing to track here are the upper bits plus the sign bit;
// call those the "relevant bits". This is crucial because x is
// sign-extended, that is, its effective sign bit is spread to all
// the upper bits, which means that the relevant bits on the left
// side are either all 0, or all 1.
auto bits = Properties::getSignExtBits(curr->left);
uint32_t right = c->value.geti32();
uint32_t numRelevantBits = 32 - bits + 1;
uint32_t setRelevantBits =
Bits::popCount(right >> uint32_t(bits - 1));
// If all the relevant bits on C are zero
// then we can mask off the high bits instead of sign-extending x.
// This is valid because if x is negative, then the comparison was
// false before (negative vs positive), and will still be false
// as the sign bit will remain to cause a difference. And if x is
// positive then the upper bits would be zero anyhow.
if (setRelevantBits == 0) {
curr->left = makeZeroExt(ext, bits);
return replaceCurrent(curr);
} else if (setRelevantBits == numRelevantBits) {
// If all those bits are one, then we can do something similar if
// we also zero-extend on the right as well. This is valid
// because, as in the previous case, the sign bit differentiates
// the two sides when they are different, and if the sign bit is
// identical, then the upper bits don't matter, so masking them
// off both sides is fine.
curr->left = makeZeroExt(ext, bits);
c->value = c->value.and_(Literal(Bits::lowBitMask(bits)));
return replaceCurrent(curr);
} else {
// Otherwise, C's relevant bits are mixed, and then the two sides
// can never be equal, as the left side's bits cannot be mixed.
Builder builder(*getModule());
// The result is either always true, or always false.
c->value = Literal::makeFromInt32(curr->op == NeInt32, c->type);
return replaceCurrent(
builder.makeSequence(builder.makeDrop(ext), c));
}
}
} else if (auto* left = Properties::getSignExtValue(curr->left)) {
if (auto* right = Properties::getSignExtValue(curr->right)) {
auto bits = Properties::getSignExtBits(curr->left);
if (Properties::getSignExtBits(curr->right) == bits) {
// we are comparing two sign-exts with the same bits, so we may as
// well replace both with cheaper zexts
curr->left = makeZeroExt(left, bits);
curr->right = makeZeroExt(right, bits);
return replaceCurrent(curr);
}
} else if (auto* load = curr->right->dynCast<Load>()) {
// we are comparing a load to a sign-ext, we may be able to switch
// to zext
auto leftBits = Properties::getSignExtBits(curr->left);
if (load->signed_ && leftBits == load->bytes * 8) {
load->signed_ = false;
curr->left = makeZeroExt(left, leftBits);
return replaceCurrent(curr);
}
}
} else if (auto* load = curr->left->dynCast<Load>()) {
if (auto* right = Properties::getSignExtValue(curr->right)) {
// we are comparing a load to a sign-ext, we may be able to switch
// to zext
auto rightBits = Properties::getSignExtBits(curr->right);
if (load->signed_ && rightBits == load->bytes * 8) {
load->signed_ = false;
curr->right = makeZeroExt(right, rightBits);
return replaceCurrent(curr);
}
}
}
// note that both left and right may be consts, but then we let
// precompute compute the constant result
} else if (curr->op == AddInt32 || curr->op == AddInt64 ||
curr->op == SubInt32 || curr->op == SubInt64) {
if (auto* ret = optimizeAddedConstants(curr)) {
return replaceCurrent(ret);
}
} else if (curr->op == MulFloat32 || curr->op == MulFloat64 ||
curr->op == DivFloat32 || curr->op == DivFloat64) {
if (curr->left->type == curr->right->type) {
if (auto* leftUnary = curr->left->dynCast<Unary>()) {
if (leftUnary->op == Abstract::getUnary(curr->type, Abstract::Abs)) {
if (auto* rightUnary = curr->right->dynCast<Unary>()) {
if (leftUnary->op == rightUnary->op) { // both are abs ops
// abs(x) * abs(y) ==> abs(x * y)
// abs(x) / abs(y) ==> abs(x / y)
curr->left = leftUnary->value;
curr->right = rightUnary->value;
leftUnary->value = curr;
return replaceCurrent(leftUnary);
}
}
}
}
}
}
// a bunch of operations on a constant right side can be simplified
if (auto* right = curr->right->dynCast<Const>()) {
if (curr->op == AndInt32) {
auto mask = right->value.geti32();
// and with -1 does nothing (common in asm.js output)
if (mask == -1) {
return replaceCurrent(curr->left);
}
// small loads do not need to be masked, the load itself masks
if (auto* load = curr->left->dynCast<Load>()) {
if ((load->bytes == 1 && mask == 0xff) ||
(load->bytes == 2 && mask == 0xffff)) {
load->signed_ = false;
return replaceCurrent(curr->left);
}
} else if (auto maskedBits = Bits::getMaskedBits(mask)) {
if (Bits::getMaxBits(curr->left, this) <= maskedBits) {
// a mask of lower bits is not needed if we are already smaller
return replaceCurrent(curr->left);
}
}
}
// some math operations have trivial results
if (auto* ret = optimizeWithConstantOnRight(curr)) {
return replaceCurrent(ret);
}
if (auto* ret = optimizeDoubletonWithConstantOnRight(curr)) {
return replaceCurrent(ret);
}
if (right->type == Type::i32) {
BinaryOp op;
int32_t c = right->value.geti32();
// First, try to lower signed operations to unsigned if that is
// possible. Some unsigned operations like div_u or rem_u are usually
// faster on VMs. Also this opens more possibilities for further
// simplifications afterwards.
if (c >= 0 && (op = makeUnsignedBinaryOp(curr->op)) != InvalidBinary &&
Bits::getMaxBits(curr->left, this) <= 31) {
curr->op = op;
}
if (c < 0 && c > std::numeric_limits<int32_t>::min() &&
curr->op == DivUInt32) {
// u32(x) / C ==> u32(x) >= C iff C > 2^31
// We avoid applying this for C == 2^31 due to conflict
// with other rule which transform to more prefereble
// right shift operation.
curr->op = c == -1 ? EqInt32 : GeUInt32;
return replaceCurrent(curr);
}
if (Bits::isPowerOf2((uint32_t)c)) {
switch (curr->op) {
case MulInt32:
return replaceCurrent(optimizePowerOf2Mul(curr, (uint32_t)c));
case RemUInt32:
return replaceCurrent(optimizePowerOf2URem(curr, (uint32_t)c));
case DivUInt32:
return replaceCurrent(optimizePowerOf2UDiv(curr, (uint32_t)c));
default:
break;
}
}
}
if (right->type == Type::i64) {
BinaryOp op;
int64_t c = right->value.geti64();
// See description above for Type::i32
if (c >= 0 && (op = makeUnsignedBinaryOp(curr->op)) != InvalidBinary &&
Bits::getMaxBits(curr->left, this) <= 63) {
curr->op = op;
}
if (getPassOptions().shrinkLevel == 0 && c < 0 &&
c > std::numeric_limits<int64_t>::min() && curr->op == DivUInt64) {
// u64(x) / C ==> u64(u64(x) >= C) iff C > 2^63
// We avoid applying this for C == 2^31 due to conflict
// with other rule which transform to more prefereble
// right shift operation.
// And apply this only for shrinkLevel == 0 due to it
// increasing size by one byte.
curr->op = c == -1LL ? EqInt64 : GeUInt64;
curr->type = Type::i32;
return replaceCurrent(
Builder(*getModule()).makeUnary(ExtendUInt32, curr));
}
if (Bits::isPowerOf2((uint64_t)c)) {
switch (curr->op) {
case MulInt64:
return replaceCurrent(optimizePowerOf2Mul(curr, (uint64_t)c));
case RemUInt64:
return replaceCurrent(optimizePowerOf2URem(curr, (uint64_t)c));
case DivUInt64:
return replaceCurrent(optimizePowerOf2UDiv(curr, (uint64_t)c));
default:
break;
}
}
}
if (curr->op == DivFloat32) {
float c = right->value.getf32();
if (Bits::isPowerOf2InvertibleFloat(c)) {
return replaceCurrent(optimizePowerOf2FDiv(curr, c));
}
}
if (curr->op == DivFloat64) {
double c = right->value.getf64();
if (Bits::isPowerOf2InvertibleFloat(c)) {
return replaceCurrent(optimizePowerOf2FDiv(curr, c));
}
}
}
// a bunch of operations on a constant left side can be simplified
if (curr->left->is<Const>()) {
if (auto* ret = optimizeWithConstantOnLeft(curr)) {
return replaceCurrent(ret);
}
}
if (curr->op == AndInt32 || curr->op == OrInt32) {
if (curr->op == AndInt32) {
if (auto* ret = combineAnd(curr)) {
return replaceCurrent(ret);
}
}
// for or, we can potentially combine
if (curr->op == OrInt32) {
if (auto* ret = combineOr(curr)) {
return replaceCurrent(ret);
}
}
// bitwise operations
// for and and or, we can potentially conditionalize
if (auto* ret = conditionalizeExpensiveOnBitwise(curr)) {
return replaceCurrent(ret);
}
}
// relation/comparisons allow for math optimizations
if (curr->isRelational()) {
if (auto* ret = optimizeRelational(curr)) {
return replaceCurrent(ret);
}
}
// finally, try more expensive operations on the curr in
// the case that they have no side effects
if (!effects(curr->left).hasSideEffects()) {
if (ExpressionAnalyzer::equal(curr->left, curr->right)) {
if (auto* ret = optimizeBinaryWithEqualEffectlessChildren(curr)) {
return replaceCurrent(ret);
}
}
}
if (auto* ret = deduplicateBinary(curr)) {
return replaceCurrent(ret);
}
}
void visitUnary(Unary* curr) {
if (curr->type == Type::unreachable) {
return;
}
{
using namespace Match;
using namespace Abstract;
Builder builder(*getModule());
{
// eqz(x - y) => x == y
Binary* inner;
if (matches(curr, unary(EqZ, binary(&inner, Sub, any(), any())))) {
inner->op = Abstract::getBinary(inner->left->type, Eq);
inner->type = Type::i32;
return replaceCurrent(inner);
}
}
{
// eqz(x + C) => x == -C
Const* c;
Binary* inner;
if (matches(curr, unary(EqZ, binary(&inner, Add, any(), ival(&c))))) {
c->value = c->value.neg();
inner->op = Abstract::getBinary(c->type, Eq);
inner->type = Type::i32;
return replaceCurrent(inner);
}
}
{
// eqz((signed)x % C_pot) => eqz(x & (abs(C_pot) - 1))
Const* c;
Binary* inner;
if (matches(curr, unary(EqZ, binary(&inner, RemS, any(), ival(&c)))) &&
(c->value.isSignedMin() ||
Bits::isPowerOf2(c->value.abs().getInteger()))) {
inner->op = Abstract::getBinary(c->type, And);
if (c->value.isSignedMin()) {
c->value = Literal::makeSignedMax(c->type);
} else {
c->value = c->value.abs().sub(Literal::makeOne(c->type));
}
return replaceCurrent(curr);
}
}
{
// i32.wrap_i64 can be removed if the operations inside it do not
// actually require 64 bits, e.g.:
//
// i32.wrap_i64(i64.extend_i32_u(x)) => x
if (matches(curr, unary(WrapInt64, any()))) {
if (auto* ret = optimizeWrappedResult(curr)) {
return replaceCurrent(ret);
}
}
}
{
// i32.eqz(i32.wrap_i64(x)) => i64.eqz(x)
// where maxBits(x) <= 32
Unary* inner;
Expression* x;
if (matches(curr, unary(EqZInt32, unary(&inner, WrapInt64, any(&x)))) &&
Bits::getMaxBits(x, this) <= 32) {
inner->op = EqZInt64;
return replaceCurrent(inner);
}
}
{
// i32.eqz(i32.eqz(x)) => i32(x) != 0
// i32.eqz(i64.eqz(x)) => i64(x) != 0
// iff shinkLevel == 0
// (1 instruction instead of 2, but 1 more byte)
if (getPassRunner()->options.shrinkLevel == 0) {
Expression* x;
if (matches(curr, unary(EqZInt32, unary(EqZ, any(&x))))) {
Builder builder(*getModule());
return replaceCurrent(builder.makeBinary(
getBinary(x->type, Ne),
x,
builder.makeConst(Literal::makeZero(x->type))));
}
}
}
{
// i64.extend_i32_s(i32.wrap_i64(x)) => x
// where maxBits(x) <= 31
//
// i64.extend_i32_u(i32.wrap_i64(x)) => x
// where maxBits(x) <= 32
Expression* x;
UnaryOp unaryOp;
if (matches(curr, unary(&unaryOp, unary(WrapInt64, any(&x))))) {
if (unaryOp == ExtendSInt32 || unaryOp == ExtendUInt32) {
auto maxBits = Bits::getMaxBits(x, this);
if ((unaryOp == ExtendSInt32 && maxBits <= 31) ||
(unaryOp == ExtendUInt32 && maxBits <= 32)) {
return replaceCurrent(x);
}
}
}
}
if (getModule()->features.hasSignExt()) {
// i64.extend_i32_s(i32.wrap_i64(x)) => i64.extend32_s(x)
Unary* inner;
if (matches(curr,
unary(ExtendSInt32, unary(&inner, WrapInt64, any())))) {
inner->op = ExtendS32Int64;
inner->type = Type::i64;
return replaceCurrent(inner);
}
}
}
if (curr->op == ExtendUInt32 || curr->op == ExtendSInt32) {
if (auto* load = curr->value->dynCast<Load>()) {
// i64.extend_i32_s(i32.load(_8|_16)(_u|_s)(x)) =>
// i64.load(_8|_16|_32)(_u|_s)(x)
//
// i64.extend_i32_u(i32.load(_8|_16)(_u|_s)(x)) =>
// i64.load(_8|_16|_32)(_u|_s)(x)
//
// but we can't do this in following cases:
//
// i64.extend_i32_u(i32.load8_s(x))
// i64.extend_i32_u(i32.load16_s(x))
//
// this mixed sign/zero extensions can't represent in single
// signed or unsigned 64-bit load operation. For example if `load8_s(x)`
// return i8(-1) (0xFF) than sign extended result will be
// i32(-1) (0xFFFFFFFF) and with zero extension to i64 we got
// finally 0x00000000FFFFFFFF. However with `i64.load8_s` in this
// situation we got `i64(-1)` (all ones) and with `i64.load8_u` it
// will be 0x00000000000000FF.
//
// Another limitation is atomics which only have unsigned loads.
// So we also avoid this only case:
//
// i64.extend_i32_s(i32.atomic.load(x))
// Special case for i32.load. In this case signedness depends on
// extend operation.
bool willBeSigned = curr->op == ExtendSInt32 && load->bytes == 4;
if (!(curr->op == ExtendUInt32 && load->bytes <= 2 && load->signed_) &&
!(willBeSigned && load->isAtomic)) {
if (willBeSigned) {
load->signed_ = true;
}
load->type = Type::i64;
return replaceCurrent(load);
}
}
}
if (Abstract::hasAnyReinterpret(curr->op)) {
// i32.reinterpret_f32(f32.reinterpret_i32(x)) => x
// i64.reinterpret_f64(f64.reinterpret_i64(x)) => x
// f32.reinterpret_i32(i32.reinterpret_f32(x)) => x
// f64.reinterpret_i64(i64.reinterpret_f64(x)) => x
if (auto* inner = curr->value->dynCast<Unary>()) {
if (Abstract::hasAnyReinterpret(inner->op)) {
if (inner->value->type == curr->type) {
return replaceCurrent(inner->value);
}
}
}
// f32.reinterpret_i32(i32.load(x)) => f32.load(x)
// f64.reinterpret_i64(i64.load(x)) => f64.load(x)
// i32.reinterpret_f32(f32.load(x)) => i32.load(x)
// i64.reinterpret_f64(f64.load(x)) => i64.load(x)
if (auto* load = curr->value->dynCast<Load>()) {
if (!load->isAtomic && load->bytes == curr->type.getByteSize()) {
load->type = curr->type;
return replaceCurrent(load);
}
}
}
if (curr->op == EqZInt32) {
if (auto* inner = curr->value->dynCast<Binary>()) {
// Try to invert a relational operation using De Morgan's law
auto op = invertBinaryOp(inner->op);
if (op != InvalidBinary) {
inner->op = op;
return replaceCurrent(inner);
}
}
// eqz of a sign extension can be of zero-extension
if (auto* ext = Properties::getSignExtValue(curr->value)) {
// we are comparing a sign extend to a constant, which means we can
// use a cheaper zext
auto bits = Properties::getSignExtBits(curr->value);
curr->value = makeZeroExt(ext, bits);
return replaceCurrent(curr);
}
} else if (curr->op == AbsFloat32 || curr->op == AbsFloat64) {
// abs(-x) ==> abs(x)
if (auto* unaryInner = curr->value->dynCast<Unary>()) {
if (unaryInner->op ==
Abstract::getUnary(unaryInner->type, Abstract::Neg)) {
curr->value = unaryInner->value;
return replaceCurrent(curr);
}
}
// abs(x * x) ==> x * x
// abs(x / x) ==> x / x
if (auto* binary = curr->value->dynCast<Binary>()) {
if ((binary->op == Abstract::getBinary(binary->type, Abstract::Mul) ||
binary->op == Abstract::getBinary(binary->type, Abstract::DivS)) &&
areConsecutiveInputsEqual(binary->left, binary->right)) {
return replaceCurrent(binary);
}
// abs(0 - x) ==> abs(x),
// only for fast math
if (fastMath &&
binary->op == Abstract::getBinary(binary->type, Abstract::Sub)) {
if (auto* c = binary->left->dynCast<Const>()) {
if (c->value.isZero()) {
curr->value = binary->right;
return replaceCurrent(curr);
}
}
}
}
}
if (auto* ret = deduplicateUnary(curr)) {
return replaceCurrent(ret);
}
if (auto* ret = simplifyRoundingsAndConversions(curr)) {
return replaceCurrent(ret);
}
}
void visitSelect(Select* curr) {
if (curr->type == Type::unreachable) {
return;
}
if (auto* ret = optimizeSelect(curr)) {
return replaceCurrent(ret);
}
optimizeTernary(curr);
}
void visitGlobalSet(GlobalSet* curr) {
if (curr->type == Type::unreachable) {
return;
}
// optimize out a set of a get
auto* get = curr->value->dynCast<GlobalGet>();
if (get && get->name == curr->name) {
ExpressionManipulator::nop(curr);
return replaceCurrent(curr);
}
}
void visitIf(If* curr) {
curr->condition = optimizeBoolean(curr->condition);
if (curr->ifFalse) {
if (auto* unary = curr->condition->dynCast<Unary>()) {
if (unary->op == EqZInt32) {
// flip if-else arms to get rid of an eqz
curr->condition = unary->value;
std::swap(curr->ifTrue, curr->ifFalse);
}
}
if (curr->condition->type != Type::unreachable &&
ExpressionAnalyzer::equal(curr->ifTrue, curr->ifFalse)) {
// The sides are identical, so fold. If we can replace the If with one
// arm and there are no side effects in the condition, replace it. But
// make sure not to change a concrete expression to an unreachable
// expression because we want to avoid having to refinalize.
bool needCondition = effects(curr->condition).hasSideEffects();
bool wouldBecomeUnreachable =
curr->type.isConcrete() && curr->ifTrue->type == Type::unreachable;
Builder builder(*getModule());
if (!wouldBecomeUnreachable && !needCondition) {
return replaceCurrent(curr->ifTrue);
} else if (!wouldBecomeUnreachable) {
return replaceCurrent(builder.makeSequence(
builder.makeDrop(curr->condition), curr->ifTrue));
} else {
// Emit a block with the original concrete type.
auto* ret = builder.makeBlock();
if (needCondition) {
ret->list.push_back(builder.makeDrop(curr->condition));
}
ret->list.push_back(curr->ifTrue);
ret->finalize(curr->type);
return replaceCurrent(ret);
}
}
optimizeTernary(curr);
}
}
void visitLocalSet(LocalSet* curr) {
// Interactions between local.set/tee and ref.as_non_null can be optimized
// in some cases, by removing or moving the ref.as_non_null operation.
if (auto* as = curr->value->dynCast<RefAs>()) {
if (as->op == RefAsNonNull &&
getFunction()->getLocalType(curr->index).isNullable()) {
// (local.tee (ref.as_non_null ..))
// =>
// (ref.as_non_null (local.tee ..))
//
// The reordering allows the ref.as to be potentially optimized further
// based on where the value flows to.
if (curr->isTee()) {
curr->value = as->value;
curr->finalize();
as->value = curr;
as->finalize();
replaceCurrent(as);
return;
}
// Otherwise, if this is not a tee, then no value falls through. The
// ref.as_non_null acts as a null check here, basically. If we are
// ignoring such traps, we can remove it.
auto& passOptions = getPassOptions();
if (passOptions.ignoreImplicitTraps || passOptions.trapsNeverHappen) {
curr->value = as->value;
}
}
}
}
void visitBreak(Break* curr) {
if (curr->condition) {
curr->condition = optimizeBoolean(curr->condition);
}
}
void visitLoad(Load* curr) {
if (curr->type == Type::unreachable) {
return;
}
optimizeMemoryAccess(curr->ptr, curr->offset, curr->memory);
}
void visitStore(Store* curr) {
if (curr->type == Type::unreachable) {
return;
}
optimizeMemoryAccess(curr->ptr, curr->offset, curr->memory);
optimizeStoredValue(curr->value, curr->bytes);
if (auto* unary = curr->value->dynCast<Unary>()) {
if (unary->op == WrapInt64) {
// instead of wrapping to 32, just store some of the bits in the i64
curr->valueType = Type::i64;
curr->value = unary->value;
} else if (!curr->isAtomic && Abstract::hasAnyReinterpret(unary->op) &&
curr->bytes == curr->valueType.getByteSize()) {
// f32.store(y, f32.reinterpret_i32(x)) => i32.store(y, x)
// f64.store(y, f64.reinterpret_i64(x)) => i64.store(y, x)
// i32.store(y, i32.reinterpret_f32(x)) => f32.store(y, x)
// i64.store(y, i64.reinterpret_f64(x)) => f64.store(y, x)
curr->valueType = unary->value->type;
curr->value = unary->value;
}
}
}
void optimizeStoredValue(Expression*& value, Index bytes) {
if (!value->type.isInteger()) {
return;
}
// truncates constant values during stores
// (i32|i64).store(8|16|32)(p, C) ==>
// (i32|i64).store(8|16|32)(p, C & mask)
if (auto* c = value->dynCast<Const>()) {
if (value->type == Type::i64 && bytes == 4) {
c->value = c->value.and_(Literal(uint64_t(0xffffffff)));
} else {
c->value = c->value.and_(
Literal::makeFromInt32(Bits::lowBitMask(bytes * 8), value->type));
}
}
// stores of fewer bits truncates anyhow
if (auto* binary = value->dynCast<Binary>()) {
if (binary->op == AndInt32) {
if (auto* right = binary->right->dynCast<Const>()) {
if (right->type == Type::i32) {
auto mask = right->value.geti32();
if ((bytes == 1 && mask == 0xff) ||
(bytes == 2 && mask == 0xffff)) {
value = binary->left;
}
}
}
} else if (auto* ext = Properties::getSignExtValue(binary)) {
// if sign extending the exact bit size we store, we can skip the
// extension if extending something bigger, then we just alter bits we
// don't save anyhow
if (Properties::getSignExtBits(binary) >= Index(bytes) * 8) {
value = ext;
}
}
}
}
void visitMemoryCopy(MemoryCopy* curr) {
if (curr->type == Type::unreachable) {
return;
}
assert(getModule()->features.hasBulkMemory());
if (auto* ret = optimizeMemoryCopy(curr)) {
return replaceCurrent(ret);
}
}
void visitMemoryFill(MemoryFill* curr) {
if (curr->type == Type::unreachable) {
return;
}
assert(getModule()->features.hasBulkMemory());
if (auto* ret = optimizeMemoryFill(curr)) {
return replaceCurrent(ret);
}
}
void visitCallRef(CallRef* curr) {
skipNonNullCast(curr->target, curr);
if (trapOnNull(curr, curr->target)) {
return;
}
if (curr->target->type == Type::unreachable) {
// The call_ref is not reached; leave this for DCE.
return;
}
if (auto* ref = curr->target->dynCast<RefFunc>()) {
// We know the target!
replaceCurrent(
Builder(*getModule())
.makeCall(ref->func, curr->operands, curr->type, curr->isReturn));
return;
}
if (auto* get = curr->target->dynCast<TableGet>()) {
// (call_ref ..args.. (table.get $table (index))
// =>
// (call_indirect $table ..args.. (index))
replaceCurrent(Builder(*getModule())
.makeCallIndirect(get->table,
get->index,
curr->operands,
get->type.getHeapType(),
curr->isReturn));
return;
}
auto features = getModule()->features;
// It is possible the target is not a function reference, but we can infer
// the fallthrough value there. It takes more work to optimize this case,
// but it is pretty important to allow a call_ref to become a fast direct
// call, so make the effort.
if (auto* ref = Properties::getFallthrough(
curr->target, getPassOptions(), *getModule())
->dynCast<RefFunc>()) {
// Check if the fallthrough make sense. We may have cast it to a different
// type, which would be a problem - we'd be replacing a call_ref to one
// type with a direct call to a function of another type. That would trap
// at runtime; be careful not to emit invalid IR here.
if (curr->target->type.getHeapType() != ref->type.getHeapType()) {
return;
}
Builder builder(*getModule());
if (curr->operands.empty()) {
// No operands, so this is simple and there is nothing to reorder: just
// emit:
//
// (block
// (drop curr->target)
// (call ref.func-from-curr->target)
// )
replaceCurrent(builder.makeSequence(
builder.makeDrop(curr->target),
builder.makeCall(ref->func, {}, curr->type, curr->isReturn)));
return;
}
// In the presence of operands, we must execute the code in curr->target
// after the last operand and before the call happens. Interpose at the
// last operand:
//
// (call ref.func-from-curr->target)
// (operand1)
// (..)
// (operandN-1)
// (block
// (local.set $temp (operandN))
// (drop curr->target)
// (local.get $temp)
// )
// )
auto* lastOperand = curr->operands.back();
auto lastOperandType = lastOperand->type;
if (lastOperandType == Type::unreachable) {
// The call_ref is not reached; leave this for DCE.
return;
}
if (!TypeUpdating::canHandleAsLocal(lastOperandType)) {
// We cannot create a local, so we must give up.
return;
}
Index tempLocal = builder.addVar(
getFunction(),
TypeUpdating::getValidLocalType(lastOperandType, features));
auto* set = builder.makeLocalSet(tempLocal, lastOperand);
auto* drop = builder.makeDrop(curr->target);
auto* get = TypeUpdating::fixLocalGet(
builder.makeLocalGet(tempLocal, lastOperandType), *getModule());
curr->operands.back() = builder.makeBlock({set, drop, get});
replaceCurrent(builder.makeCall(
ref->func, curr->operands, curr->type, curr->isReturn));
return;
}
// If the target is a select of two different constants, we can emit an if
// over two direct calls.
if (auto* calls = CallUtils::convertToDirectCalls(
curr,
[](Expression* target) -> CallUtils::IndirectCallInfo {
if (auto* refFunc = target->dynCast<RefFunc>()) {
return CallUtils::Known{refFunc->func};
}
return CallUtils::Unknown{};
},
*getFunction(),
*getModule())) {
replaceCurrent(calls);
}
}
// Note on removing casts (which the following utilities, skipNonNullCast and
// skipCast do): removing a cast is potentially dangerous, as it removes
// information from the IR. For example:
//
// (ref.test (ref i31)
// (ref.cast (ref i31)
// (local.get $anyref)))
//
// The local has no useful type info here (it is anyref). The cast forces it
// to be an i31, so we know that if we do not trap then the ref.test will
// definitely be 1. But if we removed the ref.cast first (which we can do in
// traps-never-happen mode) then we'd not have the type info we need to
// optimize that way.
//
// To avoid such risks we should keep in mind the following:
//
// * Before removing a cast we should use its type information in the best
// way we can. Only after doing so should a cast be removed. In the exmaple
// above, that means first seeing that the ref.test must return 1, and only
// then possibly removing the ref.cast.
// * Do not remove a cast if removing it might remove useful information for
// others. For example,
//
// (ref.cast (ref null $A)
// (ref.as_non_null ..))
//
// If we remove the inner cast then the outer cast becomes nullable. That
// means we'd be throwing away useful information, which we should not do,
// even in traps-never-happen mode and even if the wasm would validate
// without the cast. Only if we saw that the parents of the outer cast
// cannot benefit from non-nullability should we remove it.
// Another example:
//
// (struct.get $A 0
// (ref.cast $B ..))
//
// The cast only changes the type of the reference, which is consumed in
// this expression and so we don't have more parents to consider. But it is
// risky to remove this cast, since e.g. GUFA benefits from such info:
// it tells GUFA that we are reading from a $B here, and not the supertype
// $A. If $B may contain fewer values in field 0 than $A, then GUFA might
// be able to optimize better with this cast. Now, in traps-never-happen
// mode we can assume that only $B can arrive here, which means GUFA might
// be able to infer that even without the cast - but it might not, if we
// hit a limitation of GUFA. Some code patterns simply cannot be expected
// to be always inferred, say if a data structure has a tagged variant:
//
// {
// tag: i32,
// ref: anyref
// }
//
// Imagine that if tag == 0 then the reference always contains struct $A,
// and if tag == 1 then it always contains a struct $B, and so forth. We
// can't expect GUFA to figure out such invariants in general. But by
// having casts in the right places we can help GUFA optimize:
//
// (if
// (tag == 1)
// (struct.get $A 0
// (ref.cast $B ..))
//
// We know it must be a $B due to the tag. By keeping the cast there we can
// make sure that optimizations can benefit from that.
//
// Given the large amount of potential benefit we can get from a successful
// optimization in GUFA, any reduction there may be a bad idea, so we
// should be very careful and probably *not* remove such casts.
// If an instruction traps on a null input, there is no need for a
// ref.as_non_null on that input: we will trap either way (and the binaryen
// optimizer does not differentiate traps).
//
// See "notes on removing casts", above. However, in most cases removing a
// non-null cast is obviously safe to do, since we only remove one if another
// check will happen later.
//
// We also pass in the parent, because we need to be careful about ordering:
// if the parent has other children than |input| then we may not be able to
// remove the trap. For example,
//
// (struct.set
// (ref.as_non_null X)
// (call $foo)
// )
//
// If X is null we'd trap before the call to $foo. If we remove the
// ref.as_non_null then the struct.set will still trap, of course, but that
// will only happen *after* the call, which is wrong.
void skipNonNullCast(Expression*& input, Expression* parent) {
// Check the other children for the ordering problem only if we find a
// possible optimization, to avoid wasted work.
bool checkedSiblings = false;
auto& options = getPassOptions();
while (1) {
if (auto* as = input->dynCast<RefAs>()) {
if (as->op == RefAsNonNull) {
// The problem with effect ordering that is described above is not an
// issue if traps are assumed to never happen anyhow.
if (!checkedSiblings && !options.trapsNeverHappen) {
// We need to see if a child with side effects exists after |input|.
// If there is such a child, it is a problem as mentioned above (it
// is fine for such a child to appear *before* |input|, as then we
// wouldn't be reordering effects). Thus, all we need to do is
// accumulate the effects in children after |input|, as we want to
// move the trap across those.
bool seenInput = false;
EffectAnalyzer crossedEffects(options, *getModule());
for (auto* child : ChildIterator(parent)) {
if (child == input) {
seenInput = true;
} else if (seenInput) {
crossedEffects.walk(child);
}
}
// Check if the effects we cross interfere with the effects of the
// trap we want to move. (We use a shallow effect analyzer since we
// will only move the ref.as_non_null itself.)
ShallowEffectAnalyzer movingEffects(options, *getModule(), input);
if (crossedEffects.invalidates(movingEffects)) {
return;
}
// If we got here, we've checked the siblings and found no problem.
checkedSiblings = true;
}
input = as->value;
continue;
}
}
break;
}
}
// As skipNonNullCast, but skips all casts if we can do so. This is useful in
// cases where we don't actually care about the type but just the value, that
// is, if casts of the type do not affect our behavior (which is the case in
// ref.eq for example).
//
// |requiredType| is the required supertype of the final output. We will not
// remove a cast that would leave something that would break that. If
// |requiredType| is not provided we will accept any type there.
//
// See "notes on removing casts", above, for when this is safe to do.
void skipCast(Expression*& input, Type requiredType = Type::none) {
// Traps-never-happen mode is a requirement for us to optimize here.
if (!getPassOptions().trapsNeverHappen) {
return;
}
while (1) {
if (auto* as = input->dynCast<RefAs>()) {
if (requiredType == Type::none ||
Type::isSubType(as->value->type, requiredType)) {
input = as->value;
continue;
}
} else if (auto* cast = input->dynCast<RefCast>()) {
if (requiredType == Type::none ||
Type::isSubType(cast->ref->type, requiredType)) {
input = cast->ref;
continue;
}
}
break;
}
}
// Appends a result after the dropped children, if we need them.
Expression* getDroppedChildrenAndAppend(Expression* curr,
Expression* result) {
return wasm::getDroppedChildrenAndAppend(
curr, *getModule(), getPassOptions(), result);
}
Expression* getDroppedChildrenAndAppend(Expression* curr, Literal value) {
auto* result = Builder(*getModule()).makeConst(value);
return getDroppedChildrenAndAppend(curr, result);
}
Expression* getResultOfFirst(Expression* first, Expression* second) {
return wasm::getResultOfFirst(
first, second, getFunction(), getModule(), getPassOptions());
}
// Optimize an instruction and the reference it operates on, under the
// assumption that if the reference is a null then we will trap. Returns true
// if we replaced the expression with something simpler. Returns false if we
// found nothing to optimize, or if we just modified or replaced the ref (but
// not the expression itself).
bool trapOnNull(Expression* curr, Expression*& ref) {
Builder builder(*getModule());
if (getPassOptions().trapsNeverHappen) {
// We can ignore the possibility of the reference being an input, so
//
// (if
// (condition)
// (null)
// (other))
// =>
// (drop
// (condition))
// (other)
//
// That is, we will by assumption not read from the null, so remove that
// arm.
//
// TODO We could recurse here.
// TODO We could do similar things for casts (rule out an impossible arm).
// TODO Worth thinking about an 'assume' instrinsic of some form that
// annotates knowledge about a value, or another mechanism to allow
// that information to be passed around.
// Note that we must check that the null is actually flowed out, that is,
// that control flow is not transferred before:
//
// (if
// (1)
// (block (result null)
// (return)
// )
// (other))
//
// The true arm has a bottom type, but in fact it just returns out of the
// function and the null does not actually flow out. We can only optimize
// here if a null definitely flows out (as only that would cause a trap).
auto flowsOutNull = [&](Expression* child) {
return child->type.isNull() && !effects(child).transfersControlFlow();
};
if (auto* iff = ref->dynCast<If>()) {
if (iff->ifFalse) {
if (flowsOutNull(iff->ifTrue)) {
if (ref->type != iff->ifFalse->type) {
refinalize = true;
}
ref = builder.makeSequence(builder.makeDrop(iff->condition),
iff->ifFalse);
return false;
}
if (flowsOutNull(iff->ifFalse)) {
if (ref->type != iff->ifTrue->type) {
refinalize = true;
}
ref = builder.makeSequence(builder.makeDrop(iff->condition),
iff->ifTrue);
return false;
}
}
}
if (auto* select = ref->dynCast<Select>()) {
// We must check for unreachability explicitly here because a full
// refinalize only happens at the end. That is, the select may stil be
// reachable after we turned one child into an unreachable, and we are
// calling getResultOfFirst which will error on unreachability.
if (flowsOutNull(select->ifTrue) &&
select->ifFalse->type != Type::unreachable) {
ref = builder.makeSequence(
builder.makeDrop(select->ifTrue),
getResultOfFirst(select->ifFalse,
builder.makeDrop(select->condition)));
return false;
}
if (flowsOutNull(select->ifFalse) &&
select->ifTrue->type != Type::unreachable) {
ref = getResultOfFirst(
select->ifTrue,
builder.makeSequence(builder.makeDrop(select->ifFalse),
builder.makeDrop(select->condition)));
return false;
}
}
}
// A nullable cast can be turned into a non-nullable one:
//
// (struct.get ;; or something else that traps on a null ref
// (ref.cast null
// =>
// (struct.get
// (ref.cast ;; now non-nullable
//
// Either way we trap here, but refining the type may have benefits later.
if (ref->type.isNullable()) {
if (auto* cast = ref->dynCast<RefCast>()) {
// Note that we must be the last child of the parent, otherwise effects
// in the middle may need to remain:
//
// (struct.set
// (ref.cast null
// (call ..
//
// The call here must execute before the trap in the struct.set. To
// avoid that problem, inspect all children after us. If there are no
// such children, then there is no problem; if there are, see below.
auto canOptimize = true;
auto seenRef = false;
for (auto* child : ChildIterator(curr)) {
if (child == ref) {
seenRef = true;
} else if (seenRef) {
// This is a child after the reference. Check it for effects. For
// simplicity, focus on the case of traps-never-happens: if we can
// assume no trap occurs in the parent, then there must not be a
// trap in the child either, unless control flow transfers and we
// might not reach the parent.
// TODO: handle more cases.
if (!getPassOptions().trapsNeverHappen ||
effects(child).transfersControlFlow()) {
canOptimize = false;
break;
}
}
}
if (canOptimize) {
cast->type = Type(cast->type.getHeapType(), NonNullable);
}
}
}
auto fallthrough =
Properties::getFallthrough(ref, getPassOptions(), *getModule());
if (fallthrough->type.isNull()) {
replaceCurrent(
getDroppedChildrenAndAppend(curr, builder.makeUnreachable()));
return true;
}
return false;
}
void visitRefEq(RefEq* curr) {
// The types may prove that the same reference cannot appear on both sides.
auto leftType = curr->left->type;
auto rightType = curr->right->type;
if (leftType == Type::unreachable || rightType == Type::unreachable) {
// Leave this for DCE.
return;
}
auto leftHeapType = leftType.getHeapType();
auto rightHeapType = rightType.getHeapType();
auto leftIsHeapSubtype = HeapType::isSubType(leftHeapType, rightHeapType);
auto rightIsHeapSubtype = HeapType::isSubType(rightHeapType, leftHeapType);
if (!leftIsHeapSubtype && !rightIsHeapSubtype &&
(leftType.isNonNullable() || rightType.isNonNullable())) {
// The heap types have no intersection, so the only thing that can
// possibly appear on both sides is null, but one of the two is non-
// nullable, which rules that out. So there is no way that the same
// reference can appear on both sides.
replaceCurrent(
getDroppedChildrenAndAppend(curr, Literal::makeZero(Type::i32)));
return;
}
// Equality does not depend on the type, so casts may be removable.
//
// This is safe to do first because nothing farther down cares about the
// type, and we consume the two input references, so removing a cast could
// not help our parents (see "notes on removing casts").
Type nullableEq = Type(HeapType::eq, Nullable);
skipCast(curr->left, nullableEq);
skipCast(curr->right, nullableEq);
// Identical references compare equal.
// (Technically we do not need to check if the inputs are also foldable into
// a single one, but we do not have utility code to handle non-foldable
// cases yet; the foldable case we do handle is the common one of the first
// child being a tee and the second a get of that tee. TODO)
if (areConsecutiveInputsEqualAndFoldable(curr->left, curr->right)) {
replaceCurrent(
getDroppedChildrenAndAppend(curr, Literal::makeOne(Type::i32)));
return;
}
// Canonicalize to the pattern of a null on the right-hand side, if there is
// one. This makes pattern matching simpler.
if (curr->left->is<RefNull>()) {
std::swap(curr->left, curr->right);
}
// RefEq of a value to Null can be replaced with RefIsNull.
if (curr->right->is<RefNull>()) {
replaceCurrent(Builder(*getModule()).makeRefIsNull(curr->left));
}
}
void visitStructNew(StructNew* curr) {
// If values are provided, but they are all the default, then we can remove
// them (in reachable code).
if (curr->type == Type::unreachable || curr->isWithDefault()) {
return;
}
auto& passOptions = getPassOptions();
const auto& fields = curr->type.getHeapType().getStruct().fields;
assert(fields.size() == curr->operands.size());
for (Index i = 0; i < fields.size(); i++) {
// The field must be defaultable.
auto type = fields[i].type;
if (!type.isDefaultable()) {
return;
}
// The field must be written the default value.
auto* value = Properties::getFallthrough(
curr->operands[i], passOptions, *getModule());
if (!Properties::isSingleConstantExpression(value) ||
Properties::getLiteral(value) != Literal::makeZero(type)) {
return;
}
}
// Success! Drop the children and return a struct.new_with_default.
auto* rep = getDroppedChildrenAndAppend(curr, curr);
curr->operands.clear();
assert(curr->isWithDefault());
replaceCurrent(rep);
}
void visitStructGet(StructGet* curr) {
skipNonNullCast(curr->ref, curr);
trapOnNull(curr, curr->ref);
}
void visitStructSet(StructSet* curr) {
skipNonNullCast(curr->ref, curr);
if (trapOnNull(curr, curr->ref)) {
return;
}
if (curr->ref->type != Type::unreachable && curr->value->type.isInteger()) {
// We must avoid the case of a null type.
auto heapType = curr->ref->type.getHeapType();
if (heapType.isStruct()) {
const auto& fields = heapType.getStruct().fields;
optimizeStoredValue(curr->value, fields[curr->index].getByteSize());
}
}
}
void visitArrayNew(ArrayNew* curr) {
// If a value is provided, we can optimize in some cases.
if (curr->type == Type::unreachable || curr->isWithDefault()) {
return;
}
Builder builder(*getModule());
// ArrayNew of size 1 is less efficient than ArrayNewFixed with one value
// (the latter avoids a Const, which ends up saving one byte).
// TODO: also look at the case with a fallthrough or effects on the size
if (auto* c = curr->size->dynCast<Const>()) {
if (c->value.geti32() == 1) {
// Optimize to ArrayNewFixed. Note that if the value is the default
// then we may end up optimizing further in visitArrayNewFixed.
replaceCurrent(
builder.makeArrayNewFixed(curr->type.getHeapType(), {curr->init}));
return;
}
}
// If the type is defaultable then perhaps the value here is the default.
auto type = curr->type.getHeapType().getArray().element.type;
if (!type.isDefaultable()) {
return;
}
// The value must be the default/zero.
auto& passOptions = getPassOptions();
auto zero = Literal::makeZero(type);
auto* value =
Properties::getFallthrough(curr->init, passOptions, *getModule());
if (!Properties::isSingleConstantExpression(value) ||
Properties::getLiteral(value) != zero) {
return;
}
// Success! Drop the init and return an array.new_with_default.
auto* init = curr->init;
curr->init = nullptr;
assert(curr->isWithDefault());
replaceCurrent(builder.makeSequence(builder.makeDrop(init), curr));
}
void visitArrayNewFixed(ArrayNewFixed* curr) {
if (curr->type == Type::unreachable) {
return;
}
auto size = curr->values.size();
if (size == 0) {
// TODO: Consider what to do in the trivial case of an empty array: we can
// can use ArrayNew or ArrayNewFixed there. Measure which is best.
return;
}
auto& passOptions = getPassOptions();
// If all the values are equal then we can optimize, either to
// array.new_default (if they are all equal to the default) or array.new (if
// they are all equal to some other value). First, see if they are all
// equal, which we do by comparing in pairs: [0,1], then [1,2], etc.
for (Index i = 0; i < size - 1; i++) {
if (!areConsecutiveInputsEqual(curr->values[i], curr->values[i + 1])) {
return;
}
}
// Great, they are all equal!
Builder builder(*getModule());
// See if they are equal to a constant, and if that constant is the default.
auto type = curr->type.getHeapType().getArray().element.type;
if (type.isDefaultable()) {
auto* value =
Properties::getFallthrough(curr->values[0], passOptions, *getModule());
if (Properties::isSingleConstantExpression(value) &&
Properties::getLiteral(value) == Literal::makeZero(type)) {
// They are all equal to the default. Drop the children and return an
// array.new_with_default.
auto* withDefault = builder.makeArrayNew(
curr->type.getHeapType(), builder.makeConst(int32_t(size)));
replaceCurrent(getDroppedChildrenAndAppend(curr, withDefault));
return;
}
}
// They are all equal to each other, but not to the default value. If there
// are 2 or more elements here then we can save by using array.new. For
// example, with 2 elements we are doing this:
//
// (array.new_fixed
// (A)
// (A)
// )
// =>
// (array.new
// (A)
// (i32.const 2) ;; get two copies of (A)
// )
//
// However, with 1, ArrayNewFixed is actually more compact, and we optimize
// ArrayNew to it, above.
if (size == 1) {
return;
}
// Move children to locals, if we need to keep them around. We are removing
// them all, except from the first, when we remove the array.new_fixed's
// list of children and replace it with a single child + a constant for the
// number of children.
ChildLocalizer localizer(
curr, getFunction(), *getModule(), getPassOptions());
auto* block = localizer.getChildrenReplacement();
auto* arrayNew = builder.makeArrayNew(curr->type.getHeapType(),
builder.makeConst(int32_t(size)),
curr->values[0]);
block->list.push_back(arrayNew);
block->finalize();
replaceCurrent(block);
}
void visitArrayGet(ArrayGet* curr) {
skipNonNullCast(curr->ref, curr);
trapOnNull(curr, curr->ref);
}
void visitArraySet(ArraySet* curr) {
skipNonNullCast(curr->ref, curr);
if (trapOnNull(curr, curr->ref)) {
return;
}
if (curr->value->type.isInteger()) {
if (auto field = GCTypeUtils::getField(curr->ref->type)) {
optimizeStoredValue(curr->value, field->getByteSize());
}
}
}
void visitArrayLen(ArrayLen* curr) {
skipNonNullCast(curr->ref, curr);
trapOnNull(curr, curr->ref);
}
void visitArrayCopy(ArrayCopy* curr) {
skipNonNullCast(curr->destRef, curr);
skipNonNullCast(curr->srcRef, curr);
trapOnNull(curr, curr->destRef) || trapOnNull(curr, curr->srcRef);
}
void visitRefCast(RefCast* curr) {
// Note we must check the ref's type here and not our own, since we only
// refinalize at the end, which means our type may not have been updated yet
// after a change in the child.
// TODO: we could update unreachability up the stack perhaps, or just move
// all patterns that can add unreachability to a pass that does so
// already like vacuum or dce.
if (curr->ref->type == Type::unreachable) {
return;
}
if (curr->type.isNonNullable() && trapOnNull(curr, curr->ref)) {
return;
}
Builder builder(*getModule());
// Look at all the fallthrough values to get the most precise possible type
// of the value we are casting. local.tee, br_if, and blocks can all "lose"
// type information, so looking at all the fallthrough values can give us a
// more precise type than is stored in the IR.
Type refType =
Properties::getFallthroughType(curr->ref, getPassOptions(), *getModule());
// As a first step, we can tighten up the cast type to be the greatest lower
// bound of the original cast type and the type we know the cast value to
// have. We know any less specific type either cannot appear or will fail
// the cast anyways.
auto glb = Type::getGreatestLowerBound(curr->type, refType);
if (glb != Type::unreachable && glb != curr->type) {
curr->type = glb;
refinalize = true;
// Call replaceCurrent() to make us re-optimize this node, as we may have
// just unlocked further opportunities. (We could just continue down to
// the rest, but we'd need to do more work to make sure all the local
// state in this function is in sync which this change; it's easier to
// just do another clean pass on this node.)
replaceCurrent(curr);
return;
}
// Given what we know about the type of the value, determine what we know
// about the results of the cast and optimize accordingly.
switch (GCTypeUtils::evaluateCastCheck(refType, curr->type)) {
case GCTypeUtils::Unknown:
// The cast may or may not succeed, so we cannot optimize.
break;
case GCTypeUtils::Success:
case GCTypeUtils::SuccessOnlyIfNonNull: {
// We know the cast will succeed, or at most requires a null check, so
// we can try to optimize it out. Find the best-typed fallthrough value
// to propagate.
auto** refp = Properties::getMostRefinedFallthrough(
&curr->ref, getPassOptions(), *getModule());
auto* ref = *refp;
assert(ref->type.isRef());
if (HeapType::isSubType(ref->type.getHeapType(),
curr->type.getHeapType())) {
// We know ref's heap type matches, but the knowledge that the
// nullabillity matches might come from somewhere else or we might not
// know at all whether the nullability matches, so we might need to
// emit a null check.
bool needsNullCheck = ref->type.getNullability() == Nullable &&
curr->type.getNullability() == NonNullable;
// If the best value to propagate is the argument to the cast, we can
// simply remove the cast (or downgrade it to a null check if
// necessary).
if (ref == curr->ref) {
if (needsNullCheck) {
replaceCurrent(builder.makeRefAs(RefAsNonNull, curr->ref));
} else {
replaceCurrent(ref);
}
return;
}
// Otherwise we can't just remove the cast and replace it with `ref`
// because the intermediate expressions might have had side effects.
// We can replace the cast with a drop followed by a direct return of
// the value, though.
if (ref->type.isNull()) {
// We can materialize the resulting null value directly.
//
// The type must be nullable for us to do that, which it normally
// would be, aside from the interesting corner case of
// uninhabitable types:
//
// (ref.cast func
// (block (result (ref nofunc))
// (unreachable)
// )
// )
//
// (ref nofunc) is a subtype of (ref func), so the cast might seem
// to be successful, but since the input is uninhabitable we won't
// even reach the cast. Such casts will be evaluated as
// Unreachable, so we'll not hit this assertion.
assert(curr->type.isNullable());
auto nullType = curr->type.getHeapType().getBottom();
replaceCurrent(builder.makeSequence(builder.makeDrop(curr->ref),
builder.makeRefNull(nullType)));
return;
}
// We need to use a tee to return the value since we can't materialize
// it directly.
auto scratch = builder.addVar(getFunction(), ref->type);
*refp = builder.makeLocalTee(scratch, ref, ref->type);
Expression* get = builder.makeLocalGet(scratch, ref->type);
if (needsNullCheck) {
get = builder.makeRefAs(RefAsNonNull, get);
}
replaceCurrent(
builder.makeSequence(builder.makeDrop(curr->ref), get));
return;
}
// If we get here, then we know that the heap type of the cast input is
// more refined than the heap type of the best available fallthrough
// expression. The only way this can happen is if we were able to infer
// that the input has bottom heap type because it was typed with
// multiple, incompatible heap types in different fallthrough
// expressions. For example:
//
// (ref.cast eqref
// (br_on_cast_fail $l anyref i31ref
// (br_on_cast_fail $l anyref structref
// ...)))
//
// In this case, the cast succeeds because the value must be null, so we
// can fall through to handle that case.
assert(Type::isSubType(refType, ref->type));
assert(refType.getHeapType().isBottom());
}
[[fallthrough]];
case GCTypeUtils::SuccessOnlyIfNull: {
auto nullType = Type(curr->type.getHeapType().getBottom(), Nullable);
// The cast either returns null or traps. In trapsNeverHappen mode
// we know the result, since by assumption it will not trap.
if (getPassOptions().trapsNeverHappen) {
replaceCurrent(builder.makeBlock(
{builder.makeDrop(curr->ref), builder.makeRefNull(nullType)},
curr->type));
return;
}
// Otherwise, we should have already refined the cast type to cast
// directly to null.
assert(curr->type == nullType);
break;
}
case GCTypeUtils::Unreachable:
case GCTypeUtils::Failure:
// This cast cannot succeed, or it cannot even be reached, so we can
// trap. Make sure to emit a block with the same type as us; leave
// updating types for other passes.
replaceCurrent(builder.makeBlock(
{builder.makeDrop(curr->ref), builder.makeUnreachable()},
curr->type));
return;
}
// If we got past the optimizations above, it must be the case that we
// cannot tell from the static types whether the cast will succeed or not,
// which means we must have a proper down cast.
assert(Type::isSubType(curr->type, curr->ref->type));
if (auto* child = curr->ref->dynCast<RefCast>()) {
// Repeated casts can be removed, leaving just the most demanding of them.
// Since we know the current cast is a downcast, it must be strictly
// stronger than its child cast and we can remove the child cast entirely.
curr->ref = child->ref;
return;
}
// Similarly, ref.cast can be combined with ref.as_non_null.
//
// (ref.cast null (ref.as_non_null ..))
// =>
// (ref.cast ..)
//
if (auto* as = curr->ref->dynCast<RefAs>(); as && as->op == RefAsNonNull) {
curr->ref = as->value;
curr->type = Type(curr->type.getHeapType(), NonNullable);
}
}
void visitRefTest(RefTest* curr) {
if (curr->type == Type::unreachable) {
return;
}
Builder builder(*getModule());
// Parallel to the code in visitRefCast: we look not just at the final type
// we are given, but at fallthrough values as well.
Type refType =
Properties::getFallthroughType(curr->ref, getPassOptions(), *getModule());
// Improve the cast type as much as we can without changing the results.
auto glb = Type::getGreatestLowerBound(curr->castType, refType);
if (glb != Type::unreachable && glb != curr->castType) {
curr->castType = glb;
}
switch (GCTypeUtils::evaluateCastCheck(refType, curr->castType)) {
case GCTypeUtils::Unknown:
break;
case GCTypeUtils::Success:
replaceCurrent(builder.makeBlock(
{builder.makeDrop(curr->ref), builder.makeConst(int32_t(1))}));
return;
case GCTypeUtils::Unreachable:
// Make sure to emit a block with the same type as us, to avoid other
// code in this pass needing to handle unexpected unreachable code
// (which is only properly propagated at the end of this pass when we
// refinalize).
replaceCurrent(builder.makeBlock(
{builder.makeDrop(curr->ref), builder.makeUnreachable()}, Type::i32));
return;
case GCTypeUtils::Failure:
replaceCurrent(builder.makeSequence(builder.makeDrop(curr->ref),
builder.makeConst(int32_t(0))));
return;
case GCTypeUtils::SuccessOnlyIfNull:
replaceCurrent(builder.makeRefIsNull(curr->ref));
return;
case GCTypeUtils::SuccessOnlyIfNonNull:
// This adds an EqZ, but code size does not regress since ref.test
// also encodes a type, and ref.is_null does not. The EqZ may also add
// some work, but a cast is likely more expensive than a null check +
// a fast int operation.
replaceCurrent(
builder.makeUnary(EqZInt32, builder.makeRefIsNull(curr->ref)));
return;
}
}
void visitRefIsNull(RefIsNull* curr) {
if (curr->type == Type::unreachable) {
return;
}
// Optimizing RefIsNull is not that obvious, since even if we know the
// result evaluates to 0 or 1 then the replacement may not actually save
// code size, since RefIsNull is a single byte while adding a Const of 0
// would be two bytes. Other factors are that we can remove the input and
// the added drop on it if it has no side effects, and that replacing with a
// constant may allow further optimizations later. For now, replace with a
// constant, but this warrants more investigation. TODO
Builder builder(*getModule());
if (curr->value->type.isNonNullable()) {
replaceCurrent(
builder.makeSequence(builder.makeDrop(curr->value),
builder.makeConst(Literal::makeZero(Type::i32))));
} else {
skipCast(curr->value);
}
}
void visitRefAs(RefAs* curr) {
if (curr->type == Type::unreachable) {
return;
}
if (curr->op == ExternConvertAny || curr->op == AnyConvertExtern) {
// These pass nulls through, and we can reorder them with null traps:
//
// (any.convert_extern/extern.convert_any (ref.as_non_null.. ))
// =>
// (ref.as_non_null (any.convert_extern/extern.convert_any ..))
//
// By moving the RefAsNonNull outside, it may reach a position where it
// can be optimized (e.g. if the parent traps anyhow). And,
// ExternConvertAny/AnyConvertExtern cannot be folded with anything, so
// there is no harm to moving them inside.
if (auto* refAsChild = curr->value->dynCast<RefAs>()) {
if (refAsChild->op == RefAsNonNull) {
// Reorder and fix up the types.
curr->value = refAsChild->value;
curr->finalize();
refAsChild->value = curr;
refAsChild->finalize();
replaceCurrent(refAsChild);
return;
}
// We can optimize away externalizations of internalizations and vice
// versa.
if ((curr->op == ExternConvertAny &&
refAsChild->op == AnyConvertExtern) ||
(curr->op == AnyConvertExtern &&
refAsChild->op == ExternConvertAny)) {
replaceCurrent(refAsChild->value);
return;
}
}
return;
}
assert(curr->op == RefAsNonNull);
if (trapOnNull(curr, curr->value)) {
return;
}
skipNonNullCast(curr->value, curr);
if (!curr->value->type.isNullable()) {
replaceCurrent(curr->value);
return;
}
// As we do in visitRefCast, ref.cast can be combined with ref.as_non_null.
// This code handles the case where the ref.as is on the outside:
//
// (ref.as_non_null (ref.cast null ..))
// =>
// (ref.cast ..)
//
if (auto* cast = curr->value->dynCast<RefCast>()) {
// The cast cannot be non-nullable, or we would have handled this right
// above by just removing the ref.as, since it would not be needed.
assert(!cast->type.isNonNullable());
cast->type = Type(cast->type.getHeapType(), NonNullable);
replaceCurrent(cast);
}
}
void visitTupleExtract(TupleExtract* curr) {
if (curr->type == Type::unreachable) {
return;
}
if (auto* make = curr->tuple->dynCast<TupleMake>()) {
Builder builder(*getModule());
// Store the value of the lane we want in a tee, and return that after a
// drop of the tuple (which might have side effects).
auto valueType = make->type[curr->index];
Index tempLocal = builder.addVar(getFunction(), valueType);
make->operands[curr->index] =
builder.makeLocalTee(tempLocal, make->operands[curr->index], valueType);
auto* get = builder.makeLocalGet(tempLocal, valueType);
replaceCurrent(getDroppedChildrenAndAppend(make, get));
}
}
Index getMaxBitsForLocal(LocalGet* get) {
// check what we know about the local
return localInfo[get->index].maxBits;
}
private:
// Information about our locals
std::vector<LocalInfo> localInfo;
// Checks if the first is a local.tee and the second a local.get of that same
// index. This is useful in the methods right below us, as it is a common
// pattern where two consecutive inputs are equal despite being syntactically
// different.
bool areMatchingTeeAndGet(Expression* left, Expression* right) {
if (auto* set = left->dynCast<LocalSet>()) {
if (auto* get = right->dynCast<LocalGet>()) {
if (set->isTee() && get->index == set->index) {
return true;
}
}
}
return false;
}
// Check if two consecutive inputs to an instruction are equal. As they are
// consecutive, no code can execeute in between them, which simplies the
// problem here (and which is the case we care about in this pass, which does
// simple peephole optimizations - all we care about is a single instruction
// at a time, and its inputs).
bool areConsecutiveInputsEqual(Expression* left, Expression* right) {
// When we look for a tee/get pair, we can consider the fallthrough values
// for the first, as the fallthrough happens last (however, we must use
// NoTeeBrIf as we do not want to look through the tee). We cannot do this
// on the second, however, as there could be effects in the middle.
// TODO: Use effects here perhaps.
auto& passOptions = getPassOptions();
left =
Properties::getFallthrough(left,
passOptions,
*getModule(),
Properties::FallthroughBehavior::NoTeeBrIf);
if (areMatchingTeeAndGet(left, right)) {
return true;
}
// Ignore extraneous things and compare them syntactically. We can also
// look at the full fallthrough for both sides now.
left = Properties::getFallthrough(left, passOptions, *getModule());
auto* originalRight = right;
right = Properties::getFallthrough(right, passOptions, *getModule());
if (!ExpressionAnalyzer::equal(left, right)) {
return false;
}
// We must also not have non-fallthrough effects that invalidate us, such as
// this situation:
//
// (local.get $x)
// (block
// (local.set $x ..)
// (local.get $x)
// )
//
// The fallthroughs are identical, but the set may cause us to read a
// different value.
if (originalRight != right) {
// TODO: We could be more precise here and ignore right itself in
// originalRightEffects.
auto originalRightEffects = effects(originalRight);
auto rightEffects = effects(right);
if (originalRightEffects.invalidates(rightEffects)) {
return false;
}
}
// To be equal, they must also be known to return the same result
// deterministically.
return !Properties::isGenerative(left);
}
// Similar to areConsecutiveInputsEqual() but also checks if we can remove
// them (but we do not assume the caller will always remove them).
bool areConsecutiveInputsEqualAndRemovable(Expression* left,
Expression* right) {
// First, check for side effects. If there are any, then we can't even
// assume things like local.get's of the same index being identical. (It is
// also ok to have removable side effects here, see the function
// description.)
auto& passOptions = getPassOptions();
if (EffectAnalyzer(passOptions, *getModule(), left)
.hasUnremovableSideEffects() ||
EffectAnalyzer(passOptions, *getModule(), right)
.hasUnremovableSideEffects()) {
return false;
}
return areConsecutiveInputsEqual(left, right);
}
// Check if two consecutive inputs to an instruction are equal and can also be
// folded into the first of the two (but we do not assume the caller will
// always fold them). This is similar to areConsecutiveInputsEqualAndRemovable
// but also identifies reads from the same local variable when the first of
// them is a "tee" operation and the second is a get (in which case, it is
// fine to remove the get, but not the tee).
//
// The inputs here must be consecutive, but it is also ok to have code with no
// side effects at all in the middle. For example, a Const in between is ok.
bool areConsecutiveInputsEqualAndFoldable(Expression* left,
Expression* right) {
// TODO: We could probably consider fallthrough values for left, at least
// (since we fold into it).
if (areMatchingTeeAndGet(left, right)) {
return true;
}
// stronger property than we need - we can not only fold
// them but remove them entirely.
return areConsecutiveInputsEqualAndRemovable(left, right);
}
// Canonicalizing the order of a symmetric binary helps us
// write more concise pattern matching code elsewhere.
void canonicalize(Binary* binary) {
assert(shouldCanonicalize(binary));
auto swap = [&]() {
assert(canReorder(binary->left, binary->right));
if (binary->isRelational()) {
binary->op = reverseRelationalOp(binary->op);
}
std::swap(binary->left, binary->right);
};
auto maybeSwap = [&]() {
if (canReorder(binary->left, binary->right)) {
swap();
}
};
// Prefer a const on the right.
if (binary->left->is<Const>() && !binary->right->is<Const>()) {
swap();
}
if (auto* c = binary->right->dynCast<Const>()) {
// x - C ==> x + (-C)
// Prefer use addition if there is a constant on the right.
if (binary->op == Abstract::getBinary(c->type, Abstract::Sub)) {
c->value = c->value.neg();
binary->op = Abstract::getBinary(c->type, Abstract::Add);
return;
}
// Prefer to compare to 0 instead of to -1 or 1.
// (signed)x > -1 ==> x >= 0
if (binary->op == Abstract::getBinary(c->type, Abstract::GtS) &&
c->value.getInteger() == -1LL) {
binary->op = Abstract::getBinary(c->type, Abstract::GeS);
c->value = Literal::makeZero(c->type);
return;
}
// (signed)x <= -1 ==> x < 0
if (binary->op == Abstract::getBinary(c->type, Abstract::LeS) &&
c->value.getInteger() == -1LL) {
binary->op = Abstract::getBinary(c->type, Abstract::LtS);
c->value = Literal::makeZero(c->type);
return;
}
// (signed)x < 1 ==> x <= 0
if (binary->op == Abstract::getBinary(c->type, Abstract::LtS) &&
c->value.getInteger() == 1LL) {
binary->op = Abstract::getBinary(c->type, Abstract::LeS);
c->value = Literal::makeZero(c->type);
return;
}
// (signed)x >= 1 ==> x > 0
if (binary->op == Abstract::getBinary(c->type, Abstract::GeS) &&
c->value.getInteger() == 1LL) {
binary->op = Abstract::getBinary(c->type, Abstract::GtS);
c->value = Literal::makeZero(c->type);
return;
}
// (unsigned)x < 1 ==> x == 0
if (binary->op == Abstract::getBinary(c->type, Abstract::LtU) &&
c->value.getInteger() == 1LL) {
binary->op = Abstract::getBinary(c->type, Abstract::Eq);
c->value = Literal::makeZero(c->type);
return;
}
// (unsigned)x >= 1 ==> x != 0
if (binary->op == Abstract::getBinary(c->type, Abstract::GeU) &&
c->value.getInteger() == 1LL) {
binary->op = Abstract::getBinary(c->type, Abstract::Ne);
c->value = Literal::makeZero(c->type);
return;
}
// Prefer compare to signed min (s_min) instead of s_min + 1.
// (signed)x < s_min + 1 ==> x == s_min
if (binary->op == LtSInt32 && c->value.geti32() == INT32_MIN + 1) {
binary->op = EqInt32;
c->value = Literal::makeSignedMin(Type::i32);
return;
}
if (binary->op == LtSInt64 && c->value.geti64() == INT64_MIN + 1) {
binary->op = EqInt64;
c->value = Literal::makeSignedMin(Type::i64);
return;
}
// (signed)x >= s_min + 1 ==> x != s_min
if (binary->op == GeSInt32 && c->value.geti32() == INT32_MIN + 1) {
binary->op = NeInt32;
c->value = Literal::makeSignedMin(Type::i32);
return;
}
if (binary->op == GeSInt64 && c->value.geti64() == INT64_MIN + 1) {
binary->op = NeInt64;
c->value = Literal::makeSignedMin(Type::i64);
return;
}
// Prefer compare to signed max (s_max) instead of s_max - 1.
// (signed)x > s_max - 1 ==> x == s_max
if (binary->op == GtSInt32 && c->value.geti32() == INT32_MAX - 1) {
binary->op = EqInt32;
c->value = Literal::makeSignedMax(Type::i32);
return;
}
if (binary->op == GtSInt64 && c->value.geti64() == INT64_MAX - 1) {
binary->op = EqInt64;
c->value = Literal::makeSignedMax(Type::i64);
return;
}
// (signed)x <= s_max - 1 ==> x != s_max
if (binary->op == LeSInt32 && c->value.geti32() == INT32_MAX - 1) {
binary->op = NeInt32;
c->value = Literal::makeSignedMax(Type::i32);
return;
}
if (binary->op == LeSInt64 && c->value.geti64() == INT64_MAX - 1) {
binary->op = NeInt64;
c->value = Literal::makeSignedMax(Type::i64);
return;
}
// Prefer compare to unsigned max (u_max) instead of u_max - 1.
// (unsigned)x <= u_max - 1 ==> x != u_max
if (binary->op == Abstract::getBinary(c->type, Abstract::LeU) &&
c->value.getInteger() == (int64_t)(UINT64_MAX - 1)) {
binary->op = Abstract::getBinary(c->type, Abstract::Ne);
c->value = Literal::makeUnsignedMax(c->type);
return;
}
// (unsigned)x > u_max - 1 ==> x == u_max
if (binary->op == Abstract::getBinary(c->type, Abstract::GtU) &&
c->value.getInteger() == (int64_t)(UINT64_MAX - 1)) {
binary->op = Abstract::getBinary(c->type, Abstract::Eq);
c->value = Literal::makeUnsignedMax(c->type);
return;
}
return;
}
// Prefer a get on the right.
if (binary->left->is<LocalGet>() && !binary->right->is<LocalGet>()) {
return maybeSwap();
}
// Sort by the node id type, if different.
if (binary->left->_id != binary->right->_id) {
if (binary->left->_id > binary->right->_id) {
return maybeSwap();
}
return;
}
// If the children have the same node id, we have to go deeper.
if (auto* left = binary->left->dynCast<Unary>()) {
auto* right = binary->right->cast<Unary>();
if (left->op > right->op) {
return maybeSwap();
}
}
if (auto* left = binary->left->dynCast<Binary>()) {
auto* right = binary->right->cast<Binary>();
if (left->op > right->op) {
return maybeSwap();
}
}
if (auto* left = binary->left->dynCast<LocalGet>()) {
auto* right = binary->right->cast<LocalGet>();
if (left->index > right->index) {
return maybeSwap();
}
}
}
// Optimize given that the expression is flowing into a boolean context
Expression* optimizeBoolean(Expression* boolean) {
// TODO use a general getFallthroughs
if (auto* unary = boolean->dynCast<Unary>()) {
if (unary) {
if (unary->op == EqZInt32) {
auto* unary2 = unary->value->dynCast<Unary>();
if (unary2 && unary2->op == EqZInt32) {
// double eqz
return unary2->value;
}
if (auto* binary = unary->value->dynCast<Binary>()) {
// !(x <=> y) ==> x <!=> y
auto op = invertBinaryOp(binary->op);
if (op != InvalidBinary) {
binary->op = op;
return binary;
}
}
}
}
} else if (auto* binary = boolean->dynCast<Binary>()) {
if (binary->op == SubInt32) {
if (auto* c = binary->left->dynCast<Const>()) {
if (c->value.geti32() == 0) {
// bool(0 - x) ==> bool(x)
return binary->right;
}
}
} else if (binary->op == OrInt32) {
// an or flowing into a boolean context can consider each input as
// boolean
binary->left = optimizeBoolean(binary->left);
binary->right = optimizeBoolean(binary->right);
} else if (binary->op == NeInt32) {
if (auto* c = binary->right->dynCast<Const>()) {
// x != 0 is just x if it's used as a bool
if (c->value.geti32() == 0) {
return binary->left;
}
// TODO: Perhaps use it for separate final pass???
// x != -1 ==> x ^ -1
// if (num->value.geti32() == -1) {
// binary->op = XorInt32;
// return binary;
// }
}
} else if (binary->op == RemSInt32) {
// bool(i32(x) % C_pot) ==> bool(x & (C_pot - 1))
// bool(i32(x) % min_s) ==> bool(x & max_s)
if (auto* c = binary->right->dynCast<Const>()) {
if (c->value.isSignedMin() ||
Bits::isPowerOf2(c->value.abs().geti32())) {
binary->op = AndInt32;
if (c->value.isSignedMin()) {
c->value = Literal::makeSignedMax(Type::i32);
} else {
c->value = c->value.abs().sub(Literal::makeOne(Type::i32));
}
return binary;
}
}
}
if (auto* ext = Properties::getSignExtValue(binary)) {
// use a cheaper zero-extent, we just care about the boolean value
// anyhow
return makeZeroExt(ext, Properties::getSignExtBits(binary));
}
} else if (auto* block = boolean->dynCast<Block>()) {
if (block->type == Type::i32 && block->list.size() > 0) {
block->list.back() = optimizeBoolean(block->list.back());
}
} else if (auto* iff = boolean->dynCast<If>()) {
if (iff->type == Type::i32) {
iff->ifTrue = optimizeBoolean(iff->ifTrue);
iff->ifFalse = optimizeBoolean(iff->ifFalse);
}
} else if (auto* select = boolean->dynCast<Select>()) {
select->ifTrue = optimizeBoolean(select->ifTrue);
select->ifFalse = optimizeBoolean(select->ifFalse);
} else if (auto* tryy = boolean->dynCast<Try>()) {
if (tryy->type == Type::i32) {
tryy->body = optimizeBoolean(tryy->body);
for (Index i = 0; i < tryy->catchBodies.size(); i++) {
tryy->catchBodies[i] = optimizeBoolean(tryy->catchBodies[i]);
}
}
}
// TODO: recurse into br values?
return boolean;
}
Expression* optimizeSelect(Select* curr) {
using namespace Match;
using namespace Abstract;
Builder builder(*getModule());
curr->condition = optimizeBoolean(curr->condition);
{
// Constant condition, we can just pick the correct side (barring side
// effects)
Expression *ifTrue, *ifFalse;
if (matches(curr, select(pure(&ifTrue), any(&ifFalse), i32(0)))) {
return ifFalse;
}
if (matches(curr, select(any(&ifTrue), any(&ifFalse), i32(0)))) {
return builder.makeSequence(builder.makeDrop(ifTrue), ifFalse);
}
int32_t cond;
if (matches(curr, select(any(&ifTrue), pure(&ifFalse), i32(&cond)))) {
// The condition must be non-zero because a zero would have matched one
// of the previous patterns.
assert(cond != 0);
return ifTrue;
}
// Don't bother when `ifFalse` isn't pure - we would need to reverse the
// order using a temp local, which would be bad
}
{
// TODO: Remove this after landing SCCP pass. See: #4161
// i32(x) ? i32(x) : 0 ==> x
Expression *x, *y;
if (matches(curr, select(any(&x), i32(0), any(&y))) &&
areConsecutiveInputsEqualAndFoldable(x, y)) {
return curr->ifTrue;
}
// i32(x) ? 0 : i32(x) ==> { x, 0 }
if (matches(curr, select(i32(0), any(&x), any(&y))) &&
areConsecutiveInputsEqualAndFoldable(x, y)) {
return builder.makeSequence(builder.makeDrop(x), curr->ifTrue);
}
// i64(x) == 0 ? 0 : i64(x) ==> x
// i64(x) != 0 ? i64(x) : 0 ==> x
if ((matches(curr, select(i64(0), any(&x), unary(EqZInt64, any(&y)))) ||
matches(
curr,
select(any(&x), i64(0), binary(NeInt64, any(&y), i64(0))))) &&
areConsecutiveInputsEqualAndFoldable(x, y)) {
return curr->condition->is<Unary>() ? curr->ifFalse : curr->ifTrue;
}
// i64(x) == 0 ? i64(x) : 0 ==> { x, 0 }
// i64(x) != 0 ? 0 : i64(x) ==> { x, 0 }
if ((matches(curr, select(any(&x), i64(0), unary(EqZInt64, any(&y)))) ||
matches(
curr,
select(i64(0), any(&x), binary(NeInt64, any(&y), i64(0))))) &&
areConsecutiveInputsEqualAndFoldable(x, y)) {
return builder.makeSequence(
builder.makeDrop(x),
curr->condition->is<Unary>() ? curr->ifFalse : curr->ifTrue);
}
}
{
// Simplify selects between 0 and 1
Expression* c;
bool reversed = matches(curr, select(ival(0), ival(1), any(&c)));
if (reversed || matches(curr, select(ival(1), ival(0), any(&c)))) {
if (reversed) {
c = optimizeBoolean(builder.makeUnary(EqZInt32, c));
}
if (!Properties::emitsBoolean(c)) {
// cond ? 1 : 0 ==> !!cond
c = builder.makeUnary(EqZInt32, builder.makeUnary(EqZInt32, c));
}
return curr->type == Type::i64 ? builder.makeUnary(ExtendUInt32, c) : c;
}
}
// Flip the arms if doing so might help later optimizations here.
if (auto* binary = curr->condition->dynCast<Binary>()) {
auto inv = invertBinaryOp(binary->op);
if (inv != InvalidBinary) {
// For invertible binary operations, we prefer to have non-zero values
// in the ifTrue, and zero values in the ifFalse, due to the
// optimization right after us. Even if this does not help there, it is
// a nice canonicalization. (To ensure convergence - that we don't keep
// doing work each time we get here - do nothing if both are zero, or
// if both are nonzero.)
Const* c;
if ((matches(curr->ifTrue, ival(0)) &&
!matches(curr->ifFalse, ival(0))) ||
(!matches(curr->ifTrue, ival()) &&
matches(curr->ifFalse, ival(&c)) && !c->value.isZero())) {
binary->op = inv;
std::swap(curr->ifTrue, curr->ifFalse);
}
}
}
if (curr->type == Type::i32 &&
Bits::getMaxBits(curr->condition, this) <= 1 &&
Bits::getMaxBits(curr->ifTrue, this) <= 1 &&
Bits::getMaxBits(curr->ifFalse, this) <= 1) {
// The condition and both arms are i32 booleans, which allows us to do
// boolean optimizations.
Expression* x;
Expression* y;
// x ? y : 0 ==> x & y
if (matches(curr, select(any(&y), ival(0), any(&x)))) {
return builder.makeBinary(AndInt32, y, x);
}
// x ? 1 : y ==> x | y
if (matches(curr, select(ival(1), any(&y), any(&x)))) {
return builder.makeBinary(OrInt32, y, x);
}
}
{
// Simplify x < 0 ? -1 : 1 or x >= 0 ? 1 : -1 to
// i32(x) >> 31 | 1
// i64(x) >> 63 | 1
Binary* bin;
if (matches(
curr,
select(ival(-1), ival(1), binary(&bin, LtS, any(), ival(0)))) ||
matches(
curr,
select(ival(1), ival(-1), binary(&bin, GeS, any(), ival(0))))) {
auto c = bin->right->cast<Const>();
auto type = curr->ifTrue->type;
if (type == c->type) {
bin->type = type;
bin->op = Abstract::getBinary(type, ShrS);
c->value = Literal::makeFromInt32(type.getByteSize() * 8 - 1, type);
curr->ifTrue->cast<Const>()->value = Literal::makeOne(type);
return builder.makeBinary(
Abstract::getBinary(type, Or), bin, curr->ifTrue);
}
}
}
{
// Flip select to remove eqz if we can reorder
Select* s;
Expression *ifTrue, *ifFalse, *c;
if (matches(
curr,
select(
&s, any(&ifTrue), any(&ifFalse), unary(EqZInt32, any(&c)))) &&
canReorder(ifTrue, ifFalse)) {
s->ifTrue = ifFalse;
s->ifFalse = ifTrue;
s->condition = c;
return s;
}
}
{
// Sides are identical, fold
Expression *ifTrue, *ifFalse, *c;
if (matches(curr, select(any(&ifTrue), any(&ifFalse), any(&c))) &&
ExpressionAnalyzer::equal(ifTrue, ifFalse)) {
auto value = effects(ifTrue);
if (value.hasSideEffects()) {
// At best we don't need the condition, but need to execute the
// value twice. a block is larger than a select by 2 bytes, and we
// must drop one value, so 3, while we save the condition, so it's
// not clear this is worth it, TODO
} else {
// The value has no side effects, so we can replace ourselves with one
// of the two identical values in the arms.
auto condition = effects(c);
if (!condition.hasSideEffects()) {
return ifTrue;
} else {
// The condition is last, so we need a new local, and it may be a
// bad idea to use a block like we do for an if. Do it only if we
// can reorder
if (!condition.invalidates(value)) {
return builder.makeSequence(builder.makeDrop(c), ifTrue);
}
}
}
}
}
return nullptr;
}
// find added constants in an expression tree, including multiplied/shifted,
// and combine them note that we ignore division/shift-right, as rounding
// makes this nonlinear, so not a valid opt
Expression* optimizeAddedConstants(Binary* binary) {
assert(binary->type.isInteger());
uint64_t constant = 0;
std::vector<Const*> constants;
struct SeekState {
Expression* curr;
uint64_t mul;
SeekState(Expression* curr, uint64_t mul) : curr(curr), mul(mul) {}
};
std::vector<SeekState> seekStack;
seekStack.emplace_back(binary, 1);
while (!seekStack.empty()) {
auto state = seekStack.back();
seekStack.pop_back();
auto curr = state.curr;
auto mul = state.mul;
if (auto* c = curr->dynCast<Const>()) {
uint64_t value = c->value.getInteger();
if (value != 0ULL) {
constant += value * mul;
constants.push_back(c);
}
continue;
} else if (auto* binary = curr->dynCast<Binary>()) {
if (binary->op == Abstract::getBinary(binary->type, Abstract::Add)) {
seekStack.emplace_back(binary->right, mul);
seekStack.emplace_back(binary->left, mul);
continue;
} else if (binary->op ==
Abstract::getBinary(binary->type, Abstract::Sub)) {
// if the left is a zero, ignore it, it's how we negate ints
auto* left = binary->left->dynCast<Const>();
seekStack.emplace_back(binary->right, -mul);
if (!left || !left->value.isZero()) {
seekStack.emplace_back(binary->left, mul);
}
continue;
} else if (binary->op ==
Abstract::getBinary(binary->type, Abstract::Shl)) {
if (auto* c = binary->right->dynCast<Const>()) {
seekStack.emplace_back(binary->left,
mul << Bits::getEffectiveShifts(c));
continue;
}
} else if (binary->op ==
Abstract::getBinary(binary->type, Abstract::Mul)) {
if (auto* c = binary->left->dynCast<Const>()) {
seekStack.emplace_back(binary->right,
mul * (uint64_t)c->value.getInteger());
continue;
} else if (auto* c = binary->right->dynCast<Const>()) {
seekStack.emplace_back(binary->left,
mul * (uint64_t)c->value.getInteger());
continue;
}
}
}
};
// find all factors
if (constants.size() <= 1) {
// nothing much to do, except for the trivial case of adding/subbing a
// zero
if (auto* c = binary->right->dynCast<Const>()) {
if (c->value.isZero()) {
return binary->left;
}
}
return nullptr;
}
// wipe out all constants, we'll replace with a single added one
for (auto* c : constants) {
c->value = Literal::makeZero(c->type);
}
// remove added/subbed zeros
struct ZeroRemover : public PostWalker<ZeroRemover> {
// TODO: we could save the binarys and costs we drop, and reuse them later
PassOptions& passOptions;
ZeroRemover(PassOptions& passOptions) : passOptions(passOptions) {}
void visitBinary(Binary* curr) {
if (!curr->type.isInteger()) {
return;
}
auto type = curr->type;
auto* left = curr->left->dynCast<Const>();
auto* right = curr->right->dynCast<Const>();
// Canonicalization prefers an add instead of a subtract wherever
// possible. That prevents a subtracted constant on the right,
// as it would be added. And for a zero on the left, it can't be
// removed (it is how we negate ints).
if (curr->op == Abstract::getBinary(type, Abstract::Add)) {
if (left && left->value.isZero()) {
replaceCurrent(curr->right);
return;
}
if (right && right->value.isZero()) {
replaceCurrent(curr->left);
return;
}
} else if (curr->op == Abstract::getBinary(type, Abstract::Shl)) {
// shifting a 0 is a 0, or anything by 0 has no effect, all unless the
// shift has side effects
if (((left && left->value.isZero()) ||
(right && Bits::getEffectiveShifts(right) == 0)) &&
!EffectAnalyzer(passOptions, *getModule(), curr->right)
.hasSideEffects()) {
replaceCurrent(curr->left);
return;
}
} else if (curr->op == Abstract::getBinary(type, Abstract::Mul)) {
// multiplying by zero is a zero, unless the other side has side
// effects
if (left && left->value.isZero() &&
!EffectAnalyzer(passOptions, *getModule(), curr->right)
.hasSideEffects()) {
replaceCurrent(left);
return;
}
if (right && right->value.isZero() &&
!EffectAnalyzer(passOptions, *getModule(), curr->left)
.hasSideEffects()) {
replaceCurrent(right);
return;
}
}
}
};
// Noting the type here not only simplifies the code below, but is also
// necessary to avoid an error: if we look at walked->type then it may
// actually differ from the original type, say if the walk ended up turning
// |binary| into a simpler unreachable expression.
auto type = binary->type;
Expression* walked = binary;
ZeroRemover remover(getPassOptions());
remover.setModule(getModule());
remover.walk(walked);
if (constant == 0ULL) {
return walked; // nothing more to do
}
// Add the total constant value we computed to the value remaining here.
// Note that if the value is 32 bits then |makeFromInt64| will wrap to 32
// bits for us; as all the operations before us and the add below us are
// adds and subtracts, any overflow is not a problem.
auto toAdd = Literal::makeFromInt64(constant, type);
if (auto* c = walked->dynCast<Const>()) {
// This is a constant, so just add it immediately (we could also leave
// this for Precompute, in principle).
c->value = c->value.add(toAdd);
return c;
}
Builder builder(*getModule());
return builder.makeBinary(Abstract::getBinary(type, Abstract::Add),
walked,
builder.makeConst(toAdd));
}
// Given an i64.wrap operation, see if we can remove it. If all the things
// being operated on behave the same with or without wrapping, then we don't
// need to go to 64 bits at all, e.g.:
//
// int32_t(int64_t(x)) => x (extend, then wrap)
// int32_t(int64_t(x) + int64_t(10)) => x + int32_t(10) (also add)
//
Expression* optimizeWrappedResult(Unary* wrap) {
assert(wrap->op == WrapInt64);
// Core processing logic. This goes through the children, in one of two
// modes:
// * Scan: Find if there is anything we can't handle. Sets |canOptimize|
// with what it finds.
// * Optimize: Given we can handle everything, update things.
enum Mode { Scan, Optimize };
bool canOptimize = true;
auto processChildren = [&](Mode mode) {
// Use a simple stack as we go through the children. We use ** as we need
// to replace children for some optimizations.
SmallVector<Expression**, 2> stack;
stack.emplace_back(&wrap->value);
while (!stack.empty() && canOptimize) {
auto* currp = stack.back();
stack.pop_back();
auto* curr = *currp;
if (curr->type == Type::unreachable) {
// Leave unreachability for other passes.
canOptimize = false;
return;
} else if (auto* c = curr->dynCast<Const>()) {
// A i64 const can be handled by just turning it into an i32.
if (mode == Optimize) {
c->value = Literal(int32_t(c->value.getInteger()));
c->type = Type::i32;
}
} else if (auto* unary = curr->dynCast<Unary>()) {
switch (unary->op) {
case ExtendSInt32:
case ExtendUInt32: {
// Note that there is nothing to push to the stack here: the child
// is 32-bit already, so we can stop looking. We just need to skip
// the extend operation.
if (mode == Optimize) {
*currp = unary->value;
}
break;
}
default: {
// TODO: handle more cases here and below,
// https://github.com/WebAssembly/binaryen/issues/5004
canOptimize = false;
return;
}
}
} else if (auto* binary = curr->dynCast<Binary>()) {
// Turn the binary into a 32-bit one, if we can.
switch (binary->op) {
case AddInt64:
case SubInt64:
case MulInt64: {
// We can optimize these.
break;
}
default: {
canOptimize = false;
return;
}
}
if (mode == Optimize) {
switch (binary->op) {
case AddInt64: {
binary->op = AddInt32;
break;
}
case SubInt64: {
binary->op = SubInt32;
break;
}
case MulInt64: {
binary->op = MulInt32;
break;
}
default: {
WASM_UNREACHABLE("bad op");
}
}
// All things we can optimize change the type to i32.
binary->type = Type::i32;
}
stack.push_back(&binary->left);
stack.push_back(&binary->right);
} else {
// Anything else makes us give up.
canOptimize = false;
return;
}
}
};
processChildren(Scan);
if (!canOptimize) {
return nullptr;
}
// Optimize, and return the optimized results (in which we no longer need
// the wrap operation itself).
processChildren(Optimize);
return wrap->value;
}
// expensive1 | expensive2 can be turned into expensive1 ? 1 : expensive2,
// and expensive | cheap can be turned into cheap ? 1 : expensive,
// so that we can avoid one expensive computation, if it has no side effects.
Expression* conditionalizeExpensiveOnBitwise(Binary* binary) {
// this operation can increase code size, so don't always do it
auto& options = getPassRunner()->options;
if (options.optimizeLevel < 2 || options.shrinkLevel > 0) {
return nullptr;
}
const auto MIN_COST = 7;
assert(binary->op == AndInt32 || binary->op == OrInt32);
if (binary->right->is<Const>()) {
return nullptr; // trivial
}
// bitwise logical operator on two non-numerical values, check if they are
// boolean
auto* left = binary->left;
auto* right = binary->right;
if (!Properties::emitsBoolean(left) || !Properties::emitsBoolean(right)) {
return nullptr;
}
auto leftEffects = effects(left);
auto rightEffects = effects(right);
auto leftHasSideEffects = leftEffects.hasSideEffects();
auto rightHasSideEffects = rightEffects.hasSideEffects();
if (leftHasSideEffects && rightHasSideEffects) {
return nullptr; // both must execute
}
// canonicalize with side effects, if any, happening on the left
if (rightHasSideEffects) {
if (CostAnalyzer(left).cost < MIN_COST) {
return nullptr; // avoidable code is too cheap
}
if (leftEffects.invalidates(rightEffects)) {
return nullptr; // cannot reorder
}
std::swap(left, right);
} else if (leftHasSideEffects) {
if (CostAnalyzer(right).cost < MIN_COST) {
return nullptr; // avoidable code is too cheap
}
} else {
// no side effects, reorder based on cost estimation
auto leftCost = CostAnalyzer(left).cost;
auto rightCost = CostAnalyzer(right).cost;
if (std::max(leftCost, rightCost) < MIN_COST) {
return nullptr; // avoidable code is too cheap
}
// canonicalize with expensive code on the right
if (leftCost > rightCost) {
std::swap(left, right);
}
}
// worth it! perform conditionalization
Builder builder(*getModule());
if (binary->op == OrInt32) {
return builder.makeIf(
left, builder.makeConst(Literal(int32_t(1))), right);
} else { // &
return builder.makeIf(
left, right, builder.makeConst(Literal(int32_t(0))));
}
}
// We can combine `and` operations, e.g.
// (x == 0) & (y == 0) ==> (x | y) == 0
Expression* combineAnd(Binary* curr) {
assert(curr->op == AndInt32);
using namespace Abstract;
using namespace Match;
{
// (i32(x) == 0) & (i32(y) == 0) ==> i32(x | y) == 0
// (i64(x) == 0) & (i64(y) == 0) ==> i64(x | y) == 0
Expression *x, *y;
if (matches(curr->left, unary(EqZ, any(&x))) &&
matches(curr->right, unary(EqZ, any(&y))) && x->type == y->type) {
auto* inner = curr->left->cast<Unary>();
inner->value =
Builder(*getModule()).makeBinary(getBinary(x->type, Or), x, y);
return inner;
}
}
{
// Binary operations that inverse a bitwise AND can be
// reordered. If F(x) = binary(x, c), and F(x) preserves AND,
// that is,
//
// F(x) & F(y) == F(x | y)
//
// Then also
//
// binary(x, c) & binary(y, c) => binary(x | y, c)
Binary *bx, *by;
Expression *x, *y;
Const *cx, *cy;
if (matches(curr->left, binary(&bx, any(&x), ival(&cx))) &&
matches(curr->right, binary(&by, any(&y), ival(&cy))) &&
bx->op == by->op && x->type == y->type && cx->value == cy->value &&
inversesAnd(bx)) {
by->op = getBinary(x->type, Or);
by->type = x->type;
by->left = x;
by->right = y;
bx->left = by;
return bx;
}
}
{
// Binary operations that preserve a bitwise AND can be
// reordered. If F(x) = binary(x, c), and F(x) preserves AND,
// that is,
//
// F(x) & F(y) == F(x & y)
//
// Then also
//
// binary(x, c) & binary(y, c) => binary(x & y, c)
Binary *bx, *by;
Expression *x, *y;
Const *cx, *cy;
if (matches(curr->left, binary(&bx, any(&x), ival(&cx))) &&
matches(curr->right, binary(&by, any(&y), ival(&cy))) &&
bx->op == by->op && x->type == y->type && cx->value == cy->value &&
preserveAnd(bx)) {
by->op = getBinary(x->type, And);
by->type = x->type;
by->left = x;
by->right = y;
bx->left = by;
return bx;
}
}
return nullptr;
}
// We can combine `or` operations, e.g.
// (x > y) | (x == y) ==> x >= y
// (x != 0) | (y != 0) ==> (x | y) != 0
Expression* combineOr(Binary* curr) {
assert(curr->op == OrInt32);
using namespace Abstract;
using namespace Match;
if (auto* left = curr->left->dynCast<Binary>()) {
if (auto* right = curr->right->dynCast<Binary>()) {
if (left->op != right->op &&
ExpressionAnalyzer::equal(left->left, right->left) &&
ExpressionAnalyzer::equal(left->right, right->right) &&
!effects(left->left).hasSideEffects() &&
!effects(left->right).hasSideEffects()) {
switch (left->op) {
// (x > y) | (x == y) ==> x >= y
case EqInt32: {
if (right->op == GtSInt32) {
left->op = GeSInt32;
return left;
}
break;
}
default: {
}
}
}
}
}
{
// Binary operations that inverses a bitwise OR to AND.
// If F(x) = binary(x, c), and F(x) inverses OR,
// that is,
//
// F(x) | F(y) == F(x & y)
//
// Then also
//
// binary(x, c) | binary(y, c) => binary(x & y, c)
Binary *bx, *by;
Expression *x, *y;
Const *cx, *cy;
if (matches(curr->left, binary(&bx, any(&x), ival(&cx))) &&
matches(curr->right, binary(&by, any(&y), ival(&cy))) &&
bx->op == by->op && x->type == y->type && cx->value == cy->value &&
inversesOr(bx)) {
by->op = getBinary(x->type, And);
by->type = x->type;
by->left = x;
by->right = y;
bx->left = by;
return bx;
}
}
{
// Binary operations that preserve a bitwise OR can be
// reordered. If F(x) = binary(x, c), and F(x) preserves OR,
// that is,
//
// F(x) | F(y) == F(x | y)
//
// Then also
//
// binary(x, c) | binary(y, c) => binary(x | y, c)
Binary *bx, *by;
Expression *x, *y;
Const *cx, *cy;
if (matches(curr->left, binary(&bx, any(&x), ival(&cx))) &&
matches(curr->right, binary(&by, any(&y), ival(&cy))) &&
bx->op == by->op && x->type == y->type && cx->value == cy->value &&
preserveOr(bx)) {
by->op = getBinary(x->type, Or);
by->type = x->type;
by->left = x;
by->right = y;
bx->left = by;
return bx;
}
}
return nullptr;
}
// Check whether an operation preserves the Or operation through it, that is,
//
// F(x | y) = F(x) | F(y)
//
// Mathematically that means F is homomorphic with respect to the | operation.
//
// F(x) is seen as taking a single parameter of its first child. That is, the
// first child is |x|, and the rest is constant. For example, if we are given
// a binary with operation != and the right child is a constant 0, then
// F(x) = (x != 0).
bool preserveOr(Binary* curr) {
using namespace Abstract;
using namespace Match;
// (x != 0) | (y != 0) ==> (x | y) != 0
// This effectively checks if any bits are set in x or y.
if (matches(curr, binary(Ne, any(), ival(0)))) {
return true;
}
// (x < 0) | (y < 0) ==> (x | y) < 0
// This effectively checks if x or y have the sign bit set.
if (matches(curr, binary(LtS, any(), ival(0)))) {
return true;
}
return false;
}
// Check whether an operation inverses the Or operation to And, that is,
//
// F(x | y) = F(x) & F(y)
//
// Mathematically that means F is homomorphic with respect to the | operation.
//
// F(x) is seen as taking a single parameter of its first child. That is, the
// first child is |x|, and the rest is constant. For example, if we are given
// a binary with operation != and the right child is a constant 0, then
// F(x) = (x != 0).
bool inversesOr(Binary* curr) {
using namespace Abstract;
using namespace Match;
// (x >= 0) | (y >= 0) ==> (x & y) >= 0
if (matches(curr, binary(GeS, any(), ival(0)))) {
return true;
}
// (x !=-1) | (y !=-1) ==> (x & y) !=-1
if (matches(curr, binary(Ne, any(), ival(-1)))) {
return true;
}
return false;
}
// Check whether an operation preserves the And operation through it, that is,
//
// F(x & y) = F(x) & F(y)
//
// Mathematically that means F is homomorphic with respect to the & operation.
//
// F(x) is seen as taking a single parameter of its first child. That is, the
// first child is |x|, and the rest is constant. For example, if we are given
// a binary with operation != and the right child is a constant 0, then
// F(x) = (x != 0).
bool preserveAnd(Binary* curr) {
using namespace Abstract;
using namespace Match;
// (x < 0) & (y < 0) ==> (x & y) < 0
if (matches(curr, binary(LtS, any(), ival(0)))) {
return true;
}
// (x == -1) & (y == -1) ==> (x & y) == -1
if (matches(curr, binary(Eq, any(), ival(-1)))) {
return true;
}
return false;
}
// Check whether an operation inverses the And operation to Or, that is,
//
// F(x & y) = F(x) | F(y)
//
// Mathematically that means F is homomorphic with respect to the & operation.
//
// F(x) is seen as taking a single parameter of its first child. That is, the
// first child is |x|, and the rest is constant. For example, if we are given
// a binary with operation != and the right child is a constant 0, then
// F(x) = (x != 0).
bool inversesAnd(Binary* curr) {
using namespace Abstract;
using namespace Match;
// (x >= 0) & (y >= 0) ==> (x | y) >= 0
if (matches(curr, binary(GeS, any(), ival(0)))) {
return true;
}
return false;
}
// fold constant factors into the offset
void optimizeMemoryAccess(Expression*& ptr, Address& offset, Name memory) {
// ptr may be a const, but it isn't worth folding that in (we still have a
// const); in fact, it's better to do the opposite for gzip purposes as well
// as for readability.
auto* last = ptr->dynCast<Const>();
if (last) {
uint64_t value64 = last->value.getInteger();
uint64_t offset64 = offset;
auto mem = getModule()->getMemory(memory);
if (mem->is64()) {
// Check for a 64-bit overflow.
uint64_t sum;
if (!std::ckd_add(&sum, value64, offset64)) {
last->value = Literal(int64_t(sum));
offset = 0;
}
} else {
// don't do this if it would wrap the pointer
if (value64 <= uint64_t(std::numeric_limits<int32_t>::max()) &&
offset64 <= uint64_t(std::numeric_limits<int32_t>::max()) &&
value64 + offset64 <=
uint64_t(std::numeric_limits<int32_t>::max())) {
last->value = Literal(int32_t(value64 + offset64));
offset = 0;
}
}
}
}
// Optimize a multiply by a power of two on the right, which
// can be a shift.
// This doesn't shrink code size, and VMs likely optimize it anyhow,
// but it's still worth doing since
// * Often shifts are more common than muls.
// * The constant is smaller.
template<typename T> Expression* optimizePowerOf2Mul(Binary* binary, T c) {
static_assert(std::is_same<T, uint32_t>::value ||
std::is_same<T, uint64_t>::value,
"type mismatch");
auto shifts = Bits::countTrailingZeroes(c);
binary->op = std::is_same<T, uint32_t>::value ? ShlInt32 : ShlInt64;
binary->right->cast<Const>()->value = Literal(static_cast<T>(shifts));
return binary;
}
// Optimize an unsigned divide / remainder by a power of two on the right
// This doesn't shrink code size, and VMs likely optimize it anyhow,
// but it's still worth doing since
// * Usually ands are more common than urems.
// * The constant is slightly smaller.
template<typename T> Expression* optimizePowerOf2URem(Binary* binary, T c) {
static_assert(std::is_same<T, uint32_t>::value ||
std::is_same<T, uint64_t>::value,
"type mismatch");
binary->op = std::is_same<T, uint32_t>::value ? AndInt32 : AndInt64;
binary->right->cast<Const>()->value = Literal(c - 1);
return binary;
}
template<typename T> Expression* optimizePowerOf2UDiv(Binary* binary, T c) {
static_assert(std::is_same<T, uint32_t>::value ||
std::is_same<T, uint64_t>::value,
"type mismatch");
auto shifts = Bits::countTrailingZeroes(c);
binary->op = std::is_same<T, uint32_t>::value ? ShrUInt32 : ShrUInt64;
binary->right->cast<Const>()->value = Literal(static_cast<T>(shifts));
return binary;
}
template<typename T> Expression* optimizePowerOf2FDiv(Binary* binary, T c) {
//
// x / C_pot => x * (C_pot ^ -1)
//
// Explanation:
// Floating point numbers are represented as:
// ((-1) ^ sign) * (2 ^ (exp - bias)) * (1 + significand)
//
// If we have power of two numbers, then the mantissa (significand)
// is all zeros. Let's focus on the exponent, ignoring the sign part:
// (2 ^ (exp - bias))
//
// and for inverted power of two floating point:
// 1.0 / (2 ^ (exp - bias)) -> 2 ^ -(exp - bias)
//
// So inversion of C_pot is valid because it changes only the sign
// of the exponent part and doesn't touch the significand part,
// which remains the same (zeros).
static_assert(std::is_same<T, float>::value ||
std::is_same<T, double>::value,
"type mismatch");
double invDivisor = 1.0 / (double)c;
binary->op = std::is_same<T, float>::value ? MulFloat32 : MulFloat64;
binary->right->cast<Const>()->value = Literal(static_cast<T>(invDivisor));
return binary;
}
Expression* makeZeroExt(Expression* curr, int32_t bits) {
Builder builder(*getModule());
return builder.makeBinary(
AndInt32, curr, builder.makeConst(Literal(Bits::lowBitMask(bits))));
}
// given an "almost" sign extend - either a proper one, or it
// has too many shifts left - we remove the sign extend. If there are
// too many shifts, we split the shifts first, so this removes the
// two sign extend shifts and adds one (smaller one)
Expression* removeAlmostSignExt(Binary* outer) {
auto* inner = outer->left->cast<Binary>();
auto* outerConst = outer->right->cast<Const>();
auto* innerConst = inner->right->cast<Const>();
auto* value = inner->left;
if (outerConst->value == innerConst->value) {
return value;
}
// add a shift, by reusing the existing node
innerConst->value = innerConst->value.sub(outerConst->value);
return inner;
}
// check if an expression is already sign-extended
bool isSignExted(Expression* curr, Index bits) {
if (Properties::getSignExtValue(curr)) {
return Properties::getSignExtBits(curr) == bits;
}
if (auto* get = curr->dynCast<LocalGet>()) {
// check what we know about the local
return localInfo[get->index].signExtedBits == bits;
}
return false;
}
// optimize trivial math operations, given that the right side of a binary
// is a constant
Expression* optimizeWithConstantOnRight(Binary* curr) {
using namespace Match;
using namespace Abstract;
Builder builder(*getModule());
Expression* left;
auto* right = curr->right->cast<Const>();
auto type = curr->right->type;
// Operations on zero
if (matches(curr, binary(Shl, any(&left), ival(0))) ||
matches(curr, binary(ShrU, any(&left), ival(0))) ||
matches(curr, binary(ShrS, any(&left), ival(0))) ||
matches(curr, binary(Or, any(&left), ival(0))) ||
matches(curr, binary(Xor, any(&left), ival(0)))) {
return left;
}
if (matches(curr, binary(Mul, pure(&left), ival(0))) ||
matches(curr, binary(And, pure(&left), ival(0)))) {
return right;
}
// -x * C ==> x * -C, if shrinkLevel != 0 or C != C_pot
// -x * C ==> -(x * C), otherwise
// where x, C are integers
Binary* inner;
if (matches(
curr,
binary(Mul, binary(&inner, Sub, ival(0), any(&left)), ival()))) {
if (getPassOptions().shrinkLevel != 0 ||
!Bits::isPowerOf2(right->value.getInteger())) {
right->value = right->value.neg();
curr->left = left;
return curr;
} else {
curr->left = left;
Const* zero = inner->left->cast<Const>();
return builder.makeBinary(inner->op, zero, curr);
}
}
// x == 0 ==> eqz x
if (matches(curr, binary(Eq, any(&left), ival(0)))) {
return builder.makeUnary(Abstract::getUnary(type, EqZ), left);
}
// Operations on one
// (signed)x % 1 ==> 0
if (matches(curr, binary(RemS, pure(&left), ival(1)))) {
right->value = Literal::makeZero(type);
return right;
}
// (signed)x % C_pot != 0 ==> (x & (abs(C_pot) - 1)) != 0
{
Const* c;
Binary* inner;
if (matches(curr,
binary(Ne, binary(&inner, RemS, any(), ival(&c)), ival(0))) &&
(c->value.isSignedMin() ||
Bits::isPowerOf2(c->value.abs().getInteger()))) {
inner->op = Abstract::getBinary(c->type, And);
if (c->value.isSignedMin()) {
c->value = Literal::makeSignedMax(c->type);
} else {
c->value = c->value.abs().sub(Literal::makeOne(c->type));
}
return curr;
}
}
// i32(bool(x)) == 1 ==> i32(bool(x))
// i32(bool(x)) != 0 ==> i32(bool(x))
// i32(bool(x)) & 1 ==> i32(bool(x))
// i64(bool(x)) & 1 ==> i64(bool(x))
if ((matches(curr, binary(EqInt32, any(&left), i32(1))) ||
matches(curr, binary(NeInt32, any(&left), i32(0))) ||
matches(curr, binary(And, any(&left), ival(1)))) &&
Bits::getMaxBits(left, this) == 1) {
return left;
}
// i64(bool(x)) == 1 ==> i32(bool(x))
// i64(bool(x)) != 0 ==> i32(bool(x))
if ((matches(curr, binary(EqInt64, any(&left), i64(1))) ||
matches(curr, binary(NeInt64, any(&left), i64(0)))) &&
Bits::getMaxBits(left, this) == 1) {
return builder.makeUnary(WrapInt64, left);
}
// bool(x) != 1 ==> !bool(x)
if (matches(curr, binary(Ne, any(&left), ival(1))) &&
Bits::getMaxBits(left, this) == 1) {
return builder.makeUnary(Abstract::getUnary(type, EqZ), left);
}
// bool(x) ^ 1 ==> !bool(x)
if (matches(curr, binary(Xor, any(&left), ival(1))) &&
Bits::getMaxBits(left, this) == 1) {
auto* result = builder.makeUnary(Abstract::getUnary(type, EqZ), left);
if (left->type == Type::i64) {
// Xor's result is also an i64 in this case, but EqZ returns i32, so we
// must expand it so that we keep returning the same value as before.
// This means we replace a xor and a const with a xor and an extend,
// which is still smaller (the const is 2 bytes, the extend just 1), and
// also the extend may be removed by further work.
result = builder.makeUnary(ExtendUInt32, result);
}
return result;
}
// bool(x) | 1 ==> 1
if (matches(curr, binary(Or, pure(&left), ival(1))) &&
Bits::getMaxBits(left, this) == 1) {
return right;
}
// Operations on all 1s
// x & -1 ==> x
if (matches(curr, binary(And, any(&left), ival(-1)))) {
return left;
}
// x | -1 ==> -1
if (matches(curr, binary(Or, pure(&left), ival(-1)))) {
return right;
}
// (signed)x % -1 ==> 0
if (matches(curr, binary(RemS, pure(&left), ival(-1)))) {
right->value = Literal::makeZero(type);
return right;
}
// i32(x) / i32.min_s ==> x == i32.min_s
if (matches(
curr,
binary(DivSInt32, any(), i32(std::numeric_limits<int32_t>::min())))) {
curr->op = EqInt32;
return curr;
}
// i64(x) / i64.min_s ==> i64(x == i64.min_s)
// only for zero shrink level
if (getPassOptions().shrinkLevel == 0 &&
matches(
curr,
binary(DivSInt64, any(), i64(std::numeric_limits<int64_t>::min())))) {
curr->op = EqInt64;
curr->type = Type::i32;
return builder.makeUnary(ExtendUInt32, curr);
}
// (unsigned)x < 0 ==> i32(0)
if (matches(curr, binary(LtU, pure(&left), ival(0)))) {
right->value = Literal::makeZero(Type::i32);
right->type = Type::i32;
return right;
}
// (unsigned)x <= -1 ==> i32(1)
if (matches(curr, binary(LeU, pure(&left), ival(-1)))) {
right->value = Literal::makeOne(Type::i32);
right->type = Type::i32;
return right;
}
// (unsigned)x > -1 ==> i32(0)
if (matches(curr, binary(GtU, pure(&left), ival(-1)))) {
right->value = Literal::makeZero(Type::i32);
right->type = Type::i32;
return right;
}
// (unsigned)x >= 0 ==> i32(1)
if (matches(curr, binary(GeU, pure(&left), ival(0)))) {
right->value = Literal::makeOne(Type::i32);
right->type = Type::i32;
return right;
}
// (unsigned)x < -1 ==> x != -1
// Friendlier to JS emitting as we don't need to write an unsigned -1 value
// which is large.
if (matches(curr, binary(LtU, any(), ival(-1)))) {
curr->op = Abstract::getBinary(type, Ne);
return curr;
}
// (unsigned)x <= 0 ==> x == 0
if (matches(curr, binary(LeU, any(), ival(0)))) {
curr->op = Abstract::getBinary(type, Eq);
return curr;
}
// (unsigned)x > 0 ==> x != 0
if (matches(curr, binary(GtU, any(), ival(0)))) {
curr->op = Abstract::getBinary(type, Ne);
return curr;
}
// (unsigned)x >= -1 ==> x == -1
if (matches(curr, binary(GeU, any(), ival(-1)))) {
curr->op = Abstract::getBinary(type, Eq);
return curr;
}
{
Const* c;
// (signed)x < (i32|i64).min_s ==> i32(0)
if (matches(curr, binary(LtS, pure(&left), ival(&c))) &&
c->value.isSignedMin()) {
right->value = Literal::makeZero(Type::i32);
right->type = Type::i32;
return right;
}
// (signed)x <= (i32|i64).max_s ==> i32(1)
if (matches(curr, binary(LeS, pure(&left), ival(&c))) &&
c->value.isSignedMax()) {
right->value = Literal::makeOne(Type::i32);
right->type = Type::i32;
return right;
}
// (signed)x > (i32|i64).max_s ==> i32(0)
if (matches(curr, binary(GtS, pure(&left), ival(&c))) &&
c->value.isSignedMax()) {
right->value = Literal::makeZero(Type::i32);
right->type = Type::i32;
return right;
}
// (signed)x >= (i32|i64).min_s ==> i32(1)
if (matches(curr, binary(GeS, pure(&left), ival(&c))) &&
c->value.isSignedMin()) {
right->value = Literal::makeOne(Type::i32);
right->type = Type::i32;
return right;
}
// (signed)x < (i32|i64).max_s ==> x != (i32|i64).max_s
if (matches(curr, binary(LtS, any(), ival(&c))) &&
c->value.isSignedMax()) {
curr->op = Abstract::getBinary(type, Ne);
return curr;
}
// (signed)x <= (i32|i64).min_s ==> x == (i32|i64).min_s
if (matches(curr, binary(LeS, any(), ival(&c))) &&
c->value.isSignedMin()) {
curr->op = Abstract::getBinary(type, Eq);
return curr;
}
// (signed)x > (i32|i64).min_s ==> x != (i32|i64).min_s
if (matches(curr, binary(GtS, any(), ival(&c))) &&
c->value.isSignedMin()) {
curr->op = Abstract::getBinary(type, Ne);
return curr;
}
// (signed)x >= (i32|i64).max_s ==> x == (i32|i64).max_s
if (matches(curr, binary(GeS, any(), ival(&c))) &&
c->value.isSignedMax()) {
curr->op = Abstract::getBinary(type, Eq);
return curr;
}
}
// x * -1 ==> 0 - x
if (matches(curr, binary(Mul, any(&left), ival(-1)))) {
right->value = Literal::makeZero(type);
curr->op = Abstract::getBinary(type, Sub);
curr->left = right;
curr->right = left;
return curr;
}
{
// ~(1 << x) aka (1 << x) ^ -1 ==> rotl(-2, x)
Expression* x;
// Note that we avoid this in JS mode, as emitting a rotation would
// require lowering that rotation for JS in another cycle of work.
if (matches(curr, binary(Xor, binary(Shl, ival(1), any(&x)), ival(-1))) &&
!getPassOptions().targetJS) {
curr->op = Abstract::getBinary(type, RotL);
right->value = Literal::makeFromInt32(-2, type);
curr->left = right;
curr->right = x;
return curr;
}
}
{
// x * 2.0 ==> x + x
// but we apply this only for simple expressions like
// local.get and global.get for avoid using extra local
// variable.
Expression* x;
if (matches(curr, binary(Mul, any(&x), fval(2.0))) &&
(x->is<LocalGet>() || x->is<GlobalGet>())) {
curr->op = Abstract::getBinary(type, Abstract::Add);
curr->right = ExpressionManipulator::copy(x, *getModule());
return curr;
}
}
{
// x + (-0.0) ==> x
double value;
if (fastMath && matches(curr, binary(Add, any(), fval(&value))) &&
value == 0.0 && std::signbit(value)) {
return curr->left;
}
}
// -x * fval(C) ==> x * -C
// -x / fval(C) ==> x / -C
if (matches(curr, binary(Mul, unary(Neg, any(&left)), fval())) ||
matches(curr, binary(DivS, unary(Neg, any(&left)), fval()))) {
right->value = right->value.neg();
curr->left = left;
return curr;
}
// x * -1.0 ==>
// -x, if fastMath == true
// -0.0 - x, if fastMath == false
if (matches(curr, binary(Mul, any(), fval(-1.0)))) {
if (fastMath) {
return builder.makeUnary(Abstract::getUnary(type, Neg), left);
}
// x * -1.0 ==> -0.0 - x
curr->op = Abstract::getBinary(type, Sub);
right->value = Literal::makeZero(type).neg();
std::swap(curr->left, curr->right);
return curr;
}
if (matches(curr, binary(Mul, any(&left), constant(1))) ||
matches(curr, binary(DivS, any(&left), constant(1))) ||
matches(curr, binary(DivU, any(&left), constant(1)))) {
if (curr->type.isInteger() || fastMath) {
return left;
}
}
{
// x != NaN ==> 1
// x <=> NaN ==> 0
// x op NaN' ==> NaN', iff `op` != `copysign` and `x` != C
Const* c;
Binary* bin;
Expression* x;
if (matches(curr, binary(&bin, pure(&x), fval(&c))) &&
std::isnan(c->value.getFloat()) &&
bin->op != getBinary(x->type, CopySign)) {
if (bin->isRelational()) {
// reuse "c" (nan) constant
c->type = Type::i32;
if (bin->op == getBinary(x->type, Ne)) {
// x != NaN ==> 1
c->value = Literal::makeOne(Type::i32);
} else {
// x == NaN,
// x > NaN,
// x <= NaN
// x .. NaN ==> 0
c->value = Literal::makeZero(Type::i32);
}
return c;
}
// propagate NaN of RHS but canonicalize it
c->value = Literal::standardizeNaN(c->value);
return c;
}
}
return nullptr;
}
// Returns true if the given binary operation can overflow. If we can't be
// sure either way, we return true, assuming the worst.
//
// We can check for an unsigned overflow (more than the max number of bits) or
// a signed one (where even reaching the sign bit is an overflow, as that
// would turn us from positive to negative).
bool canOverflow(Binary* binary, bool signed_) {
using namespace Abstract;
// If we know nothing about a limit on the amount of bits on either side,
// give up.
auto typeMaxBits = getBitsForType(binary->type);
auto leftMaxBits = Bits::getMaxBits(binary->left, this);
auto rightMaxBits = Bits::getMaxBits(binary->right, this);
if (std::max(leftMaxBits, rightMaxBits) == typeMaxBits) {
return true;
}
if (binary->op == getBinary(binary->type, Add)) {
if (!signed_) {
// Proof this cannot overflow:
//
// left + right < 2^leftMaxBits + 2^rightMaxBits (1)
// <= 2^(typeMaxBits-1) + 2^(typeMaxBits-1) (2)
// = 2^typeMaxBits (3)
//
// (1) By the definition of the max bits (e.g. an int32 has 32 max bits,
// and its max value is 2^32 - 1, which is < 2^32).
// (2) By the above checks and early returns.
// (3) 2^x + 2^x === 2*2^x === 2^(x+1)
return false;
}
// For a signed comparison, check that the total cannot reach the sign
// bit.
return leftMaxBits + rightMaxBits >= typeMaxBits;
}
// TODO subtraction etc.
return true;
}
// Folding two expressions into one with similar operations and
// constants on RHSs
Expression* optimizeDoubletonWithConstantOnRight(Binary* curr) {
using namespace Match;
using namespace Abstract;
{
Binary* inner;
Const *c1, *c2 = curr->right->cast<Const>();
if (matches(curr->left, binary(&inner, any(), ival(&c1))) &&
inner->op == curr->op) {
Type type = inner->type;
BinaryOp op = inner->op;
// (x & C1) & C2 => x & (C1 & C2)
if (op == getBinary(type, And)) {
c1->value = c1->value.and_(c2->value);
return inner;
}
// (x | C1) | C2 => x | (C1 | C2)
if (op == getBinary(type, Or)) {
c1->value = c1->value.or_(c2->value);
return inner;
}
// (x ^ C1) ^ C2 => x ^ (C1 ^ C2)
if (op == getBinary(type, Xor)) {
c1->value = c1->value.xor_(c2->value);
return inner;
}
// (x * C1) * C2 => x * (C1 * C2)
if (op == getBinary(type, Mul)) {
c1->value = c1->value.mul(c2->value);
return inner;
}
// TODO:
// handle signed / unsigned divisions. They are more complex
// (x <<>> C1) <<>> C2 => x <<>> (C1 + C2)
if (hasAnyShift(op)) {
// shifts only use an effective amount from the constant, so
// adding must be done carefully
auto total =
Bits::getEffectiveShifts(c1) + Bits::getEffectiveShifts(c2);
auto effectiveTotal = Bits::getEffectiveShifts(total, c1->type);
if (total == effectiveTotal) {
// no overflow, we can do this
c1->value = Literal::makeFromInt32(total, c1->type);
return inner;
} else {
// overflow. Handle different scenarious
if (hasAnyRotateShift(op)) {
// overflow always accepted in rotation shifts
c1->value = Literal::makeFromInt32(effectiveTotal, c1->type);
return inner;
}
// handle overflows for general shifts
// x << C1 << C2 => 0 or { drop(x), 0 }
// x >>> C1 >>> C2 => 0 or { drop(x), 0 }
// iff `C1 + C2` -> overflows
if ((op == getBinary(type, Shl) || op == getBinary(type, ShrU))) {
auto* x = inner->left;
c1->value = Literal::makeZero(c1->type);
if (!effects(x).hasSideEffects()) {
// => 0
return c1;
} else {
// => { drop(x), 0 }
Builder builder(*getModule());
return builder.makeBlock({builder.makeDrop(x), c1});
}
}
// i32(x) >> C1 >> C2 => x >> 31
// i64(x) >> C1 >> C2 => x >> 63
// iff `C1 + C2` -> overflows
if (op == getBinary(type, ShrS)) {
c1->value = Literal::makeFromInt32(c1->type.getByteSize() * 8 - 1,
c1->type);
return inner;
}
}
}
}
}
{
// (x << C1) * C2 => x * (C2 << C1)
Binary* inner;
Const *c1, *c2;
if (matches(
curr,
binary(Mul, binary(&inner, Shl, any(), ival(&c1)), ival(&c2)))) {
inner->op = getBinary(inner->type, Mul);
c1->value = c2->value.shl(c1->value);
return inner;
}
}
{
// (x * C1) << C2 => x * (C1 << C2)
Binary* inner;
Const *c1, *c2;
if (matches(
curr,
binary(Shl, binary(&inner, Mul, any(), ival(&c1)), ival(&c2)))) {
c1->value = c1->value.shl(c2->value);
return inner;
}
}
{
// TODO: Add cancelation for some large constants when shrinkLevel > 0
// in FinalOptimizer.
// (x >> C) << C => x & -(1 << C)
// (x >>> C) << C => x & -(1 << C)
Binary* inner;
Const *c1, *c2;
if (matches(curr,
binary(Shl, binary(&inner, any(), ival(&c1)), ival(&c2))) &&
(inner->op == getBinary(inner->type, ShrS) ||
inner->op == getBinary(inner->type, ShrU)) &&
Bits::getEffectiveShifts(c1) == Bits::getEffectiveShifts(c2)) {
auto type = c1->type;
if (type == Type::i32) {
c1->value = Literal::makeFromInt32(
-(1U << Bits::getEffectiveShifts(c1)), Type::i32);
} else {
c1->value = Literal::makeFromInt64(
-(1ULL << Bits::getEffectiveShifts(c1)), Type::i64);
}
inner->op = getBinary(type, And);
return inner;
}
}
{
// TODO: Add cancelation for some large constants when shrinkLevel > 0
// in FinalOptimizer.
// (x << C) >>> C => x & (-1 >>> C)
// (x << C) >> C => skip
Binary* inner;
Const *c1, *c2;
if (matches(
curr,
binary(ShrU, binary(&inner, Shl, any(), ival(&c1)), ival(&c2))) &&
Bits::getEffectiveShifts(c1) == Bits::getEffectiveShifts(c2)) {
auto type = c1->type;
if (type == Type::i32) {
c1->value = Literal::makeFromInt32(
-1U >> Bits::getEffectiveShifts(c1), Type::i32);
} else {
c1->value = Literal::makeFromInt64(
-1ULL >> Bits::getEffectiveShifts(c1), Type::i64);
}
inner->op = getBinary(type, And);
return inner;
}
}
{
// TODO: Add canonicalization rotr to rotl and remove these rules.
// rotl(rotr(x, C1), C2) => rotr(x, C1 - C2)
// rotr(rotl(x, C1), C2) => rotl(x, C1 - C2)
Binary* inner;
Const *c1, *c2;
if (matches(
curr,
binary(RotL, binary(&inner, RotR, any(), ival(&c1)), ival(&c2))) ||
matches(
curr,
binary(RotR, binary(&inner, RotL, any(), ival(&c1)), ival(&c2)))) {
auto diff = Bits::getEffectiveShifts(c1) - Bits::getEffectiveShifts(c2);
c1->value = Literal::makeFromInt32(
Bits::getEffectiveShifts(diff, c2->type), c2->type);
return inner;
}
}
return nullptr;
}
// optimize trivial math operations, given that the left side of a binary
// is a constant. since we canonicalize constants to the right for symmetrical
// operations, we only need to handle asymmetrical ones here
// TODO: templatize on type?
Expression* optimizeWithConstantOnLeft(Binary* curr) {
using namespace Match;
using namespace Abstract;
auto type = curr->left->type;
auto* left = curr->left->cast<Const>();
// 0 <<>> x ==> 0
if (Abstract::hasAnyShift(curr->op) && left->value.isZero() &&
!effects(curr->right).hasSideEffects()) {
return curr->left;
}
// (signed)-1 >> x ==> -1
// rotl(-1, x) ==> -1
// rotr(-1, x) ==> -1
if ((curr->op == Abstract::getBinary(type, ShrS) ||
curr->op == Abstract::getBinary(type, RotL) ||
curr->op == Abstract::getBinary(type, RotR)) &&
left->value.getInteger() == -1LL &&
!effects(curr->right).hasSideEffects()) {
return curr->left;
}
{
// C1 - (x + C2) ==> (C1 - C2) - x
Const *c1, *c2;
Expression* x;
if (matches(curr,
binary(Sub, ival(&c1), binary(Add, any(&x), ival(&c2))))) {
left->value = c1->value.sub(c2->value);
curr->right = x;
return curr;
}
// C1 - (C2 - x) ==> x + (C1 - C2)
if (matches(curr,
binary(Sub, ival(&c1), binary(Sub, ival(&c2), any(&x))))) {
left->value = c1->value.sub(c2->value);
curr->op = Abstract::getBinary(type, Add);
curr->right = x;
std::swap(curr->left, curr->right);
return curr;
}
}
{
// fval(C) / -x ==> -C / x
Expression* right;
if (matches(curr, binary(DivS, fval(), unary(Neg, any(&right))))) {
left->value = left->value.neg();
curr->right = right;
return curr;
}
}
return nullptr;
}
// TODO: templatize on type?
Expression* optimizeRelational(Binary* curr) {
using namespace Abstract;
using namespace Match;
auto type = curr->right->type;
if (curr->left->type.isInteger()) {
if (curr->op == Abstract::getBinary(type, Abstract::Eq) ||
curr->op == Abstract::getBinary(type, Abstract::Ne)) {
if (auto* left = curr->left->dynCast<Binary>()) {
// TODO: inequalities can also work, if the constants do not overflow
// integer math, even on 2s complement, allows stuff like
// x + 5 == 7
// =>
// x == 2
if (left->op == Abstract::getBinary(type, Abstract::Add)) {
if (auto* leftConst = left->right->dynCast<Const>()) {
if (auto* rightConst = curr->right->dynCast<Const>()) {
return combineRelationalConstants(
curr, left, leftConst, nullptr, rightConst);
} else if (auto* rightBinary = curr->right->dynCast<Binary>()) {
if (rightBinary->op ==
Abstract::getBinary(type, Abstract::Add)) {
if (auto* rightConst = rightBinary->right->dynCast<Const>()) {
return combineRelationalConstants(
curr, left, leftConst, rightBinary, rightConst);
}
}
}
}
}
}
}
// x - y == 0 => x == y
// x - y != 0 => x != y
// unsigned(x - y) > 0 => x != y
// unsigned(x - y) <= 0 => x == y
{
Binary* inner;
// unsigned(x - y) > 0 => x != y
if (matches(curr,
binary(GtU, binary(&inner, Sub, any(), any()), ival(0)))) {
curr->op = Abstract::getBinary(type, Ne);
curr->right = inner->right;
curr->left = inner->left;
return curr;
}
// unsigned(x - y) <= 0 => x == y
if (matches(curr,
binary(LeU, binary(&inner, Sub, any(), any()), ival(0)))) {
curr->op = Abstract::getBinary(type, Eq);
curr->right = inner->right;
curr->left = inner->left;
return curr;
}
// x - y == 0 => x == y
// x - y != 0 => x != y
// This is not true for signed comparisons like x -y < 0 due to overflow
// effects (e.g. 8 - 0x80000000 < 0 is not the same as 8 < 0x80000000).
if (matches(curr,
binary(Eq, binary(&inner, Sub, any(), any()), ival(0))) ||
matches(curr,
binary(Ne, binary(&inner, Sub, any(), any()), ival(0)))) {
curr->right = inner->right;
curr->left = inner->left;
return curr;
}
}
// x + C1 > C2 ==> x > (C2-C1) if no overflowing, C2 >= C1
// x + C1 > C2 ==> x + (C1-C2) > 0 if no overflowing, C2 < C1
// And similarly for other relational operations on integers with a "+"
// on the left.
// TODO: support - and not just +
{
Binary* add;
Const* c1;
Const* c2;
if (matches(curr,
binary(binary(&add, Add, any(), ival(&c1)), ival(&c2))) &&
!canOverflow(add, isSignedOp(curr->op))) {
// We want to subtract C2-C1 or C1-C2. When doing so, we must avoid an
// overflow in that subtraction (so that we keep all the math here
// properly linear in the mathematical sense). Overflows that concern
// us include an underflow with unsigned values (e.g. 10 - 20, which
// flips the result to a large positive number), and a sign bit
// overflow for signed values (e.g. 0x80000000 - 1 = 0x7fffffff flips
// from a negative number, -1, to a positive one). We also need to be
// careful of signed handling of 0x80000000, for whom 0 - 0x80000000
// is equal to 0x80000000, leading to
// x + 0x80000000 > 0 ;; always false
// (apply the rule)
// x > 0 - 0x80000000 = 0x80000000 ;; depends on x
// The general principle in all of this is that when we go from
// (a) x + C1 > C2
// to
// (b) x > (C2-C1)
// then we want to adjust both sides in the same (linear) manner. That
// is, we can write the latter as
// (b') x + 0 > (C2-C1)
// Comparing (a) and (b'), we want the constants to change in a
// consistent way: C1 changes to 0, and C2 changes to C2-C1. Both
// transformations should decrease the value, which is violated in all
// the overflows described above:
// * Unsigned overflow: C1=20, C2=10, then C1 decreases but C2-C1
// is larger than C2.
// * Sign flip: C1=1, C2=0x80000000, then C1 decreases but C2-C1 is
// is larger than C2.
// * C1=0x80000000, C2=0, then C1 increases while C2-C1 stays the
// same.
// In the first and second case we can apply the other rule using
// C1-C2 rather than C2-C1. The third case, however, doesn't even work
// that way.
auto C1 = c1->value;
auto C2 = c2->value;
auto C1SubC2 = C1.sub(C2);
auto C2SubC1 = C2.sub(C1);
auto zero = Literal::makeZero(add->type);
auto doC1SubC2 = false;
auto doC2SubC1 = false;
// Ignore the case of C1 or C2 being zero, as then C2-C1 or C1-C2
// does not change anything (and we don't want the optimizer to think
// we improved anything, or we could infinite loop on the mirage of
// progress).
if (C1 != zero && C2 != zero) {
if (isSignedOp(curr->op)) {
if (C2SubC1.leS(C2).getInteger() && zero.leS(C1).getInteger()) {
// C2=>C2-C1 and C1=>0 both decrease, which means we can do the
// rule
// (a) x + C1 > C2
// (b') x (+ 0) > (C2-C1)
// That is, subtracting C1 from both sides is ok; the constants
// on both sides change in the same manner.
doC2SubC1 = true;
} else if (C1SubC2.leS(C1).getInteger() &&
zero.leS(C2).getInteger()) {
// N.B. this code path is not tested atm as other optimizations
// will canonicalize x + C into x - C, and so we would need to
// implement the TODO above on subtraction and not only support
// addition here.
doC1SubC2 = true;
}
} else {
// Unsigned.
if (C2SubC1.leU(C2).getInteger() && zero.leU(C1).getInteger()) {
doC2SubC1 = true;
} else if (C1SubC2.leU(C1).getInteger() &&
zero.leU(C2).getInteger()) {
doC1SubC2 = true;
}
// For unsigned, one of the cases must work out, as there are no
// corner cases with the sign bit.
assert(doC2SubC1 || doC1SubC2);
}
}
if (doC2SubC1) {
// This is the first line above, we turn into x > (C2-C1).
c2->value = C2SubC1;
curr->left = add->left;
return curr;
}
// This is the second line above, we turn into x + (C1-C2) > 0.
if (doC1SubC2) {
c1->value = C1SubC2;
c2->value = zero;
return curr;
}
}
}
// Comparisons can sometimes be simplified depending on the number of
// bits, e.g. (unsigned)x > y must be true if x has strictly more bits.
// A common case is a constant on the right, e.g. (x & 255) < 256 must be
// true.
// TODO: use getMinBits in more places, see ideas in
// https://github.com/WebAssembly/binaryen/issues/2898
{
// Check if there is a nontrivial amount of bits on the left, which may
// provide enough to optimize.
auto leftMaxBits = Bits::getMaxBits(curr->left, this);
auto type = curr->left->type;
if (leftMaxBits < getBitsForType(type)) {
using namespace Abstract;
auto rightMinBits = Bits::getMinBits(curr->right);
auto rightIsNegative = rightMinBits == getBitsForType(type);
if (leftMaxBits < rightMinBits) {
// There are not enough bits on the left for it to be equal to the
// right, making various comparisons obviously false:
// x == y
// (unsigned)x > y
// (unsigned)x >= y
// and the same for signed, if y does not have the sign bit set
// (in that case, the comparison is effectively unsigned).
//
// TODO: In addition to leftMaxBits < rightMinBits, we could
// handle the reverse, and also special cases like all bits
// being 1 on the right, things like (x & 255) <= 255 -> 1
if (curr->op == Abstract::getBinary(type, Eq) ||
curr->op == Abstract::getBinary(type, GtU) ||
curr->op == Abstract::getBinary(type, GeU) ||
(!rightIsNegative &&
(curr->op == Abstract::getBinary(type, GtS) ||
curr->op == Abstract::getBinary(type, GeS)))) {
return getDroppedChildrenAndAppend(curr,
Literal::makeZero(Type::i32));
}
// And some are obviously true:
// x != y
// (unsigned)x < y
// (unsigned)x <= y
// and likewise for signed, as above.
if (curr->op == Abstract::getBinary(type, Ne) ||
curr->op == Abstract::getBinary(type, LtU) ||
curr->op == Abstract::getBinary(type, LeU) ||
(!rightIsNegative &&
(curr->op == Abstract::getBinary(type, LtS) ||
curr->op == Abstract::getBinary(type, LeS)))) {
return getDroppedChildrenAndAppend(curr,
Literal::makeOne(Type::i32));
}
// For truly signed comparisons, where y's sign bit is set, we can
// also infer some things, since we know y is signed but x is not
// (since x does not have enough bits for the sign bit to be set).
if (rightIsNegative) {
// (signed, non-negative)x > (negative)y => 1
// (signed, non-negative)x >= (negative)y => 1
if (curr->op == Abstract::getBinary(type, GtS) ||
curr->op == Abstract::getBinary(type, GeS)) {
return getDroppedChildrenAndAppend(curr,
Literal::makeOne(Type::i32));
}
// (signed, non-negative)x < (negative)y => 0
// (signed, non-negative)x <= (negative)y => 0
if (curr->op == Abstract::getBinary(type, LtS) ||
curr->op == Abstract::getBinary(type, LeS)) {
return getDroppedChildrenAndAppend(
curr, Literal::makeZero(Type::i32));
}
}
}
}
}
}
return nullptr;
}
Expression* simplifyRoundingsAndConversions(Unary* curr) {
using namespace Abstract;
using namespace Match;
switch (curr->op) {
case TruncSFloat64ToInt32:
case TruncSatSFloat64ToInt32: {
// i32 -> f64 -> i32 rountripping optimization:
// i32.trunc(_sat)_f64_s(f64.convert_i32_s(x)) ==> x
Expression* x;
if (matches(curr->value, unary(ConvertSInt32ToFloat64, any(&x)))) {
return x;
}
break;
}
case TruncUFloat64ToInt32:
case TruncSatUFloat64ToInt32: {
// u32 -> f64 -> u32 rountripping optimization:
// i32.trunc(_sat)_f64_u(f64.convert_i32_u(x)) ==> x
Expression* x;
if (matches(curr->value, unary(ConvertUInt32ToFloat64, any(&x)))) {
return x;
}
break;
}
case CeilFloat32:
case CeilFloat64:
case FloorFloat32:
case FloorFloat64:
case TruncFloat32:
case TruncFloat64:
case NearestFloat32:
case NearestFloat64: {
// Rounding after integer to float conversion may be skipped
// ceil(float(int(x))) ==> float(int(x))
// floor(float(int(x))) ==> float(int(x))
// trunc(float(int(x))) ==> float(int(x))
// nearest(float(int(x))) ==> float(int(x))
Unary* inner;
if (matches(curr->value, unary(&inner, any()))) {
switch (inner->op) {
case ConvertSInt32ToFloat32:
case ConvertSInt32ToFloat64:
case ConvertUInt32ToFloat32:
case ConvertUInt32ToFloat64:
case ConvertSInt64ToFloat32:
case ConvertSInt64ToFloat64:
case ConvertUInt64ToFloat32:
case ConvertUInt64ToFloat64: {
return inner;
}
default: {
}
}
}
break;
}
default: {
}
}
return nullptr;
}
Expression* deduplicateUnary(Unary* unaryOuter) {
if (auto* unaryInner = unaryOuter->value->dynCast<Unary>()) {
if (unaryInner->op == unaryOuter->op) {
switch (unaryInner->op) {
case NegFloat32:
case NegFloat64: {
// neg(neg(x)) ==> x
return unaryInner->value;
}
case AbsFloat32:
case CeilFloat32:
case FloorFloat32:
case TruncFloat32:
case NearestFloat32:
case AbsFloat64:
case CeilFloat64:
case FloorFloat64:
case TruncFloat64:
case NearestFloat64: {
// unaryOp(unaryOp(x)) ==> unaryOp(x)
return unaryInner;
}
case ExtendS8Int32:
case ExtendS16Int32: {
assert(getModule()->features.hasSignExt());
return unaryInner;
}
case EqZInt32: {
// eqz(eqz(bool(x))) ==> bool(x)
if (Bits::getMaxBits(unaryInner->value, this) == 1) {
return unaryInner->value;
}
break;
}
default: {
}
}
}
}
return nullptr;
}
Expression* deduplicateBinary(Binary* outer) {
Type type = outer->type;
if (type.isInteger()) {
if (auto* inner = outer->right->dynCast<Binary>()) {
if (outer->op == inner->op) {
if (!EffectAnalyzer(getPassOptions(), *getModule(), outer->left)
.hasSideEffects()) {
if (ExpressionAnalyzer::equal(inner->left, outer->left)) {
// x - (x - y) ==> y
// x ^ (x ^ y) ==> y
if (outer->op == Abstract::getBinary(type, Abstract::Sub) ||
outer->op == Abstract::getBinary(type, Abstract::Xor)) {
return inner->right;
}
// x & (x & y) ==> x & y
// x | (x | y) ==> x | y
if (outer->op == Abstract::getBinary(type, Abstract::And) ||
outer->op == Abstract::getBinary(type, Abstract::Or)) {
return inner;
}
}
if (ExpressionAnalyzer::equal(inner->right, outer->left) &&
canReorder(outer->left, inner->left)) {
// x ^ (y ^ x) ==> y
// (note that we need the check for reordering here because if
// e.g. y writes to a local that x reads, the second appearance
// of x would be different from the first)
if (outer->op == Abstract::getBinary(type, Abstract::Xor)) {
return inner->left;
}
// x & (y & x) ==> y & x
// x | (y | x) ==> y | x
// (here we need the check for reordering for the more obvious
// reason that previously x appeared before y, and now y appears
// first; or, if we tried to emit x [&|] y here, reversing the
// order, we'd be in the same situation as the previous comment)
if (outer->op == Abstract::getBinary(type, Abstract::And) ||
outer->op == Abstract::getBinary(type, Abstract::Or)) {
return inner;
}
}
}
}
}
if (auto* inner = outer->left->dynCast<Binary>()) {
if (outer->op == inner->op) {
if (!EffectAnalyzer(getPassOptions(), *getModule(), outer->right)
.hasSideEffects()) {
if (ExpressionAnalyzer::equal(inner->right, outer->right)) {
// (x ^ y) ^ y ==> x
if (outer->op == Abstract::getBinary(type, Abstract::Xor)) {
return inner->left;
}
// (x % y) % y ==> x % y
// (x & y) & y ==> x & y
// (x | y) | y ==> x | y
if (outer->op == Abstract::getBinary(type, Abstract::RemS) ||
outer->op == Abstract::getBinary(type, Abstract::RemU) ||
outer->op == Abstract::getBinary(type, Abstract::And) ||
outer->op == Abstract::getBinary(type, Abstract::Or)) {
return inner;
}
}
// See comments in the parallel code earlier about ordering here.
if (ExpressionAnalyzer::equal(inner->left, outer->right) &&
canReorder(inner->left, inner->right)) {
// (x ^ y) ^ x ==> y
if (outer->op == Abstract::getBinary(type, Abstract::Xor)) {
return inner->right;
}
// (x & y) & x ==> x & y
// (x | y) | x ==> x | y
if (outer->op == Abstract::getBinary(type, Abstract::And) ||
outer->op == Abstract::getBinary(type, Abstract::Or)) {
return inner;
}
}
}
}
}
}
return nullptr;
}
// given a relational binary with a const on both sides, combine the constants
// left is also a binary, and has a constant; right may be just a constant, in
// which case right is nullptr
Expression* combineRelationalConstants(Binary* binary,
Binary* left,
Const* leftConst,
Binary* right,
Const* rightConst) {
auto type = binary->right->type;
// we fold constants to the right
Literal extra = leftConst->value;
if (left->op == Abstract::getBinary(type, Abstract::Sub)) {
extra = extra.neg();
}
if (right && right->op == Abstract::getBinary(type, Abstract::Sub)) {
extra = extra.neg();
}
rightConst->value = rightConst->value.sub(extra);
binary->left = left->left;
return binary;
}
Expression* optimizeMemoryCopy(MemoryCopy* memCopy) {
auto& options = getPassOptions();
if (options.ignoreImplicitTraps || options.trapsNeverHappen) {
if (areConsecutiveInputsEqual(memCopy->dest, memCopy->source)) {
// memory.copy(x, x, sz) ==> {drop(x), drop(x), drop(sz)}
Builder builder(*getModule());
return builder.makeBlock({builder.makeDrop(memCopy->dest),
builder.makeDrop(memCopy->source),
builder.makeDrop(memCopy->size)});
}
}
// memory.copy(dst, src, C) ==> store(dst, load(src))
if (auto* csize = memCopy->size->dynCast<Const>()) {
auto bytes = csize->value.getInteger();
Builder builder(*getModule());
switch (bytes) {
case 0: {
if (options.ignoreImplicitTraps || options.trapsNeverHappen) {
// memory.copy(dst, src, 0) ==> {drop(dst), drop(src)}
return builder.makeBlock({builder.makeDrop(memCopy->dest),
builder.makeDrop(memCopy->source)});
}
break;
}
case 1:
case 2:
case 4: {
return builder.makeStore(bytes, // bytes
0, // offset
1, // align
memCopy->dest,
builder.makeLoad(bytes,
false,
0,
1,
memCopy->source,
Type::i32,
memCopy->sourceMemory),
Type::i32,
memCopy->destMemory);
}
case 8: {
return builder.makeStore(bytes, // bytes
0, // offset
1, // align
memCopy->dest,
builder.makeLoad(bytes,
false,
0,
1,
memCopy->source,
Type::i64,
memCopy->sourceMemory),
Type::i64,
memCopy->destMemory);
}
case 16: {
if (options.shrinkLevel == 0) {
// This adds an extra 2 bytes so apply it only for
// minimal shrink level
if (getModule()->features.hasSIMD()) {
return builder.makeStore(bytes, // bytes
0, // offset
1, // align
memCopy->dest,
builder.makeLoad(bytes,
false,
0,
1,
memCopy->source,
Type::v128,
memCopy->sourceMemory),
Type::v128,
memCopy->destMemory);
}
}
break;
}
default: {
}
}
}
return nullptr;
}
Expression* optimizeMemoryFill(MemoryFill* memFill) {
if (memFill->type == Type::unreachable) {
return nullptr;
}
if (!memFill->size->is<Const>()) {
return nullptr;
}
auto& options = getPassOptions();
Builder builder(*getModule());
auto* csize = memFill->size->cast<Const>();
auto bytes = csize->value.getInteger();
if (bytes == 0LL &&
(options.ignoreImplicitTraps || options.trapsNeverHappen)) {
// memory.fill(d, v, 0) ==> { drop(d), drop(v) }
return builder.makeBlock(
{builder.makeDrop(memFill->dest), builder.makeDrop(memFill->value)});
}
const uint32_t offset = 0, align = 1;
if (auto* cvalue = memFill->value->dynCast<Const>()) {
uint32_t value = cvalue->value.geti32() & 0xFF;
// memory.fill(d, C1, C2) ==>
// store(d, (C1 & 0xFF) * (-1U / max(bytes)))
switch (bytes) {
case 1: {
return builder.makeStore(1, // bytes
offset,
align,
memFill->dest,
builder.makeConst<uint32_t>(value),
Type::i32,
memFill->memory);
}
case 2: {
return builder.makeStore(2,
offset,
align,
memFill->dest,
builder.makeConst<uint32_t>(value * 0x0101U),
Type::i32,
memFill->memory);
}
case 4: {
// transform only when "value" or shrinkLevel equal to zero due to
// it could increase size by several bytes
if (value == 0 || options.shrinkLevel == 0) {
return builder.makeStore(
4,
offset,
align,
memFill->dest,
builder.makeConst<uint32_t>(value * 0x01010101U),
Type::i32,
memFill->memory);
}
break;
}
case 8: {
// transform only when "value" or shrinkLevel equal to zero due to
// it could increase size by several bytes
if (value == 0 || options.shrinkLevel == 0) {
return builder.makeStore(
8,
offset,
align,
memFill->dest,
builder.makeConst<uint64_t>(value * 0x0101010101010101ULL),
Type::i64,
memFill->memory);
}
break;
}
case 16: {
if (options.shrinkLevel == 0) {
if (getModule()->features.hasSIMD()) {
uint8_t values[16];
std::fill_n(values, 16, (uint8_t)value);
return builder.makeStore(16,
offset,
align,
memFill->dest,
builder.makeConst<uint8_t[16]>(values),
Type::v128,
memFill->memory);
} else {
// { i64.store(d, C', 0), i64.store(d, C', 8) }
auto destType = memFill->dest->type;
Index tempLocal = builder.addVar(getFunction(), destType);
return builder.makeBlock({
builder.makeStore(
8,
offset,
align,
builder.makeLocalTee(tempLocal, memFill->dest, destType),
builder.makeConst<uint64_t>(value * 0x0101010101010101ULL),
Type::i64,
memFill->memory),
builder.makeStore(
8,
offset + 8,
align,
builder.makeLocalGet(tempLocal, destType),
builder.makeConst<uint64_t>(value * 0x0101010101010101ULL),
Type::i64,
memFill->memory),
});
}
}
break;
}
default: {
}
}
}
// memory.fill(d, v, 1) ==> store8(d, v)
if (bytes == 1LL) {
return builder.makeStore(1,
offset,
align,
memFill->dest,
memFill->value,
Type::i32,
memFill->memory);
}
return nullptr;
}
// given a binary expression with equal children and no side effects in
// either, we can fold various things
Expression* optimizeBinaryWithEqualEffectlessChildren(Binary* binary) {
// TODO add: perhaps worth doing 2*x if x is quite large?
switch (binary->op) {
case SubInt32:
case XorInt32:
case SubInt64:
case XorInt64:
return LiteralUtils::makeZero(binary->left->type, *getModule());
case NeInt32:
case LtSInt32:
case LtUInt32:
case GtSInt32:
case GtUInt32:
case NeInt64:
case LtSInt64:
case LtUInt64:
case GtSInt64:
case GtUInt64:
return LiteralUtils::makeZero(Type::i32, *getModule());
case AndInt32:
case OrInt32:
case AndInt64:
case OrInt64:
return binary->left;
case EqInt32:
case LeSInt32:
case LeUInt32:
case GeSInt32:
case GeUInt32:
case EqInt64:
case LeSInt64:
case LeUInt64:
case GeSInt64:
case GeUInt64:
return LiteralUtils::makeFromInt32(1, Type::i32, *getModule());
default:
return nullptr;
}
}
// Invert (negate) the opcode, so that it has the exact negative meaning as it
// had before.
BinaryOp invertBinaryOp(BinaryOp op) {
switch (op) {
case EqInt32:
return NeInt32;
case NeInt32:
return EqInt32;
case LtSInt32:
return GeSInt32;
case LtUInt32:
return GeUInt32;
case LeSInt32:
return GtSInt32;
case LeUInt32:
return GtUInt32;
case GtSInt32:
return LeSInt32;
case GtUInt32:
return LeUInt32;
case GeSInt32:
return LtSInt32;
case GeUInt32:
return LtUInt32;
case EqInt64:
return NeInt64;
case NeInt64:
return EqInt64;
case LtSInt64:
return GeSInt64;
case LtUInt64:
return GeUInt64;
case LeSInt64:
return GtSInt64;
case LeUInt64:
return GtUInt64;
case GtSInt64:
return LeSInt64;
case GtUInt64:
return LeUInt64;
case GeSInt64:
return LtSInt64;
case GeUInt64:
return LtUInt64;
case EqFloat32:
return NeFloat32;
case NeFloat32:
return EqFloat32;
case EqFloat64:
return NeFloat64;
case NeFloat64:
return EqFloat64;
default:
return InvalidBinary;
}
}
// Change the opcode so it is correct after reversing the operands. That is,
// we had X OP Y and we need OP' so that this is equivalent to that:
// Y OP' X
BinaryOp reverseRelationalOp(BinaryOp op) {
switch (op) {
case EqInt32:
return EqInt32;
case NeInt32:
return NeInt32;
case LtSInt32:
return GtSInt32;
case LtUInt32:
return GtUInt32;
case LeSInt32:
return GeSInt32;
case LeUInt32:
return GeUInt32;
case GtSInt32:
return LtSInt32;
case GtUInt32:
return LtUInt32;
case GeSInt32:
return LeSInt32;
case GeUInt32:
return LeUInt32;
case EqInt64:
return EqInt64;
case NeInt64:
return NeInt64;
case LtSInt64:
return GtSInt64;
case LtUInt64:
return GtUInt64;
case LeSInt64:
return GeSInt64;
case LeUInt64:
return GeUInt64;
case GtSInt64:
return LtSInt64;
case GtUInt64:
return LtUInt64;
case GeSInt64:
return LeSInt64;
case GeUInt64:
return LeUInt64;
case EqFloat32:
return EqFloat32;
case NeFloat32:
return NeFloat32;
case LtFloat32:
return GtFloat32;
case LeFloat32:
return GeFloat32;
case GtFloat32:
return LtFloat32;
case GeFloat32:
return LeFloat32;
case EqFloat64:
return EqFloat64;
case NeFloat64:
return NeFloat64;
case LtFloat64:
return GtFloat64;
case LeFloat64:
return GeFloat64;
case GtFloat64:
return LtFloat64;
case GeFloat64:
return LeFloat64;
default:
return InvalidBinary;
}
}
BinaryOp makeUnsignedBinaryOp(BinaryOp op) {
switch (op) {
case DivSInt32:
return DivUInt32;
case RemSInt32:
return RemUInt32;
case ShrSInt32:
return ShrUInt32;
case LtSInt32:
return LtUInt32;
case LeSInt32:
return LeUInt32;
case GtSInt32:
return GtUInt32;
case GeSInt32:
return GeUInt32;
case DivSInt64:
return DivUInt64;
case RemSInt64:
return RemUInt64;
case ShrSInt64:
return ShrUInt64;
case LtSInt64:
return LtUInt64;
case LeSInt64:
return LeUInt64;
case GtSInt64:
return GtUInt64;
case GeSInt64:
return GeUInt64;
default:
return InvalidBinary;
}
}
bool shouldCanonicalize(Binary* binary) {
if ((binary->op == SubInt32 || binary->op == SubInt64) &&
binary->right->is<Const>() && !binary->left->is<Const>()) {
return true;
}
if (Properties::isSymmetric(binary) || binary->isRelational()) {
return true;
}
switch (binary->op) {
case SubFloat32:
case SubFloat64: {
// Should apply x - C -> x + (-C)
return binary->right->is<Const>();
}
case AddFloat32:
case MulFloat32:
case AddFloat64:
case MulFloat64: {
// If the LHS is known to be non-NaN, the operands can commute.
// We don't care about the RHS because right now we only know if
// an expression is non-NaN if it is constant, but if the RHS is
// constant, then this expression is already canonicalized.
if (auto* c = binary->left->dynCast<Const>()) {
return !c->value.isNaN();
}
return false;
}
default:
return false;
}
}
// Optimize an if-else or a select, something with a condition and two
// arms with outputs.
template<typename T> void optimizeTernary(T* curr) {
using namespace Abstract;
using namespace Match;
Builder builder(*getModule());
// If one arm is an operation and the other is an appropriate constant, we
// can move the operation outside (where it may be further optimized), e.g.
//
// (select
// (i32.eqz (X))
// (i32.const 0|1)
// (Y)
// )
// =>
// (i32.eqz
// (select
// (X)
// (i32.const 1|0)
// (Y)
// )
// )
//
// Ignore unreachable code here; leave that for DCE.
if (curr->type != Type::unreachable &&
curr->ifTrue->type != Type::unreachable &&
curr->ifFalse->type != Type::unreachable) {
Unary* un;
Const* c;
auto check = [&](Expression* a, Expression* b) {
return matches(b, bval(&c)) && matches(a, unary(&un, EqZ, any()));
};
if (check(curr->ifTrue, curr->ifFalse) ||
check(curr->ifFalse, curr->ifTrue)) {
// The new type of curr will be that of the value of the unary, as after
// we move the unary out, its value is curr's direct child.
auto newType = un->value->type;
auto updateArm = [&](Expression* arm) -> Expression* {
if (arm == un) {
// This is the arm that had the eqz, which we need to remove.
return un->value;
} else {
// This is the arm with the constant, which we need to flip.
// Note that we also need to set the type to match the other arm.
c->value =
Literal::makeFromInt32(1 - c->value.getInteger(), newType);
c->type = newType;
return c;
}
};
curr->ifTrue = updateArm(curr->ifTrue);
curr->ifFalse = updateArm(curr->ifFalse);
un->value = curr;
curr->finalize(newType);
return replaceCurrent(un);
}
}
{
// Identical code on both arms can be folded out, e.g.
//
// (select
// (i32.eqz (X))
// (i32.eqz (Y))
// (Z)
// )
// =>
// (i32.eqz
// (select
// (X)
// (Y)
// (Z)
// )
// )
//
// Continue doing this while we can, noting the chain of moved expressions
// as we go, then do a single replaceCurrent() at the end.
SmallVector<Expression*, 1> chain;
while (1) {
// Ignore control flow structures (which are handled in MergeBlocks).
if (!Properties::isControlFlowStructure(curr->ifTrue) &&
ExpressionAnalyzer::shallowEqual(curr->ifTrue, curr->ifFalse)) {
// TODO: consider the case with more than one child.
ChildIterator ifTrueChildren(curr->ifTrue);
if (ifTrueChildren.children.size() == 1) {
// ifTrue and ifFalse's children will become the direct children of
// curr, and so they must be compatible to allow for a proper new
// type after the transformation.
//
// At minimum an LUB is required, as shown here:
//
// (if
// (condition)
// (drop (i32.const 1))
// (drop (f64.const 2.0))
// )
//
// However, that may not be enough, as with nominal types we can
// have things like this:
//
// (if
// (condition)
// (struct.get $A 1 (..))
// (struct.get $B 1 (..))
// )
//
// It is possible that the LUB of $A and $B does not contain field
// "1". With structural types this specific problem is not possible,
// and it appears to be the case that with the GC MVP there is no
// instruction that poses a problem, but in principle it can happen
// there as well, if we add an instruction that returns the number
// of fields in a type, for example. For that reason, and to avoid
// a difference between structural and nominal typing here, disallow
// subtyping in both. (Note: In that example, the problem only
// happens because the type is not part of the struct.get - we infer
// it from the reference. That is why after hoisting the struct.get
// out, and computing a new type for the if that is now the child of
// the single struct.get, we get a struct.get of a supertype. So in
// principle we could fix this by modifying the IR as well, but the
// problem is more general, so avoid that.)
ChildIterator ifFalseChildren(curr->ifFalse);
auto* ifTrueChild = *ifTrueChildren.begin();
auto* ifFalseChild = *ifFalseChildren.begin();
bool validTypes = ifTrueChild->type == ifFalseChild->type;
// In addition, after we move code outside of curr then we need to
// not change unreachability - if we did, we'd need to propagate
// that further, and we leave such work to DCE and Vacuum anyhow.
// This can happen in something like this for example, where the
// outer type changes from i32 to unreachable if we move the
// returns outside:
//
// (if (result i32)
// (local.get $x)
// (return
// (local.get $y)
// )
// (return
// (local.get $z)
// )
// )
assert(curr->ifTrue->type == curr->ifFalse->type);
auto newOuterType = curr->ifTrue->type;
if ((newOuterType == Type::unreachable) !=
(curr->type == Type::unreachable)) {
validTypes = false;
}
// If the expression we are about to move outside has side effects,
// then we cannot do so in general with a select: we'd be reducing
// the amount of the effects as well as moving them. For an if,
// the side effects execute once, so there is no problem.
// TODO: handle certain side effects when possible in select
bool validEffects = std::is_same<T, If>::value ||
!ShallowEffectAnalyzer(
getPassOptions(), *getModule(), curr->ifTrue)
.hasSideEffects();
// In addition, check for specific limitations of select.
bool validChildren =
!std::is_same<T, Select>::value ||
Properties::canEmitSelectWithArms(ifTrueChild, ifFalseChild);
if (validTypes && validEffects && validChildren) {
// Replace ifTrue with its child.
curr->ifTrue = ifTrueChild;
// Relace ifFalse with its child, and reuse that node outside.
auto* reuse = curr->ifFalse;
curr->ifFalse = ifFalseChild;
// curr's type may have changed, if the instructions we moved out
// had different input types than output types.
curr->finalize();
// Point to curr from the code that is now outside of it.
*ChildIterator(reuse).begin() = curr;
if (!chain.empty()) {
// We've already moved things out, so chain them to there. That
// is, the end of the chain should now point to reuse (which
// in turn already points to curr).
*ChildIterator(chain.back()).begin() = reuse;
}
chain.push_back(reuse);
continue;
}
}
}
break;
}
if (!chain.empty()) {
// The beginning of the chain is the new top parent.
return replaceCurrent(chain[0]);
}
}
}
};
Pass* createOptimizeInstructionsPass() { return new OptimizeInstructions; }
} // namespace wasm
|