summaryrefslogtreecommitdiff
path: root/src/passes/OptimizeInstructions.cpp
blob: edd6ba2b66fc04914063a44bc7a093097ee7bd38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
/*
 * Copyright 2016 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//
// Optimize combinations of instructions
//

#include <algorithm>

#include <ir/abstract.h>
#include <ir/cost.h>
#include <ir/effects.h>
#include <ir/literal-utils.h>
#include <ir/load-utils.h>
#include <ir/manipulation.h>
#include <ir/properties.h>
#include <ir/utils.h>
#include <pass.h>
#include <support/threads.h>
#include <wasm-s-parser.h>
#include <wasm.h>

// TODO: Use the new sign-extension opcodes where appropriate. This needs to be
// conditionalized on the availability of atomics.

namespace wasm {

Name I32_EXPR = "i32.expr";
Name I64_EXPR = "i64.expr";
Name F32_EXPR = "f32.expr";
Name F64_EXPR = "f64.expr";
Name ANY_EXPR = "any.expr";

// Utilities

// returns the maximum amount of bits used in an integer expression
// not extremely precise (doesn't look into add operands, etc.)
// LocalInfoProvider is an optional class that can provide answers about
// local.get.
template<typename LocalInfoProvider>
Index getMaxBits(Expression* curr, LocalInfoProvider* localInfoProvider) {
  if (auto* const_ = curr->dynCast<Const>()) {
    switch (curr->type) {
      case i32:
        return 32 - const_->value.countLeadingZeroes().geti32();
      case i64:
        return 64 - const_->value.countLeadingZeroes().geti64();
      default:
        WASM_UNREACHABLE("invalid type");
    }
  } else if (auto* binary = curr->dynCast<Binary>()) {
    switch (binary->op) {
      // 32-bit
      case AddInt32:
      case SubInt32:
      case MulInt32:
      case DivSInt32:
      case DivUInt32:
      case RemSInt32:
      case RemUInt32:
      case RotLInt32:
      case RotRInt32:
        return 32;
      case AndInt32:
        return std::min(getMaxBits(binary->left, localInfoProvider),
                        getMaxBits(binary->right, localInfoProvider));
      case OrInt32:
      case XorInt32:
        return std::max(getMaxBits(binary->left, localInfoProvider),
                        getMaxBits(binary->right, localInfoProvider));
      case ShlInt32: {
        if (auto* shifts = binary->right->dynCast<Const>()) {
          return std::min(Index(32),
                          getMaxBits(binary->left, localInfoProvider) +
                            Bits::getEffectiveShifts(shifts));
        }
        return 32;
      }
      case ShrUInt32: {
        if (auto* shift = binary->right->dynCast<Const>()) {
          auto maxBits = getMaxBits(binary->left, localInfoProvider);
          auto shifts =
            std::min(Index(Bits::getEffectiveShifts(shift)),
                     maxBits); // can ignore more shifts than zero us out
          return std::max(Index(0), maxBits - shifts);
        }
        return 32;
      }
      case ShrSInt32: {
        if (auto* shift = binary->right->dynCast<Const>()) {
          auto maxBits = getMaxBits(binary->left, localInfoProvider);
          if (maxBits == 32) {
            return 32;
          }
          auto shifts =
            std::min(Index(Bits::getEffectiveShifts(shift)),
                     maxBits); // can ignore more shifts than zero us out
          return std::max(Index(0), maxBits - shifts);
        }
        return 32;
      }
      // 64-bit TODO
      // comparisons
      case EqInt32:
      case NeInt32:
      case LtSInt32:
      case LtUInt32:
      case LeSInt32:
      case LeUInt32:
      case GtSInt32:
      case GtUInt32:
      case GeSInt32:
      case GeUInt32:
      case EqInt64:
      case NeInt64:
      case LtSInt64:
      case LtUInt64:
      case LeSInt64:
      case LeUInt64:
      case GtSInt64:
      case GtUInt64:
      case GeSInt64:
      case GeUInt64:
      case EqFloat32:
      case NeFloat32:
      case LtFloat32:
      case LeFloat32:
      case GtFloat32:
      case GeFloat32:
      case EqFloat64:
      case NeFloat64:
      case LtFloat64:
      case LeFloat64:
      case GtFloat64:
      case GeFloat64:
        return 1;
      default: {}
    }
  } else if (auto* unary = curr->dynCast<Unary>()) {
    switch (unary->op) {
      case ClzInt32:
      case CtzInt32:
      case PopcntInt32:
        return 6;
      case ClzInt64:
      case CtzInt64:
      case PopcntInt64:
        return 7;
      case EqZInt32:
      case EqZInt64:
        return 1;
      case WrapInt64:
        return std::min(Index(32), getMaxBits(unary->value, localInfoProvider));
      default: {}
    }
  } else if (auto* set = curr->dynCast<LocalSet>()) {
    // a tee passes through the value
    return getMaxBits(set->value, localInfoProvider);
  } else if (auto* get = curr->dynCast<LocalGet>()) {
    return localInfoProvider->getMaxBitsForLocal(get);
  } else if (auto* load = curr->dynCast<Load>()) {
    // if signed, then the sign-extension might fill all the bits
    // if unsigned, then we have a limit
    if (LoadUtils::isSignRelevant(load) && !load->signed_) {
      return 8 * load->bytes;
    }
  }
  switch (curr->type) {
    case i32:
      return 32;
    case i64:
      return 64;
    case unreachable:
      return 64; // not interesting, but don't crash
    default:
      WASM_UNREACHABLE("invalid type");
  }
}

// Useful information about locals
struct LocalInfo {
  static const Index kUnknown = Index(-1);

  Index maxBits;
  Index signExtedBits;
};

struct LocalScanner : PostWalker<LocalScanner> {
  std::vector<LocalInfo>& localInfo;

  LocalScanner(std::vector<LocalInfo>& localInfo) : localInfo(localInfo) {}

  void doWalkFunction(Function* func) {
    // prepare
    localInfo.resize(func->getNumLocals());
    for (Index i = 0; i < func->getNumLocals(); i++) {
      auto& info = localInfo[i];
      if (func->isParam(i)) {
        info.maxBits = getBitsForType(func->getLocalType(i)); // worst-case
        info.signExtedBits = LocalInfo::kUnknown; // we will never know anything
      } else {
        info.maxBits = info.signExtedBits = 0; // we are open to learning
      }
    }
    // walk
    PostWalker<LocalScanner>::doWalkFunction(func);
    // finalize
    for (Index i = 0; i < func->getNumLocals(); i++) {
      auto& info = localInfo[i];
      if (info.signExtedBits == LocalInfo::kUnknown) {
        info.signExtedBits = 0;
      }
    }
  }

  void visitLocalSet(LocalSet* curr) {
    auto* func = getFunction();
    if (func->isParam(curr->index)) {
      return;
    }
    auto type = getFunction()->getLocalType(curr->index);
    if (type != i32 && type != i64) {
      return;
    }
    // an integer var, worth processing
    auto* value = Properties::getFallthrough(curr->value);
    auto& info = localInfo[curr->index];
    info.maxBits = std::max(info.maxBits, getMaxBits(value, this));
    auto signExtBits = LocalInfo::kUnknown;
    if (Properties::getSignExtValue(value)) {
      signExtBits = Properties::getSignExtBits(value);
    } else if (auto* load = value->dynCast<Load>()) {
      if (LoadUtils::isSignRelevant(load) && load->signed_) {
        signExtBits = load->bytes * 8;
      }
    }
    if (info.signExtedBits == 0) {
      info.signExtedBits = signExtBits; // first info we see
    } else if (info.signExtedBits != signExtBits) {
      // contradictory information, give up
      info.signExtedBits = LocalInfo::kUnknown;
    }
  }

  // define this for the templated getMaxBits method. we know nothing here yet
  // about locals, so return the maxes
  Index getMaxBitsForLocal(LocalGet* get) { return getBitsForType(get->type); }

  Index getBitsForType(Type type) {
    switch (type) {
      case i32:
        return 32;
      case i64:
        return 64;
      default:
        return -1;
    }
  }
};

// Main pass class
struct OptimizeInstructions
  : public WalkerPass<
      PostWalker<OptimizeInstructions,
                 UnifiedExpressionVisitor<OptimizeInstructions>>> {
  bool isFunctionParallel() override { return true; }

  Pass* create() override { return new OptimizeInstructions; }

  void prepareToRun(PassRunner* runner, Module* module) override {
#if 0
    static DatabaseEnsurer ensurer;
#endif
  }

  void doWalkFunction(Function* func) {
    // first, scan locals
    {
      LocalScanner scanner(localInfo);
      scanner.walkFunction(func);
    }
    // main walk
    super::doWalkFunction(func);
  }

  void visitExpression(Expression* curr) {
    // we may be able to apply multiple patterns, one may open opportunities
    // that look deeper NB: patterns must not have cycles
    while (1) {
      auto* handOptimized = handOptimize(curr);
      if (handOptimized) {
        curr = handOptimized;
        replaceCurrent(curr);
        continue;
      }
#if 0
      auto iter = database->patternMap.find(curr->_id);
      if (iter == database->patternMap.end()) return;
      auto& patterns = iter->second;
      bool more = false;
      for (auto& pattern : patterns) {
        Match match(*getModule(), pattern);
        if (match.check(curr)) {
          curr = match.apply();
          replaceCurrent(curr);
          more = true;
          break; // exit pattern for loop, return to main while loop
        }
      }
      if (!more) break;
#else
      break;
#endif
    }
  }

  // Optimizations that don't yet fit in the pattern DSL, but could be
  // eventually maybe
  Expression* handOptimize(Expression* curr) {
    // if this contains dead code, don't bother trying to optimize it, the type
    // might change (if might not be unreachable if just one arm is, for
    // example). this optimization pass focuses on actually executing code. the
    // only exceptions are control flow changes
    if (curr->type == unreachable && !curr->is<Break>() &&
        !curr->is<Switch>() && !curr->is<If>()) {
      return nullptr;
    }
    if (auto* binary = curr->dynCast<Binary>()) {
      if (Properties::isSymmetric(binary)) {
        canonicalize(binary);
      }
      if (auto* ext = Properties::getAlmostSignExt(binary)) {
        Index extraShifts;
        auto bits = Properties::getAlmostSignExtBits(binary, extraShifts);
        if (extraShifts == 0) {
          if (auto* load = Properties::getFallthrough(ext)->dynCast<Load>()) {
            // pattern match a load of 8 bits and a sign extend using a shl of
            // 24 then shr_s of 24 as well, etc.
            if (LoadUtils::canBeSigned(load) &&
                ((load->bytes == 1 && bits == 8) ||
                 (load->bytes == 2 && bits == 16))) {
              // if the value falls through, we can't alter the load, as it
              // might be captured in a tee
              if (load->signed_ == true || load == ext) {
                load->signed_ = true;
                return ext;
              }
            }
          }
        }
        // if the sign-extend input cannot have a sign bit, we don't need it
        // we also don't need it if it already has an identical-sized sign
        // extend
        if (getMaxBits(ext, this) + extraShifts < bits ||
            isSignExted(ext, bits)) {
          return removeAlmostSignExt(binary);
        }
      } else if (binary->op == EqInt32 || binary->op == NeInt32) {
        if (auto* c = binary->right->dynCast<Const>()) {
          if (binary->op == EqInt32 && c->value.geti32() == 0) {
            // equal 0 => eqz
            return Builder(*getModule()).makeUnary(EqZInt32, binary->left);
          }
          if (auto* ext = Properties::getSignExtValue(binary->left)) {
            // we are comparing a sign extend to a constant, which means we can
            // use a cheaper zext
            auto bits = Properties::getSignExtBits(binary->left);
            binary->left = makeZeroExt(ext, bits);
            // when we replace the sign-ext of the non-constant with a zero-ext,
            // we are forcing the high bits to be all zero, instead of all zero
            // or all one depending on the sign bit. so we may be changing the
            // high bits from all one to all zero:
            //  * if the constant value's higher bits are mixed, then it can't
            //    be equal anyhow
            //  * if they are all zero, we may get a false true if the
            //    non-constant's upper bits were one. this can only happen if
            //    the non-constant's sign bit is set, so this false true is a
            //    risk only if the constant's sign bit is set (otherwise,
            //    false). But a constant with a sign bit but with upper bits
            //    zero is impossible to be equal to a sign-extended value
            //    anyhow, so the entire thing is false.
            //  * if they were all one, we may get a false false, if the only
            //    difference is in those upper bits. that means we are equal on
            //    the other bits, including the sign bit. so we can just mask
            //    off the upper bits in the constant value, in this case,
            //    forcing them to zero like we do in the zero-extend.
            int32_t constValue = c->value.geti32();
            auto upperConstValue = constValue & ~Bits::lowBitMask(bits);
            uint32_t count = PopCount(upperConstValue);
            auto constSignBit = constValue & (1 << (bits - 1));
            if ((count > 0 && count < 32 - bits) ||
                (constSignBit && count == 0)) {
              // mixed or [zero upper const bits with sign bit set]; the
              // compared values can never be identical, so force something
              // definitely impossible even after zext
              assert(bits < 32);
              c->value = Literal(int32_t(0x80000000));
              // TODO: if no side effects, we can just replace it all with 1 or
              // 0
            } else {
              // otherwise, they are all ones, so we can mask them off as
              // mentioned before
              c->value = c->value.and_(Literal(Bits::lowBitMask(bits)));
            }
            return binary;
          }
        } else if (auto* left = Properties::getSignExtValue(binary->left)) {
          if (auto* right = Properties::getSignExtValue(binary->right)) {
            auto bits = Properties::getSignExtBits(binary->left);
            if (Properties::getSignExtBits(binary->right) == bits) {
              // we are comparing two sign-exts with the same bits, so we may as
              // well replace both with cheaper zexts
              binary->left = makeZeroExt(left, bits);
              binary->right = makeZeroExt(right, bits);
              return binary;
            }
          } else if (auto* load = binary->right->dynCast<Load>()) {
            // we are comparing a load to a sign-ext, we may be able to switch
            // to zext
            auto leftBits = Properties::getSignExtBits(binary->left);
            if (load->signed_ && leftBits == load->bytes * 8) {
              load->signed_ = false;
              binary->left = makeZeroExt(left, leftBits);
              return binary;
            }
          }
        } else if (auto* load = binary->left->dynCast<Load>()) {
          if (auto* right = Properties::getSignExtValue(binary->right)) {
            // we are comparing a load to a sign-ext, we may be able to switch
            // to zext
            auto rightBits = Properties::getSignExtBits(binary->right);
            if (load->signed_ && rightBits == load->bytes * 8) {
              load->signed_ = false;
              binary->right = makeZeroExt(right, rightBits);
              return binary;
            }
          }
        }
        // note that both left and right may be consts, but then we let
        // precompute compute the constant result
      } else if (binary->op == AddInt32) {
        // try to get rid of (0 - ..), that is, a zero only used to negate an
        // int. an add of a subtract can be flipped in order to remove it:
        //   (i32.add
        //     (i32.sub
        //       (i32.const 0)
        //       X
        //     )
        //     Y
        //   )
        // =>
        //   (i32.sub
        //     Y
        //     X
        //   )
        // Note that this reorders X and Y, so we need to be careful about that.
        if (auto* sub = binary->left->dynCast<Binary>()) {
          if (sub->op == SubInt32) {
            if (auto* subZero = sub->left->dynCast<Const>()) {
              if (subZero->value.geti32() == 0) {
                if (EffectAnalyzer::canReorder(
                      getPassOptions(), sub->right, binary->right)) {
                  sub->left = binary->right;
                  return sub;
                }
              }
            }
          }
        }
        // The flip case is even easier, as no reordering occurs:
        //   (i32.add
        //     Y
        //     (i32.sub
        //       (i32.const 0)
        //       X
        //     )
        //   )
        // =>
        //   (i32.sub
        //     Y
        //     X
        //   )
        if (auto* sub = binary->right->dynCast<Binary>()) {
          if (sub->op == SubInt32) {
            if (auto* subZero = sub->left->dynCast<Const>()) {
              if (subZero->value.geti32() == 0) {
                sub->left = binary->left;
                return sub;
              }
            }
          }
        }
        auto* ret = optimizeAddedConstants(binary);
        if (ret) {
          return ret;
        }
      } else if (binary->op == SubInt32) {
        auto* ret = optimizeAddedConstants(binary);
        if (ret) {
          return ret;
        }
      }
      // a bunch of operations on a constant right side can be simplified
      if (auto* right = binary->right->dynCast<Const>()) {
        if (binary->op == AndInt32) {
          auto mask = right->value.geti32();
          // and with -1 does nothing (common in asm.js output)
          if (mask == -1) {
            return binary->left;
          }
          // small loads do not need to be masked, the load itself masks
          if (auto* load = binary->left->dynCast<Load>()) {
            if ((load->bytes == 1 && mask == 0xff) ||
                (load->bytes == 2 && mask == 0xffff)) {
              load->signed_ = false;
              return binary->left;
            }
          } else if (auto maskedBits = Bits::getMaskedBits(mask)) {
            if (getMaxBits(binary->left, this) <= maskedBits) {
              // a mask of lower bits is not needed if we are already smaller
              return binary->left;
            }
          }
        }
        // some math operations have trivial results
        Expression* ret = optimizeWithConstantOnRight(binary);
        if (ret) {
          return ret;
        }
        // the square of some operations can be merged
        if (auto* left = binary->left->dynCast<Binary>()) {
          if (left->op == binary->op) {
            if (auto* leftRight = left->right->dynCast<Const>()) {
              if (left->op == AndInt32) {
                leftRight->value = leftRight->value.and_(right->value);
                return left;
              } else if (left->op == OrInt32) {
                leftRight->value = leftRight->value.or_(right->value);
                return left;
              } else if (left->op == ShlInt32 || left->op == ShrUInt32 ||
                         left->op == ShrSInt32 || left->op == ShlInt64 ||
                         left->op == ShrUInt64 || left->op == ShrSInt64) {
                // shifts only use an effective amount from the constant, so
                // adding must be done carefully
                auto total = Bits::getEffectiveShifts(leftRight) +
                             Bits::getEffectiveShifts(right);
                if (total == Bits::getEffectiveShifts(total, right->type)) {
                  // no overflow, we can do this
                  leftRight->value = Literal::makeFromInt32(total, right->type);
                  return left;
                } // TODO: handle overflows
              }
            }
          }
        }
        // math operations on a constant power of 2 right side can be optimized
        if (right->type == i32) {
          uint32_t c = right->value.geti32();
          if (IsPowerOf2(c)) {
            if (binary->op == MulInt32) {
              return optimizePowerOf2Mul(binary, c);
            } else if (binary->op == RemUInt32) {
              return optimizePowerOf2URem(binary, c);
            }
          }
        }
      }
      // a bunch of operations on a constant left side can be simplified
      if (binary->left->is<Const>()) {
        Expression* ret = optimizeWithConstantOnLeft(binary);
        if (ret) {
          return ret;
        }
      }
      // bitwise operations
      if (binary->op == AndInt32) {
        // try de-morgan's AND law,
        //  (eqz X) and (eqz Y) === eqz (X or Y)
        // Note that the OR and XOR laws do not work here, as these
        // are not booleans (we could check if they are, but a boolean
        // would already optimize with the eqz anyhow, unless propagating).
        // But for AND, the left is true iff X and Y are each all zero bits,
        // and the right is true if the union of their bits is zero; same.
        if (auto* left = binary->left->dynCast<Unary>()) {
          if (left->op == EqZInt32) {
            if (auto* right = binary->right->dynCast<Unary>()) {
              if (right->op == EqZInt32) {
                // reuse one unary, drop the other
                auto* leftValue = left->value;
                left->value = binary;
                binary->left = leftValue;
                binary->right = right->value;
                binary->op = OrInt32;
                return left;
              }
            }
          }
        }
      }
      // for and and or, we can potentially conditionalize
      if (binary->op == AndInt32 || binary->op == OrInt32) {
        if (auto* ret = conditionalizeExpensiveOnBitwise(binary)) {
          return ret;
        }
      }
      // for or, we can potentially combine
      if (binary->op == OrInt32) {
        if (auto* ret = combineOr(binary)) {
          return ret;
        }
      }
      // relation/comparisons allow for math optimizations
      if (binary->isRelational()) {
        if (auto* ret = optimizeRelational(binary)) {
          return ret;
        }
      }
      // finally, try more expensive operations on the binary in
      // the case that they have no side effects
      if (!EffectAnalyzer(getPassOptions(), binary->left).hasSideEffects()) {
        if (ExpressionAnalyzer::equal(binary->left, binary->right)) {
          return optimizeBinaryWithEqualEffectlessChildren(binary);
        }
      }
    } else if (auto* unary = curr->dynCast<Unary>()) {
      // de-morgan's laws
      if (unary->op == EqZInt32) {
        if (auto* inner = unary->value->dynCast<Binary>()) {
          switch (inner->op) {
            case EqInt32:
              inner->op = NeInt32;
              return inner;
            case NeInt32:
              inner->op = EqInt32;
              return inner;
            case LtSInt32:
              inner->op = GeSInt32;
              return inner;
            case LtUInt32:
              inner->op = GeUInt32;
              return inner;
            case LeSInt32:
              inner->op = GtSInt32;
              return inner;
            case LeUInt32:
              inner->op = GtUInt32;
              return inner;
            case GtSInt32:
              inner->op = LeSInt32;
              return inner;
            case GtUInt32:
              inner->op = LeUInt32;
              return inner;
            case GeSInt32:
              inner->op = LtSInt32;
              return inner;
            case GeUInt32:
              inner->op = LtUInt32;
              return inner;

            case EqInt64:
              inner->op = NeInt64;
              return inner;
            case NeInt64:
              inner->op = EqInt64;
              return inner;
            case LtSInt64:
              inner->op = GeSInt64;
              return inner;
            case LtUInt64:
              inner->op = GeUInt64;
              return inner;
            case LeSInt64:
              inner->op = GtSInt64;
              return inner;
            case LeUInt64:
              inner->op = GtUInt64;
              return inner;
            case GtSInt64:
              inner->op = LeSInt64;
              return inner;
            case GtUInt64:
              inner->op = LeUInt64;
              return inner;
            case GeSInt64:
              inner->op = LtSInt64;
              return inner;
            case GeUInt64:
              inner->op = LtUInt64;
              return inner;

            case EqFloat32:
              inner->op = NeFloat32;
              return inner;
            case NeFloat32:
              inner->op = EqFloat32;
              return inner;

            case EqFloat64:
              inner->op = NeFloat64;
              return inner;
            case NeFloat64:
              inner->op = EqFloat64;
              return inner;

            default: {}
          }
        }
        // eqz of a sign extension can be of zero-extension
        if (auto* ext = Properties::getSignExtValue(unary->value)) {
          // we are comparing a sign extend to a constant, which means we can
          // use a cheaper zext
          auto bits = Properties::getSignExtBits(unary->value);
          unary->value = makeZeroExt(ext, bits);
          return unary;
        }
      }
    } else if (auto* set = curr->dynCast<GlobalSet>()) {
      // optimize out a set of a get
      auto* get = set->value->dynCast<GlobalGet>();
      if (get && get->name == set->name) {
        ExpressionManipulator::nop(curr);
      }
    } else if (auto* iff = curr->dynCast<If>()) {
      iff->condition = optimizeBoolean(iff->condition);
      if (iff->ifFalse) {
        if (auto* unary = iff->condition->dynCast<Unary>()) {
          if (unary->op == EqZInt32) {
            // flip if-else arms to get rid of an eqz
            iff->condition = unary->value;
            std::swap(iff->ifTrue, iff->ifFalse);
          }
        }
        if (iff->condition->type != unreachable &&
            ExpressionAnalyzer::equal(iff->ifTrue, iff->ifFalse)) {
          // sides are identical, fold
          // if we can replace the if with one arm, and no side effects in the
          // condition, do that
          auto needCondition =
            EffectAnalyzer(getPassOptions(), iff->condition).hasSideEffects();
          auto isSubType = Type::isSubType(iff->ifTrue->type, iff->type);
          if (isSubType && !needCondition) {
            return iff->ifTrue;
          } else {
            Builder builder(*getModule());
            if (isSubType) {
              return builder.makeSequence(builder.makeDrop(iff->condition),
                                          iff->ifTrue);
            } else {
              // the types diff. as the condition is reachable, that means the
              // if must be concrete while the arm is not
              assert(iff->type.isConcrete() &&
                     iff->ifTrue->type == unreachable);
              // emit a block with a forced type
              auto* ret = builder.makeBlock();
              if (needCondition) {
                ret->list.push_back(builder.makeDrop(iff->condition));
              }
              ret->list.push_back(iff->ifTrue);
              ret->finalize(iff->type);
              return ret;
            }
          }
        }
      }
    } else if (auto* select = curr->dynCast<Select>()) {
      select->condition = optimizeBoolean(select->condition);
      auto* condition = select->condition->dynCast<Unary>();
      if (condition && condition->op == EqZInt32) {
        // flip select to remove eqz, if we can reorder
        EffectAnalyzer ifTrue(getPassOptions(), select->ifTrue);
        EffectAnalyzer ifFalse(getPassOptions(), select->ifFalse);
        if (!ifTrue.invalidates(ifFalse)) {
          select->condition = condition->value;
          std::swap(select->ifTrue, select->ifFalse);
        }
      }
      if (auto* c = select->condition->dynCast<Const>()) {
        // constant condition, we can just pick the right side (barring side
        // effects)
        if (c->value.getInteger()) {
          if (!EffectAnalyzer(getPassOptions(), select->ifFalse)
                 .hasSideEffects()) {
            return select->ifTrue;
          } else {
            // don't bother - we would need to reverse the order using a temp
            // local, which is bad
          }
        } else {
          if (!EffectAnalyzer(getPassOptions(), select->ifTrue)
                 .hasSideEffects()) {
            return select->ifFalse;
          } else {
            Builder builder(*getModule());
            return builder.makeSequence(builder.makeDrop(select->ifTrue),
                                        select->ifFalse);
          }
        }
      }
      if (ExpressionAnalyzer::equal(select->ifTrue, select->ifFalse)) {
        // sides are identical, fold
        EffectAnalyzer value(getPassOptions(), select->ifTrue);
        if (value.hasSideEffects()) {
          // at best we don't need the condition, but need to execute the value
          // twice. a block is larger than a select by 2 bytes, and
          // we must drop one value, so 3, while we save the condition,
          // so it's not clear this is worth it, TODO
        } else {
          // value has no side effects
          EffectAnalyzer condition(getPassOptions(), select->condition);
          if (!condition.hasSideEffects()) {
            return select->ifTrue;
          } else {
            // the condition is last, so we need a new local, and it may be
            // a bad idea to use a block like we do for an if. Do it only if we
            // can reorder
            if (!condition.invalidates(value)) {
              Builder builder(*getModule());
              return builder.makeSequence(builder.makeDrop(select->condition),
                                          select->ifTrue);
            }
          }
        }
      }
    } else if (auto* br = curr->dynCast<Break>()) {
      if (br->condition) {
        br->condition = optimizeBoolean(br->condition);
      }
    } else if (auto* load = curr->dynCast<Load>()) {
      optimizeMemoryAccess(load->ptr, load->offset);
    } else if (auto* store = curr->dynCast<Store>()) {
      optimizeMemoryAccess(store->ptr, store->offset);
      // stores of fewer bits truncates anyhow
      if (auto* binary = store->value->dynCast<Binary>()) {
        if (binary->op == AndInt32) {
          if (auto* right = binary->right->dynCast<Const>()) {
            if (right->type == i32) {
              auto mask = right->value.geti32();
              if ((store->bytes == 1 && mask == 0xff) ||
                  (store->bytes == 2 && mask == 0xffff)) {
                store->value = binary->left;
              }
            }
          }
        } else if (auto* ext = Properties::getSignExtValue(binary)) {
          // if sign extending the exact bit size we store, we can skip the
          // extension if extending something bigger, then we just alter bits we
          // don't save anyhow
          if (Properties::getSignExtBits(binary) >= Index(store->bytes) * 8) {
            store->value = ext;
          }
        }
      } else if (auto* unary = store->value->dynCast<Unary>()) {
        if (unary->op == WrapInt64) {
          // instead of wrapping to 32, just store some of the bits in the i64
          store->valueType = i64;
          store->value = unary->value;
        }
      }
    }
    return nullptr;
  }

  Index getMaxBitsForLocal(LocalGet* get) {
    // check what we know about the local
    return localInfo[get->index].maxBits;
  }

private:
  // Information about our locals
  std::vector<LocalInfo> localInfo;

  // Canonicalizing the order of a symmetric binary helps us
  // write more concise pattern matching code elsewhere.
  void canonicalize(Binary* binary) {
    assert(Properties::isSymmetric(binary));
    auto swap = [&]() {
      assert(EffectAnalyzer::canReorder(
        getPassOptions(), binary->left, binary->right));
      std::swap(binary->left, binary->right);
    };
    auto maybeSwap = [&]() {
      if (EffectAnalyzer::canReorder(
            getPassOptions(), binary->left, binary->right)) {
        swap();
      }
    };
    // Prefer a const on the right.
    if (binary->left->is<Const>() && !binary->right->is<Const>()) {
      return swap();
    }
    if (binary->right->is<Const>()) {
      return;
    }
    // Prefer a get on the right.
    if (binary->left->is<LocalGet>() && !binary->right->is<LocalGet>()) {
      return maybeSwap();
    }
    // Sort by the node id type, if different.
    if (binary->left->_id != binary->right->_id) {
      if (binary->left->_id > binary->right->_id) {
        return maybeSwap();
      }
      return;
    }
    // If the children have the same node id, we have to go deeper.
    if (auto* left = binary->left->dynCast<Unary>()) {
      auto* right = binary->right->cast<Unary>();
      if (left->op > right->op) {
        return maybeSwap();
      }
    }
    if (auto* left = binary->left->dynCast<Binary>()) {
      auto* right = binary->right->cast<Binary>();
      if (left->op > right->op) {
        return maybeSwap();
      }
    }
    if (auto* left = binary->left->dynCast<LocalGet>()) {
      auto* right = binary->right->cast<LocalGet>();
      if (left->index > right->index) {
        return maybeSwap();
      }
    }
  }

  // Optimize given that the expression is flowing into a boolean context
  Expression* optimizeBoolean(Expression* boolean) {
    // TODO use a general getFallthroughs
    if (auto* unary = boolean->dynCast<Unary>()) {
      if (unary && unary->op == EqZInt32) {
        auto* unary2 = unary->value->dynCast<Unary>();
        if (unary2 && unary2->op == EqZInt32) {
          // double eqz
          return unary2->value;
        }
      }
    } else if (auto* binary = boolean->dynCast<Binary>()) {
      if (binary->op == OrInt32) {
        // an or flowing into a boolean context can consider each input as
        // boolean
        binary->left = optimizeBoolean(binary->left);
        binary->right = optimizeBoolean(binary->right);
      } else if (binary->op == NeInt32) {
        // x != 0 is just x if it's used as a bool
        if (auto* num = binary->right->dynCast<Const>()) {
          if (num->value.geti32() == 0) {
            return binary->left;
          }
        }
      }
      if (auto* ext = Properties::getSignExtValue(binary)) {
        // use a cheaper zero-extent, we just care about the boolean value
        // anyhow
        return makeZeroExt(ext, Properties::getSignExtBits(binary));
      }
    } else if (auto* block = boolean->dynCast<Block>()) {
      if (block->type == i32 && block->list.size() > 0) {
        block->list.back() = optimizeBoolean(block->list.back());
      }
    } else if (auto* iff = boolean->dynCast<If>()) {
      if (iff->type == i32) {
        iff->ifTrue = optimizeBoolean(iff->ifTrue);
        iff->ifFalse = optimizeBoolean(iff->ifFalse);
      }
    } else if (auto* select = boolean->dynCast<Select>()) {
      select->ifTrue = optimizeBoolean(select->ifTrue);
      select->ifFalse = optimizeBoolean(select->ifFalse);
    }
    // TODO: recurse into br values?
    return boolean;
  }

  // find added constants in an expression tree, including multiplied/shifted,
  // and combine them note that we ignore division/shift-right, as rounding
  // makes this nonlinear, so not a valid opt
  Expression* optimizeAddedConstants(Binary* binary) {
    uint32_t constant = 0;
    std::vector<Const*> constants;

    struct SeekState {
      Expression* curr;
      int mul;
      SeekState(Expression* curr, int mul) : curr(curr), mul(mul) {}
    };
    std::vector<SeekState> seekStack;
    seekStack.emplace_back(binary, 1);
    while (!seekStack.empty()) {
      auto state = seekStack.back();
      seekStack.pop_back();
      auto curr = state.curr;
      auto mul = state.mul;
      if (auto* c = curr->dynCast<Const>()) {
        uint32_t value = c->value.geti32();
        if (value != 0) {
          constant += value * mul;
          constants.push_back(c);
        }
        continue;
      } else if (auto* binary = curr->dynCast<Binary>()) {
        if (binary->op == AddInt32) {
          seekStack.emplace_back(binary->right, mul);
          seekStack.emplace_back(binary->left, mul);
          continue;
        } else if (binary->op == SubInt32) {
          // if the left is a zero, ignore it, it's how we negate ints
          auto* left = binary->left->dynCast<Const>();
          seekStack.emplace_back(binary->right, -mul);
          if (!left || left->value.geti32() != 0) {
            seekStack.emplace_back(binary->left, mul);
          }
          continue;
        } else if (binary->op == ShlInt32) {
          if (auto* c = binary->right->dynCast<Const>()) {
            seekStack.emplace_back(binary->left,
                                   mul * Pow2(Bits::getEffectiveShifts(c)));
            continue;
          }
        } else if (binary->op == MulInt32) {
          if (auto* c = binary->left->dynCast<Const>()) {
            seekStack.emplace_back(binary->right, mul * c->value.geti32());
            continue;
          } else if (auto* c = binary->right->dynCast<Const>()) {
            seekStack.emplace_back(binary->left, mul * c->value.geti32());
            continue;
          }
        }
      }
    };
    // find all factors
    if (constants.size() <= 1) {
      // nothing much to do, except for the trivial case of adding/subbing a
      // zero
      if (auto* c = binary->right->dynCast<Const>()) {
        if (c->value.geti32() == 0) {
          return binary->left;
        }
      }
      return nullptr;
    }
    // wipe out all constants, we'll replace with a single added one
    for (auto* c : constants) {
      c->value = Literal(int32_t(0));
    }
    // remove added/subbed zeros
    struct ZeroRemover : public PostWalker<ZeroRemover> {
      // TODO: we could save the binarys and costs we drop, and reuse them later

      PassOptions& passOptions;

      ZeroRemover(PassOptions& passOptions) : passOptions(passOptions) {}

      void visitBinary(Binary* curr) {
        auto* left = curr->left->dynCast<Const>();
        auto* right = curr->right->dynCast<Const>();
        if (curr->op == AddInt32) {
          if (left && left->value.geti32() == 0) {
            replaceCurrent(curr->right);
            return;
          }
          if (right && right->value.geti32() == 0) {
            replaceCurrent(curr->left);
            return;
          }
        } else if (curr->op == SubInt32) {
          // we must leave a left zero, as it is how we negate ints
          if (right && right->value.geti32() == 0) {
            replaceCurrent(curr->left);
            return;
          }
        } else if (curr->op == ShlInt32) {
          // shifting a 0 is a 0, or anything by 0 has no effect, all unless the
          // shift has side effects
          if (((left && left->value.geti32() == 0) ||
               (right && Bits::getEffectiveShifts(right) == 0)) &&
              !EffectAnalyzer(passOptions, curr->right).hasSideEffects()) {
            replaceCurrent(curr->left);
            return;
          }
        } else if (curr->op == MulInt32) {
          // multiplying by zero is a zero, unless the other side has side
          // effects
          if (left && left->value.geti32() == 0 &&
              !EffectAnalyzer(passOptions, curr->right).hasSideEffects()) {
            replaceCurrent(left);
            return;
          }
          if (right && right->value.geti32() == 0 &&
              !EffectAnalyzer(passOptions, curr->left).hasSideEffects()) {
            replaceCurrent(right);
            return;
          }
        }
      }
    };
    Expression* walked = binary;
    ZeroRemover(getPassOptions()).walk(walked);
    if (constant == 0) {
      return walked; // nothing more to do
    }
    if (auto* c = walked->dynCast<Const>()) {
      assert(c->value.geti32() == 0);
      c->value = Literal(constant);
      return c;
    }
    Builder builder(*getModule());
    return builder.makeBinary(
      AddInt32, walked, builder.makeConst(Literal(constant)));
  }

  //   expensive1 | expensive2 can be turned into expensive1 ? 1 : expensive2,
  //   and expensive | cheap     can be turned into cheap     ? 1 : expensive,
  // so that we can avoid one expensive computation, if it has no side effects.
  Expression* conditionalizeExpensiveOnBitwise(Binary* binary) {
    // this operation can increase code size, so don't always do it
    auto& options = getPassRunner()->options;
    if (options.optimizeLevel < 2 || options.shrinkLevel > 0) {
      return nullptr;
    }
    const auto MIN_COST = 7;
    assert(binary->op == AndInt32 || binary->op == OrInt32);
    if (binary->right->is<Const>()) {
      return nullptr; // trivial
    }
    // bitwise logical operator on two non-numerical values, check if they are
    // boolean
    auto* left = binary->left;
    auto* right = binary->right;
    if (!Properties::emitsBoolean(left) || !Properties::emitsBoolean(right)) {
      return nullptr;
    }
    auto leftEffects = EffectAnalyzer(getPassOptions(), left);
    auto rightEffects = EffectAnalyzer(getPassOptions(), right);
    auto leftHasSideEffects = leftEffects.hasSideEffects();
    auto rightHasSideEffects = rightEffects.hasSideEffects();
    if (leftHasSideEffects && rightHasSideEffects) {
      return nullptr; // both must execute
    }
    // canonicalize with side effects, if any, happening on the left
    if (rightHasSideEffects) {
      if (CostAnalyzer(left).cost < MIN_COST) {
        return nullptr; // avoidable code is too cheap
      }
      if (leftEffects.invalidates(rightEffects)) {
        return nullptr; // cannot reorder
      }
      std::swap(left, right);
    } else if (leftHasSideEffects) {
      if (CostAnalyzer(right).cost < MIN_COST) {
        return nullptr; // avoidable code is too cheap
      }
    } else {
      // no side effects, reorder based on cost estimation
      auto leftCost = CostAnalyzer(left).cost;
      auto rightCost = CostAnalyzer(right).cost;
      if (std::max(leftCost, rightCost) < MIN_COST) {
        return nullptr; // avoidable code is too cheap
      }
      // canonicalize with expensive code on the right
      if (leftCost > rightCost) {
        std::swap(left, right);
      }
    }
    // worth it! perform conditionalization
    Builder builder(*getModule());
    if (binary->op == OrInt32) {
      return builder.makeIf(
        left, builder.makeConst(Literal(int32_t(1))), right);
    } else { // &
      return builder.makeIf(
        left, right, builder.makeConst(Literal(int32_t(0))));
    }
  }

  // We can combine `or` operations, e.g.
  //   (x > y) | (x == y)    ==>    x >= y
  Expression* combineOr(Binary* binary) {
    assert(binary->op == OrInt32);
    if (auto* left = binary->left->dynCast<Binary>()) {
      if (auto* right = binary->right->dynCast<Binary>()) {
        if (left->op != right->op &&
            ExpressionAnalyzer::equal(left->left, right->left) &&
            ExpressionAnalyzer::equal(left->right, right->right) &&
            !EffectAnalyzer(getPassOptions(), left->left).hasSideEffects() &&
            !EffectAnalyzer(getPassOptions(), left->right).hasSideEffects()) {
          switch (left->op) {
            //   (x > y) | (x == y)    ==>    x >= y
            case EqInt32: {
              if (right->op == GtSInt32) {
                left->op = GeSInt32;
                return left;
              }
              break;
            }
            default: {}
          }
        }
      }
    }
    return nullptr;
  }

  // fold constant factors into the offset
  void optimizeMemoryAccess(Expression*& ptr, Address& offset) {
    // ptr may be a const, but it isn't worth folding that in (we still have a
    // const); in fact, it's better to do the opposite for gzip purposes as well
    // as for readability.
    auto* last = ptr->dynCast<Const>();
    if (last) {
      // don't do this if it would wrap the pointer
      uint64_t value64 = last->value.geti32();
      uint64_t offset64 = offset;
      if (value64 <= uint64_t(std::numeric_limits<int32_t>::max()) &&
          offset64 <= uint64_t(std::numeric_limits<int32_t>::max()) &&
          value64 + offset64 <= uint64_t(std::numeric_limits<int32_t>::max())) {
        last->value = Literal(int32_t(value64 + offset64));
        offset = 0;
      }
    }
  }

  // Optimize a multiply by a power of two on the right, which
  // can be a shift.
  // This doesn't shrink code size, and VMs likely optimize it anyhow,
  // but it's still worth doing since
  //  * Often shifts are more common than muls.
  //  * The constant is smaller.
  Expression* optimizePowerOf2Mul(Binary* binary, uint32_t c) {
    uint32_t shifts = CountTrailingZeroes(c);
    binary->op = ShlInt32;
    binary->right->cast<Const>()->value = Literal(int32_t(shifts));
    return binary;
  }

  // Optimize an unsigned divide by a power of two on the right,
  // which can be an AND mask
  // This doesn't shrink code size, and VMs likely optimize it anyhow,
  // but it's still worth doing since
  //  * Usually ands are more common than urems.
  //  * The constant is slightly smaller.
  Expression* optimizePowerOf2URem(Binary* binary, uint32_t c) {
    binary->op = AndInt32;
    binary->right->cast<Const>()->value = Literal(int32_t(c - 1));
    return binary;
  }

  Expression* makeZeroExt(Expression* curr, int32_t bits) {
    Builder builder(*getModule());
    return builder.makeBinary(
      AndInt32, curr, builder.makeConst(Literal(Bits::lowBitMask(bits))));
  }

  // given an "almost" sign extend - either a proper one, or it
  // has too many shifts left - we remove the sign extend. If there are
  // too many shifts, we split the shifts first, so this removes the
  // two sign extend shifts and adds one (smaller one)
  Expression* removeAlmostSignExt(Binary* outer) {
    auto* inner = outer->left->cast<Binary>();
    auto* outerConst = outer->right->cast<Const>();
    auto* innerConst = inner->right->cast<Const>();
    auto* value = inner->left;
    if (outerConst->value == innerConst->value) {
      return value;
    }
    // add a shift, by reusing the existing node
    innerConst->value = innerConst->value.sub(outerConst->value);
    return inner;
  }

  // check if an expression is already sign-extended
  bool isSignExted(Expression* curr, Index bits) {
    if (Properties::getSignExtValue(curr)) {
      return Properties::getSignExtBits(curr) == bits;
    }
    if (auto* get = curr->dynCast<LocalGet>()) {
      // check what we know about the local
      return localInfo[get->index].signExtedBits == bits;
    }
    return false;
  }

  // optimize trivial math operations, given that the right side of a binary
  // is a constant
  // TODO: templatize on type?
  Expression* optimizeWithConstantOnRight(Binary* binary) {
    auto type = binary->right->type;
    auto* right = binary->right->cast<Const>();
    if (type.isInteger()) {
      // operations on zero
      if (right->value == Literal::makeFromInt32(0, type)) {
        if (binary->op == Abstract::getBinary(type, Abstract::Shl) ||
            binary->op == Abstract::getBinary(type, Abstract::ShrU) ||
            binary->op == Abstract::getBinary(type, Abstract::ShrS) ||
            binary->op == Abstract::getBinary(type, Abstract::Or) ||
            binary->op == Abstract::getBinary(type, Abstract::Xor)) {
          return binary->left;
        } else if ((binary->op == Abstract::getBinary(type, Abstract::Mul) ||
                    binary->op == Abstract::getBinary(type, Abstract::And)) &&
                   !EffectAnalyzer(getPassOptions(), binary->left)
                      .hasSideEffects()) {
          return binary->right;
        } else if (binary->op == EqInt64) {
          return Builder(*getModule()).makeUnary(EqZInt64, binary->left);
        }
      }
      // operations on all 1s
      // TODO: shortcut method to create an all-ones?
      if (right->value == Literal(int32_t(-1)) ||
          right->value == Literal(int64_t(-1))) {
        if (binary->op == Abstract::getBinary(type, Abstract::And)) {
          return binary->left;
        } else if (binary->op == Abstract::getBinary(type, Abstract::Or) &&
                   !EffectAnalyzer(getPassOptions(), binary->left)
                      .hasSideEffects()) {
          return binary->right;
        }
      }
      // wasm binary encoding uses signed LEBs, which slightly favor negative
      // numbers: -64 is more efficient than +64 etc., as well as other powers
      // of two 7 bits etc. higher. we therefore prefer x - -64 over x + 64.
      // in theory we could just prefer negative numbers over positive, but
      // that can have bad effects on gzip compression (as it would mean more
      // subtractions than the more common additions).
      if (binary->op == Abstract::getBinary(type, Abstract::Add) ||
          binary->op == Abstract::getBinary(type, Abstract::Sub)) {
        auto value = right->value.getInteger();
        if (value == 0x40 || value == 0x2000 || value == 0x100000 ||
            value == 0x8000000 || value == 0x400000000LL ||
            value == 0x20000000000LL || value == 0x1000000000000LL ||
            value == 0x80000000000000LL || value == 0x4000000000000000LL) {
          right->value = right->value.neg();
          if (binary->op == Abstract::getBinary(type, Abstract::Add)) {
            binary->op = Abstract::getBinary(type, Abstract::Sub);
          } else {
            binary->op = Abstract::getBinary(type, Abstract::Add);
          }
          return binary;
        }
      }
    }
    if (type.isInteger() || type.isFloat()) {
      // note that this is correct even on floats with a NaN on the left,
      // as a NaN would skip the computation and just return the NaN,
      // and that is precisely what we do here. but, the same with -1
      // (change to a negation) would be incorrect for that reason.
      if (right->value == Literal::makeFromInt32(1, type)) {
        if (binary->op == Abstract::getBinary(type, Abstract::Mul) ||
            binary->op == Abstract::getBinary(type, Abstract::DivS) ||
            binary->op == Abstract::getBinary(type, Abstract::DivU)) {
          return binary->left;
        }
      }
    }
    // TODO: v128 not implemented yet
    return nullptr;
  }

  // optimize trivial math operations, given that the left side of a binary
  // is a constant. since we canonicalize constants to the right for symmetrical
  // operations, we only need to handle asymmetrical ones here
  // TODO: templatize on type?
  Expression* optimizeWithConstantOnLeft(Binary* binary) {
    auto type = binary->left->type;
    auto* left = binary->left->cast<Const>();
    if (type.isInteger()) {
      // operations on zero
      if (left->value == Literal::makeFromInt32(0, type)) {
        if ((binary->op == Abstract::getBinary(type, Abstract::Shl) ||
             binary->op == Abstract::getBinary(type, Abstract::ShrU) ||
             binary->op == Abstract::getBinary(type, Abstract::ShrS)) &&
            !EffectAnalyzer(getPassOptions(), binary->right).hasSideEffects()) {
          return binary->left;
        }
      }
    }
    return nullptr;
  }

  // TODO: templatize on type?
  Expression* optimizeRelational(Binary* binary) {
    // TODO: inequalities can also work, if the constants do not overflow
    auto type = binary->right->type;
    // integer math, even on 2s complement, allows stuff like
    // x + 5 == 7
    //   =>
    //     x == 2
    if (binary->left->type.isInteger()) {
      if (binary->op == Abstract::getBinary(type, Abstract::Eq) ||
          binary->op == Abstract::getBinary(type, Abstract::Ne)) {
        if (auto* left = binary->left->dynCast<Binary>()) {
          if (left->op == Abstract::getBinary(type, Abstract::Add) ||
              left->op == Abstract::getBinary(type, Abstract::Sub)) {
            if (auto* leftConst = left->right->dynCast<Const>()) {
              if (auto* rightConst = binary->right->dynCast<Const>()) {
                return combineRelationalConstants(
                  binary, left, leftConst, nullptr, rightConst);
              } else if (auto* rightBinary = binary->right->dynCast<Binary>()) {
                if (rightBinary->op ==
                      Abstract::getBinary(type, Abstract::Add) ||
                    rightBinary->op ==
                      Abstract::getBinary(type, Abstract::Sub)) {
                  if (auto* rightConst = rightBinary->right->dynCast<Const>()) {
                    return combineRelationalConstants(
                      binary, left, leftConst, rightBinary, rightConst);
                  }
                }
              }
            }
          }
        }
      }
    }
    return nullptr;
  }

  // given a relational binary with a const on both sides, combine the constants
  // left is also a binary, and has a constant; right may be just a constant, in
  // which case right is nullptr
  Expression* combineRelationalConstants(Binary* binary,
                                         Binary* left,
                                         Const* leftConst,
                                         Binary* right,
                                         Const* rightConst) {
    auto type = binary->right->type;
    // we fold constants to the right
    Literal extra = leftConst->value;
    if (left->op == Abstract::getBinary(type, Abstract::Sub)) {
      extra = extra.neg();
    }
    if (right && right->op == Abstract::getBinary(type, Abstract::Sub)) {
      extra = extra.neg();
    }
    rightConst->value = rightConst->value.sub(extra);
    binary->left = left->left;
    return binary;
  }

  // given a binary expression with equal children and no side effects in
  // either, we can fold various things
  // TODO: trinaries, things like (x & (y & x)) ?
  Expression* optimizeBinaryWithEqualEffectlessChildren(Binary* binary) {
    // TODO add: perhaps worth doing 2*x if x is quite large?
    switch (binary->op) {
      case SubInt32:
      case XorInt32:
      case SubInt64:
      case XorInt64:
        return LiteralUtils::makeZero(binary->left->type, *getModule());
      case NeInt64:
      case LtSInt64:
      case LtUInt64:
      case GtSInt64:
      case GtUInt64:
      case NeInt32:
      case LtSInt32:
      case LtUInt32:
      case GtSInt32:
      case GtUInt32:
        return LiteralUtils::makeZero(i32, *getModule());
      case AndInt32:
      case OrInt32:
      case AndInt64:
      case OrInt64:
        return binary->left;
      case EqInt32:
      case LeSInt32:
      case LeUInt32:
      case GeSInt32:
      case GeUInt32:
      case EqInt64:
      case LeSInt64:
      case LeUInt64:
      case GeSInt64:
      case GeUInt64:
        return LiteralUtils::makeFromInt32(1, i32, *getModule());
      default:
        return nullptr;
    }
  }
};

Pass* createOptimizeInstructionsPass() { return new OptimizeInstructions(); }

} // namespace wasm