1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Optimize combinations of instructions
//
#include <algorithm>
#include <wasm.h>
#include <pass.h>
#include <wasm-s-parser.h>
#include <support/threads.h>
#include <ast_utils.h>
#include <ast/properties.h>
namespace wasm {
Name I32_EXPR = "i32.expr",
I64_EXPR = "i64.expr",
F32_EXPR = "f32.expr",
F64_EXPR = "f64.expr",
ANY_EXPR = "any.expr";
// A pattern
struct Pattern {
Expression* input;
Expression* output;
Pattern(Expression* input, Expression* output) : input(input), output(output) {}
};
// Database of patterns
struct PatternDatabase {
Module wasm;
char* input;
std::map<Expression::Id, std::vector<Pattern>> patternMap; // root expression id => list of all patterns for it TODO optimize more
PatternDatabase() {
// generate module
input = strdup(
#include "OptimizeInstructions.wast.processed"
);
try {
SExpressionParser parser(input);
Element& root = *parser.root;
SExpressionWasmBuilder builder(wasm, *root[0]);
// parse module form
auto* func = wasm.getFunction("patterns");
auto* body = func->body->cast<Block>();
for (auto* item : body->list) {
auto* pair = item->cast<Block>();
patternMap[pair->list[0]->_id].emplace_back(pair->list[0], pair->list[1]);
}
} catch (ParseException& p) {
p.dump(std::cerr);
Fatal() << "error in parsing wasm binary";
}
}
~PatternDatabase() {
free(input);
};
};
static PatternDatabase* database = nullptr;
struct DatabaseEnsurer {
DatabaseEnsurer() {
assert(!database);
database = new PatternDatabase;
}
};
// Check for matches and apply them
struct Match {
Module& wasm;
Pattern& pattern;
Match(Module& wasm, Pattern& pattern) : wasm(wasm), pattern(pattern) {}
std::vector<Expression*> wildcards; // id in i32.any(id) etc. => the expression it represents in this match
// Comparing/checking
// Check if we can match to this pattern, updating ourselves with the info if so
bool check(Expression* seen) {
// compare seen to the pattern input, doing a special operation for our "wildcards"
assert(wildcards.size() == 0);
return ExpressionAnalyzer::flexibleEqual(pattern.input, seen, *this);
}
bool compare(Expression* subInput, Expression* subSeen) {
CallImport* call = subInput->dynCast<CallImport>();
if (!call || call->operands.size() != 1 || call->operands[0]->type != i32 || !call->operands[0]->is<Const>()) return false;
Index index = call->operands[0]->cast<Const>()->value.geti32();
// handle our special functions
auto checkMatch = [&](WasmType type) {
if (type != none && subSeen->type != type) return false;
while (index >= wildcards.size()) {
wildcards.push_back(nullptr);
}
if (!wildcards[index]) {
// new wildcard
wildcards[index] = subSeen; // NB: no need to copy
return true;
} else {
// We are seeing this index for a second or later time, check it matches
return ExpressionAnalyzer::equal(subSeen, wildcards[index]);
};
};
if (call->target == I32_EXPR) {
if (checkMatch(i32)) return true;
} else if (call->target == I64_EXPR) {
if (checkMatch(i64)) return true;
} else if (call->target == F32_EXPR) {
if (checkMatch(f32)) return true;
} else if (call->target == F64_EXPR) {
if (checkMatch(f64)) return true;
} else if (call->target == ANY_EXPR) {
if (checkMatch(none)) return true;
}
return false;
}
// Applying/copying
// Apply the match, generate an output expression from the matched input, performing substitutions as necessary
Expression* apply() {
return ExpressionManipulator::flexibleCopy(pattern.output, wasm, *this);
}
// When copying a wildcard, perform the substitution.
// TODO: we can reuse nodes, not copying a wildcard when it appears just once, and we can reuse other individual nodes when they are discarded anyhow.
Expression* copy(Expression* curr) {
CallImport* call = curr->dynCast<CallImport>();
if (!call || call->operands.size() != 1 || call->operands[0]->type != i32 || !call->operands[0]->is<Const>()) return nullptr;
Index index = call->operands[0]->cast<Const>()->value.geti32();
// handle our special functions
if (call->target == I32_EXPR || call->target == I64_EXPR || call->target == F32_EXPR || call->target == F64_EXPR || call->target == ANY_EXPR) {
return ExpressionManipulator::copy(wildcards.at(index), wasm);
}
return nullptr;
}
};
// Main pass class
struct OptimizeInstructions : public WalkerPass<PostWalker<OptimizeInstructions, UnifiedExpressionVisitor<OptimizeInstructions>>> {
bool isFunctionParallel() override { return true; }
Pass* create() override { return new OptimizeInstructions; }
void prepareToRun(PassRunner* runner, Module* module) override {
static DatabaseEnsurer ensurer;
}
void visitExpression(Expression* curr) {
// we may be able to apply multiple patterns, one may open opportunities that look deeper NB: patterns must not have cycles
while (1) {
auto* handOptimized = handOptimize(curr);
if (handOptimized) {
curr = handOptimized;
replaceCurrent(curr);
continue;
}
auto iter = database->patternMap.find(curr->_id);
if (iter == database->patternMap.end()) return;
auto& patterns = iter->second;
bool more = false;
for (auto& pattern : patterns) {
Match match(*getModule(), pattern);
if (match.check(curr)) {
curr = match.apply();
replaceCurrent(curr);
more = true;
break; // exit pattern for loop, return to main while loop
}
}
if (!more) break;
}
}
// Optimizations that don't yet fit in the pattern DSL, but could be eventually maybe
Expression* handOptimize(Expression* curr) {
if (auto* binary = curr->dynCast<Binary>()) {
if (Properties::isSymmetric(binary)) {
// canonicalize a const to the second position
if (binary->left->is<Const>() && !binary->right->is<Const>()) {
std::swap(binary->left, binary->right);
}
}
// pattern match a load of 8 bits and a sign extend using a shl of 24 then shr_s of 24 as well, etc.
if (binary->op == BinaryOp::ShrSInt32 && binary->right->is<Const>()) {
auto shifts = binary->right->cast<Const>()->value.geti32();
if (shifts == 24 || shifts == 16) {
auto* left = binary->left->dynCast<Binary>();
if (left && left->op == ShlInt32 && left->right->is<Const>() && left->right->cast<Const>()->value.geti32() == shifts) {
auto* load = left->left->dynCast<Load>();
if (load && ((load->bytes == 1 && shifts == 24) || (load->bytes == 2 && shifts == 16))) {
load->signed_ = true;
return load;
}
}
}
} else if (binary->op == EqInt32) {
if (auto* c = binary->right->dynCast<Const>()) {
if (c->value.geti32() == 0) {
// equal 0 => eqz
return Builder(*getModule()).makeUnary(EqZInt32, binary->left);
}
}
if (auto* c = binary->left->dynCast<Const>()) {
if (c->value.geti32() == 0) {
// equal 0 => eqz
return Builder(*getModule()).makeUnary(EqZInt32, binary->right);
}
}
} else if (binary->op == AndInt32) {
if (auto* right = binary->right->dynCast<Const>()) {
if (right->type == i32) {
auto mask = right->value.geti32();
// and with -1 does nothing (common in asm.js output)
if (mask == -1) {
return binary->left;
}
// small loads do not need to be masted, the load itself masks
if (auto* load = binary->left->dynCast<Load>()) {
if ((load->bytes == 1 && mask == 0xff) ||
(load->bytes == 2 && mask == 0xffff)) {
load->signed_ = false;
return load;
}
} else if (mask == 1 && Properties::emitsBoolean(binary->left)) {
// (bool) & 1 does not need the outer mask
return binary->left;
}
}
}
}
} else if (auto* unary = curr->dynCast<Unary>()) {
// de-morgan's laws
if (unary->op == EqZInt32) {
if (auto* inner = unary->value->dynCast<Binary>()) {
switch (inner->op) {
case EqInt32: inner->op = NeInt32; return inner;
case NeInt32: inner->op = EqInt32; return inner;
case LtSInt32: inner->op = GeSInt32; return inner;
case LtUInt32: inner->op = GeUInt32; return inner;
case LeSInt32: inner->op = GtSInt32; return inner;
case LeUInt32: inner->op = GtUInt32; return inner;
case GtSInt32: inner->op = LeSInt32; return inner;
case GtUInt32: inner->op = LeUInt32; return inner;
case GeSInt32: inner->op = LtSInt32; return inner;
case GeUInt32: inner->op = LtUInt32; return inner;
case EqInt64: inner->op = NeInt64; return inner;
case NeInt64: inner->op = EqInt64; return inner;
case LtSInt64: inner->op = GeSInt64; return inner;
case LtUInt64: inner->op = GeUInt64; return inner;
case LeSInt64: inner->op = GtSInt64; return inner;
case LeUInt64: inner->op = GtUInt64; return inner;
case GtSInt64: inner->op = LeSInt64; return inner;
case GtUInt64: inner->op = LeUInt64; return inner;
case GeSInt64: inner->op = LtSInt64; return inner;
case GeUInt64: inner->op = LtUInt64; return inner;
case EqFloat32: inner->op = NeFloat32; return inner;
case NeFloat32: inner->op = EqFloat32; return inner;
case EqFloat64: inner->op = NeFloat64; return inner;
case NeFloat64: inner->op = EqFloat64; return inner;
default: {}
}
}
}
} else if (auto* set = curr->dynCast<SetGlobal>()) {
// optimize out a set of a get
auto* get = set->value->dynCast<GetGlobal>();
if (get && get->name == set->name) {
ExpressionManipulator::nop(curr);
}
} else if (auto* iff = curr->dynCast<If>()) {
iff->condition = optimizeBoolean(iff->condition);
if (iff->ifFalse) {
if (auto* unary = iff->condition->dynCast<Unary>()) {
if (unary->op == EqZInt32) {
// flip if-else arms to get rid of an eqz
iff->condition = unary->value;
std::swap(iff->ifTrue, iff->ifFalse);
}
}
}
} else if (auto* select = curr->dynCast<Select>()) {
select->condition = optimizeBoolean(select->condition);
auto* condition = select->condition->dynCast<Unary>();
if (condition && condition->op == EqZInt32) {
// flip select to remove eqz, if we can reorder
EffectAnalyzer ifTrue(select->ifTrue);
EffectAnalyzer ifFalse(select->ifFalse);
if (!ifTrue.invalidates(ifFalse)) {
select->condition = condition->value;
std::swap(select->ifTrue, select->ifFalse);
}
}
} else if (auto* br = curr->dynCast<Break>()) {
if (br->condition) {
br->condition = optimizeBoolean(br->condition);
}
} else if (auto* store = curr->dynCast<Store>()) {
// stores of fewer bits truncates anyhow
if (auto* binary = store->value->dynCast<Binary>()) {
if (binary->op == AndInt32) {
if (auto* right = binary->right->dynCast<Const>()) {
if (right->type == i32) {
auto mask = right->value.geti32();
if ((store->bytes == 1 && mask == 0xff) ||
(store->bytes == 2 && mask == 0xffff)) {
store->value = binary->left;
}
}
}
}
} else if (auto* unary = store->value->dynCast<Unary>()) {
if (unary->op == WrapInt64) {
// instead of wrapping to 32, just store some of the bits in the i64
store->valueType = i64;
store->value = unary->value;
}
}
}
return nullptr;
}
private:
Expression* optimizeBoolean(Expression* boolean) {
auto* condition = boolean->dynCast<Unary>();
if (condition && condition->op == EqZInt32) {
auto* condition2 = condition->value->dynCast<Unary>();
if (condition2 && condition2->op == EqZInt32) {
// double eqz
return condition2->value;
}
}
return boolean;
}
};
Pass *createOptimizeInstructionsPass() {
return new OptimizeInstructions();
}
} // namespace wasm
|