summaryrefslogtreecommitdiff
path: root/src/passes/Precompute.cpp
blob: dd390150ef5ae1e109fe333ade1e2a2fea56f648 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
 * Copyright 2016 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//
// Computes code at compile time where possible, replacing it with the
// computed constant.
//
// The "propagate" variant of this pass also propagates constants across
// sets and gets, which implements a standard constant propagation.
//
// Possible nondeterminism: WebAssembly NaN signs are nondeterministic,
// and this pass may optimize e.g. a float 0 / 0 into +nan while a VM may
// emit -nan, which can be a noticeable difference if the bits are
// looked at.
//

#include <ir/literal-utils.h>
#include <ir/local-graph.h>
#include <ir/manipulation.h>
#include <ir/properties.h>
#include <ir/utils.h>
#include <pass.h>
#include <wasm-builder.h>
#include <wasm-interpreter.h>
#include <wasm.h>

namespace wasm {

typedef std::unordered_map<LocalGet*, Literals> GetValues;

// Precomputes an expression. Errors if we hit anything that can't be
// precomputed.
class PrecomputingExpressionRunner
  : public ExpressionRunner<PrecomputingExpressionRunner> {

  // Concrete values of gets computed during the pass, which the runner does not
  // know about since it only records values of sets it visits.
  GetValues& getValues;

  // Limit evaluation depth for 2 reasons: first, it is highly unlikely
  // that we can do anything useful to precompute a hugely nested expression
  // (we should succed at smaller parts of it first). Second, a low limit is
  // helpful to avoid platform differences in native stack sizes.
  static const Index MAX_DEPTH = 50;

  // Limit loop iterations since loops might be infinite. Since we are going to
  // replace the expression and must preserve side effects, we limit this to the
  // very first iteration because a side effect would be necessary to achieve
  // more than one iteration before becoming concrete.
  static const Index MAX_LOOP_ITERATIONS = 1;

public:
  PrecomputingExpressionRunner(Module* module,
                               GetValues& getValues,
                               bool replaceExpression)
    : ExpressionRunner<PrecomputingExpressionRunner>(
        module,
        replaceExpression ? FlagValues::PRESERVE_SIDEEFFECTS
                          : FlagValues::DEFAULT,
        MAX_DEPTH,
        MAX_LOOP_ITERATIONS),
      getValues(getValues) {}

  Flow visitLocalGet(LocalGet* curr) {
    auto iter = getValues.find(curr);
    if (iter != getValues.end()) {
      auto values = iter->second;
      if (values.isConcrete()) {
        return Flow(std::move(values));
      }
    }
    return ExpressionRunner<PrecomputingExpressionRunner>::visitLocalGet(curr);
  }

  void trap(const char* why) override { throw NonconstantException(); }
};

struct Precompute
  : public WalkerPass<
      PostWalker<Precompute, UnifiedExpressionVisitor<Precompute>>> {
  bool isFunctionParallel() override { return true; }

  Pass* create() override { return new Precompute(propagate); }

  bool propagate = false;

  Precompute(bool propagate) : propagate(propagate) {}

  GetValues getValues;

  bool worked;

  void doWalkFunction(Function* func) {
    // if propagating, we may need multiple rounds: each propagation can
    // lead to the main walk removing code, which might open up more
    // propagation opportunities
    do {
      getValues.clear();
      // with extra effort, we can utilize the get-set graph to precompute
      // things that use locals that are known to be constant. otherwise,
      // we just look at what is immediately before us
      if (propagate) {
        optimizeLocals(func);
      }
      // do the main walk over everything
      worked = false;
      super::doWalkFunction(func);
    } while (propagate && worked);
  }

  template<typename T> void reuseConstantNode(T* curr, Flow flow) {
    if (flow.values.isConcrete()) {
      // reuse a const / ref.null / ref.func node if there is one
      if (curr->value && flow.values.size() == 1) {
        Literal singleValue = flow.getSingleValue();
        if (singleValue.type.isNumber()) {
          if (auto* c = curr->value->template dynCast<Const>()) {
            c->value = singleValue;
            c->finalize();
            curr->finalize();
            return;
          }
        } else if (singleValue.type == Type::nullref &&
                   curr->value->template is<RefNull>()) {
          return;
        } else if (singleValue.type == Type::funcref) {
          if (auto* r = curr->value->template dynCast<RefFunc>()) {
            r->func = singleValue.getFunc();
            r->finalize();
            curr->finalize();
            return;
          }
        }
      }
      curr->value = flow.getConstExpression(*getModule());
    } else {
      curr->value = nullptr;
    }
    curr->finalize();
  }

  void visitExpression(Expression* curr) {
    // TODO: if local.get, only replace with a constant if we don't care about
    // size...?
    if (Properties::isConstantExpression(curr) || curr->is<Nop>()) {
      return;
    }
    // Until engines implement v128.const and we have SIMD-aware optimizations
    // that can break large v128.const instructions into smaller consts and
    // splats, do not try to precompute v128 expressions.
    if (curr->type.isVector()) {
      return;
    }
    // try to evaluate this into a const
    Flow flow = precomputeExpression(curr);
    if (flow.getType().hasVector()) {
      return;
    }
    if (flow.breaking()) {
      if (flow.breakTo == NONCONSTANT_FLOW) {
        return;
      }
      if (flow.breakTo == RETURN_FLOW) {
        // this expression causes a return. if it's already a return, reuse the
        // node
        if (auto* ret = curr->dynCast<Return>()) {
          reuseConstantNode(ret, flow);
        } else {
          Builder builder(*getModule());
          replaceCurrent(builder.makeReturn(
            flow.values.isConcrete() ? flow.getConstExpression(*getModule())
                                     : nullptr));
        }
        return;
      }
      // this expression causes a break, emit it directly. if it's already a br,
      // reuse the node.
      if (auto* br = curr->dynCast<Break>()) {
        br->name = flow.breakTo;
        br->condition = nullptr;
        reuseConstantNode(br, flow);
      } else {
        Builder builder(*getModule());
        replaceCurrent(builder.makeBreak(
          flow.breakTo,
          flow.values.isConcrete() ? flow.getConstExpression(*getModule())
                                   : nullptr));
      }
      return;
    }
    // this was precomputed
    if (flow.values.isConcrete()) {
      replaceCurrent(flow.getConstExpression(*getModule()));
      worked = true;
    } else {
      ExpressionManipulator::nop(curr);
    }
  }

  void visitFunction(Function* curr) {
    // removing breaks can alter types
    ReFinalize().walkFunctionInModule(curr, getModule());
  }

private:
  // Precompute an expression, returning a flow, which may be a constant
  // (that we can replace the expression with if replaceExpression is set).
  Flow precomputeExpression(Expression* curr, bool replaceExpression = true) {
    try {
      return PrecomputingExpressionRunner(
               getModule(), getValues, replaceExpression)
        .visit(curr);
    } catch (PrecomputingExpressionRunner::NonconstantException&) {
      return Flow(NONCONSTANT_FLOW);
    }
  }

  // Precomputes the value of an expression, as opposed to the expression
  // itself. This differs from precomputeExpression in that we care about
  // the value the expression will have, which we cannot necessary replace
  // the expression with. For example,
  //  (local.tee (i32.const 1))
  // will have value 1 which we can optimize here, but in precomputeExpression
  // we could not do anything.
  Literals precomputeValue(Expression* curr) {
    // Note that we set replaceExpression to false, as we just care about
    // the value here.
    Flow flow = precomputeExpression(curr, false /* replaceExpression */);
    if (flow.breaking()) {
      return {};
    }
    return flow.values;
  }

  // Propagates values around. Returns whether we propagated.
  void optimizeLocals(Function* func) {
    // using the graph of get-set interactions, do a constant-propagation type
    // operation: note which sets are assigned locals, then see if that lets us
    // compute other sets as locals (since some of the gets they read may be
    // constant).
    // compute all dependencies
    LocalGraph localGraph(func);
    localGraph.computeInfluences();
    localGraph.computeSSAIndexes();
    // prepare the work list. we add things here that might change to a constant
    // initially, that means everything
    std::unordered_set<Expression*> work;
    for (auto& pair : localGraph.locations) {
      auto* curr = pair.first;
      work.insert(curr);
    }
    // the constant value, or none if not a constant
    std::unordered_map<LocalSet*, Literals> setValues;
    // propagate constant values
    while (!work.empty()) {
      auto iter = work.begin();
      auto* curr = *iter;
      work.erase(iter);
      // see if this set or get is actually a constant value, and if so,
      // mark it as such and add everything it influences to the work list,
      // as they may be constant too.
      if (auto* set = curr->dynCast<LocalSet>()) {
        if (setValues[set].isConcrete()) {
          continue; // already known constant
        }
        auto values = setValues[set] =
          precomputeValue(Properties::getFallthrough(
            set->value, getPassOptions(), getModule()->features));
        if (values.isConcrete()) {
          for (auto* get : localGraph.setInfluences[set]) {
            work.insert(get);
          }
        }
      } else {
        auto* get = curr->cast<LocalGet>();
        if (getValues[get].size() >= 1) {
          continue; // already known constant
        }
        // for this get to have constant value, all sets must agree
        Literals values;
        bool first = true;
        for (auto* set : localGraph.getSetses[get]) {
          Literals curr;
          if (set == nullptr) {
            if (getFunction()->isVar(get->index)) {
              curr = Literal::makeZero(getFunction()->getLocalType(get->index));
            } else {
              // it's a param, so it's hopeless
              values = {};
              break;
            }
          } else {
            curr = setValues[set];
          }
          if (curr.isNone()) {
            // not a constant, give up
            values = {};
            break;
          }
          // we found a concrete value. compare with the current one
          if (first) {
            values = curr; // this is the first
            first = false;
          } else {
            if (values != curr) {
              // not the same, give up
              values = {};
              break;
            }
          }
        }
        // we may have found a value
        if (values.isConcrete()) {
          // we did!
          getValues[get] = values;
          for (auto* set : localGraph.getInfluences[get]) {
            work.insert(set);
          }
        }
      }
    }
  }
};

Pass* createPrecomputePass() { return new Precompute(false); }

Pass* createPrecomputePropagatePass() { return new Precompute(true); }

} // namespace wasm