summaryrefslogtreecommitdiff
path: root/src/passes/RemoveUnusedBrs.cpp
blob: 87f53a6526c141c10912d1b4ce5cb847c15bac92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
/*
 * Copyright 2015 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//
// Removes branches for which we go to where they go anyhow
//

#include <wasm.h>
#include <pass.h>
#include <parsing.h>
#include <ir/utils.h>
#include <ir/branch-utils.h>
#include <ir/effects.h>
#include <wasm-builder.h>

namespace wasm {

// to turn an if into a br-if, we must be able to reorder the
// condition and possible value, and the possible value must
// not have side effects (as they would run unconditionally)
static bool canTurnIfIntoBrIf(Expression* ifCondition, Expression* brValue, PassOptions& options) {
  // if the if isn't even reached, this is all dead code anyhow
  if (ifCondition->type == unreachable) return false;
  if (!brValue) return true;
  EffectAnalyzer value(options, brValue);
  if (value.hasSideEffects()) return false;
  return !EffectAnalyzer(options, ifCondition).invalidates(value);
}

struct RemoveUnusedBrs : public WalkerPass<PostWalker<RemoveUnusedBrs>> {
  bool isFunctionParallel() override { return true; }

  Pass* create() override { return new RemoveUnusedBrs; }

  bool anotherCycle;

  // Whether a value can flow in the current path. If so, then a br with value
  // can be turned into a value, which will flow through blocks/ifs to the right place
  bool valueCanFlow;

  typedef std::vector<Expression**> Flows;

  // list of breaks that are currently flowing. if they reach their target without
  // interference, they can be removed (or their value forwarded TODO)
  Flows flows;

  // a stack for if-else contents, we merge their outputs
  std::vector<Flows> ifStack;

  // list of all loops, so we can optimize them
  std::vector<Loop*> loops;

  static void visitAny(RemoveUnusedBrs* self, Expression** currp) {
    auto* curr = *currp;
    auto& flows = self->flows;

    if (curr->is<Break>()) {
      flows.clear();
      auto* br = curr->cast<Break>();
      if (!br->condition) { // TODO: optimize?
        // a break, let's see where it flows to
        flows.push_back(currp);
        self->valueCanFlow = true; // start optimistic
      } else {
        self->stopValueFlow();
      }
    } else if (curr->is<Return>()) {
      flows.clear();
      flows.push_back(currp);
      self->valueCanFlow = true; // start optimistic
    } else if (curr->is<If>()) {
      auto* iff = curr->cast<If>();
      if (iff->condition->type == unreachable) {
        // avoid trying to optimize this, we never reach it anyhow
        self->stopFlow();
        return;
      }
      if (iff->ifFalse) {
        assert(self->ifStack.size() > 0);
        for (auto* flow : self->ifStack.back()) {
          flows.push_back(flow);
        }
        self->ifStack.pop_back();
      } else {
        // if without else stops the flow of values
        self->stopValueFlow();
      }
    } else if (curr->is<Block>()) {
      // any breaks flowing to here are unnecessary, as we get here anyhow
      auto* block = curr->cast<Block>();
      auto name = block->name;
      if (name.is()) {
        size_t size = flows.size();
        size_t skip = 0;
        for (size_t i = 0; i < size; i++) {
          auto* flow = (*flows[i])->dynCast<Break>();
          if (flow && flow->name == name) {
            if (!flow->value || self->valueCanFlow) {
              if (!flow->value) {
                // br => nop
                ExpressionManipulator::nop<Break>(flow);
              } else {
                // br with value => value
                *flows[i] = flow->value;
              }
              skip++;
              self->anotherCycle = true;
            }
          } else if (skip > 0) {
            flows[i - skip] = flows[i];
          }
        }
        if (skip > 0) {
          flows.resize(size - skip);
        }
        // drop a nop at the end of a block, which prevents a value flowing
        while (block->list.size() > 0 && block->list.back()->is<Nop>()) {
          block->list.resize(block->list.size() - 1);
          self->anotherCycle = true;
        }
      }
    } else if (curr->is<Nop>()) {
      // ignore (could be result of a previous cycle)
      self->stopValueFlow();
    } else if (curr->is<Loop>()) {
      // do nothing - it's ok for values to flow out
    } else if (auto* sw = curr->dynCast<Switch>()) {
      self->stopFlow();
      self->optimizeSwitch(sw);
    } else {
      // anything else stops the flow
      self->stopFlow();
    }
  }

  void stopFlow() {
    flows.clear();
    valueCanFlow = false;
  }

  void stopValueFlow() {
    flows.erase(std::remove_if(flows.begin(), flows.end(), [&](Expression** currp) {
      auto* curr = *currp;
      if (auto* ret = curr->dynCast<Return>()) {
        return ret->value;
      }
      return curr->cast<Break>()->value;
    }), flows.end());
    valueCanFlow = false;
  }

  static void clear(RemoveUnusedBrs* self, Expression** currp) {
    self->flows.clear();
  }

  static void saveIfTrue(RemoveUnusedBrs* self, Expression** currp) {
    self->ifStack.push_back(std::move(self->flows));
  }

  void visitLoop(Loop* curr) {
    loops.push_back(curr);
  }

  void optimizeSwitch(Switch* curr) {
    // if the final element is the default, we don't need it
    while (!curr->targets.empty() && curr->targets.back() == curr->default_) {
      curr->targets.pop_back();
    }
    // if the first element is the default, we can remove it by shifting everything (which
    // does add a subtraction of a constant, but often that is worth it as the constant can
    // be folded away and/or we remove multiple elements here)
    Index removable = 0;
    while (removable < curr->targets.size() && curr->targets[removable] == curr->default_) {
      removable++;
    }
    if (removable > 0) {
      for (Index i = removable; i < curr->targets.size(); i++) {
        curr->targets[i - removable] = curr->targets[i];
      }
      curr->targets.resize(curr->targets.size() - removable);
      Builder builder(*getModule());
      curr->condition = builder.makeBinary(SubInt32,
        curr->condition,
        builder.makeConst(Literal(int32_t(removable)))
      );
    }
    // when there isn't a value, we can do some trivial optimizations without worrying about
    // the value being executed before the condition
    if (curr->value) return;
    if (curr->targets.size() == 0) {
      // a switch with just a default always goes there
      Builder builder(*getModule());
      replaceCurrent(builder.makeSequence(
        builder.makeDrop(curr->condition),
        builder.makeBreak(curr->default_)
      ));
    } else if (curr->targets.size() == 1) {
      // a switch with two options is basically an if
      Builder builder(*getModule());
      replaceCurrent(builder.makeIf(
        curr->condition,
        builder.makeBreak(curr->default_),
        builder.makeBreak(curr->targets.front())
      ));
    } else {
      // there are also some other cases where we want to convert a switch into ifs,
      // especially if the switch is large and we are focusing on size.
      // an especially egregious case is a switch like this:
      // [a b b [..] b b c] with default b
      // (which may be arrived at after we trim away excess default values on both
      // sides). in this case, we really have 3 values in a simple form, so it is the
      // next logical case after handling 1 and 2 values right above here.
      // to optimize this, we must add a local + a bunch of nodes (if*2, tee, eq,
      // get, const, break*3), so the table must be big enough for it to make sense

      // How many targets we need when shrinking. This is literally the size at which
      // the transformation begins to be smaller.
      const uint32_t MIN_SHRINK = 13;
      // How many targets we need when not shrinking, in which case, 2 ifs may be slower,
      // so we do this when the table is ridiculously large for one with just 3 values
      // in it.
      const uint32_t MIN_GENERAL = 128;

      auto shrink = getPassRunner()->options.shrinkLevel > 0;
      if ((curr->targets.size() >= MIN_SHRINK  &&  shrink) ||
          (curr->targets.size() >= MIN_GENERAL && !shrink)) {
        for (Index i = 1; i < curr->targets.size() - 1; i++) {
          if (curr->targets[i] != curr->default_) {
            return;
          }
        }
        // great, we are in that case, optimize
        Builder builder(*getModule());
        auto temp = builder.addVar(getFunction(), i32);
        Expression* z;
        replaceCurrent(z = builder.makeIf(
          builder.makeTeeLocal(temp, curr->condition),
          builder.makeIf(
            builder.makeBinary(EqInt32,
              builder.makeGetLocal(temp, i32),
              builder.makeConst(Literal(int32_t(curr->targets.size() - 1)))
            ),
            builder.makeBreak(curr->targets.back()),
            builder.makeBreak(curr->default_)
          ),
          builder.makeBreak(curr->targets.front())
        ));
      }
    }
  }

  void visitIf(If* curr) {
    if (!curr->ifFalse) {
      // if without an else. try to reduce   if (condition) br  =>  br_if (condition)
      Break* br = curr->ifTrue->dynCast<Break>();
      if (br && !br->condition) { // TODO: if there is a condition, join them
        if (canTurnIfIntoBrIf(curr->condition, br->value, getPassOptions())) {
          br->condition = curr->condition;
          br->finalize();
          replaceCurrent(Builder(*getModule()).dropIfConcretelyTyped(br));
          anotherCycle = true;
        }
      }
    }
    // TODO: if-else can be turned into a br_if as well, if one of the sides is a dead end
    //       we handle the case of a returned value to a set_local later down, see
    //       visitSetLocal.
  }

  // override scan to add a pre and a post check task to all nodes
  static void scan(RemoveUnusedBrs* self, Expression** currp) {
    self->pushTask(visitAny, currp);

    auto* iff = (*currp)->dynCast<If>();

    if (iff) {
      if (iff->condition->type == unreachable) {
        // avoid trying to optimize this, we never reach it anyhow
        return;
      }
      self->pushTask(doVisitIf, currp);
      if (iff->ifFalse) {
      // we need to join up if-else control flow, and clear after the condition
        self->pushTask(scan, &iff->ifFalse);
        self->pushTask(saveIfTrue, currp); // safe the ifTrue flow, we'll join it later
      }
      self->pushTask(scan, &iff->ifTrue);
      self->pushTask(clear, currp); // clear all flow after the condition
      self->pushTask(scan, &iff->condition);
    } else {
      super::scan(self, currp);
    }
  }

  // optimizes a loop. returns true if we made changes
  bool optimizeLoop(Loop* loop) {
    // if a loop ends in
    // (loop $in
    //   (block $out
    //     if (..) br $in; else br $out;
    //   )
    // )
    // then our normal opts can remove the break out since it flows directly out
    // (and later passes make the if one-armed). however, the simple analysis
    // fails on patterns like
    //     if (..) br $out;
    //     br $in;
    // which is a common way to do a while (1) loop (end it with a jump to the
    // top), so we handle that here. Specifically we want to conditionalize
    // breaks to the loop top, i.e., put them behind a condition, so that other
    // code can flow directly out and thus brs out can be removed. (even if
    // the change is to let a break somewhere else flow out, that can still be
    // helpful, as it shortens the logical loop. it is also good to generate
    // an if-else instead of an if, as it might allow an eqz to be removed
    // by flipping arms)
    if (!loop->name.is()) return false;
    auto* block = loop->body->dynCast<Block>();
    if (!block) return false;
    // does the last element break to the top of the loop?
    auto& list = block->list;
    if (list.size() <= 1) return false;
    auto* last = list.back()->dynCast<Break>();
    if (!last || !ExpressionAnalyzer::isSimple(last) || last->name != loop->name) return false;
    // last is a simple break to the top of the loop. if we can conditionalize it,
    // it won't block things from flowing out and not needing breaks to do so.
    Index i = list.size() - 2;
    Builder builder(*getModule());
    while (1) {
      auto* curr = list[i];
      if (auto* iff = curr->dynCast<If>()) {
        // let's try to move the code going to the top of the loop into the if-else
        if (!iff->ifFalse) {
          // we need the ifTrue to break, so it cannot reach the code we want to move
          if (iff->ifTrue->type == unreachable) {
            iff->ifFalse = builder.stealSlice(block, i + 1, list.size());
            iff->finalize();
            block->finalize();
            return true;
          }
        } else {
          // this is already an if-else. if one side is a dead end, we can append to the other, if
          // there is no returned value to concern us
          assert(!isConcreteType(iff->type)); // can't be, since in the middle of a block

          // ensures the first node is a block, if it isn't already, and merges in the second,
          // either as a single element or, if a block, by appending to the first block. this
          // keeps the order of operations in place, that is, the appended element will be
          // executed after the first node's elements
          auto blockifyMerge = [&](Expression* any, Expression* append) -> Block* {
            Block* block = nullptr;
            if (any) block = any->dynCast<Block>();
            // if the first isn't a block, or it's a block with a name (so we might
            // branch to the end, and so can't append to it, we might skip that code!)
            // then make a new block
            if (!block || block->name.is()) {
              block = builder.makeBlock(any);
            } else {
              assert(!isConcreteType(block->type));
            }
            auto* other = append->dynCast<Block>();
            if (!other) {
              block->list.push_back(append);
            } else {
              for (auto* item : other->list) {
                block->list.push_back(item);
              }
            }
            block->finalize();
            return block;
          };

          if (iff->ifTrue->type == unreachable) {
            iff->ifFalse = blockifyMerge(iff->ifFalse, builder.stealSlice(block, i + 1, list.size()));
            iff->finalize();
            block->finalize();
            return true;
          } else if (iff->ifFalse->type == unreachable) {
            iff->ifTrue = blockifyMerge(iff->ifTrue, builder.stealSlice(block, i + 1, list.size()));
            iff->finalize();
            block->finalize();
            return true;
          }
        }
        return false;
      } else if (auto* brIf = curr->dynCast<Break>()) {
        // br_if is similar to if.
        if (brIf->condition && !brIf->value && brIf->name != loop->name) {
          if (i == list.size() - 2) {
            // there is the br_if, and then the br to the top, so just flip them and the condition
            brIf->condition = builder.makeUnary(EqZInt32, brIf->condition);
            last->name = brIf->name;
            brIf->name = loop->name;
            return true;
          } else {
            // there are elements in the middle,
            //   br_if $somewhere (condition)
            //   (..more..)
            //   br $in
            // we can convert the br_if to an if. this has a cost, though,
            // so only do it if it looks useful, which it definitely is if
            //  (a) $somewhere is straight out (so the br out vanishes), and
            //  (b) this br_if is the only branch to that block (so the block will vanish)
            if (brIf->name == block->name && BranchUtils::BranchSeeker::countNamed(block, block->name) == 1) {
              // note that we could drop the last element here, it is a br we know for sure is removable,
              // but telling stealSlice to steal all to the end is more efficient, it can just truncate.
              list[i] = builder.makeIf(brIf->condition, builder.makeBreak(brIf->name), builder.stealSlice(block, i + 1, list.size()));
              return true;
            }
          }
        }
        return false;
      }
      // if there is control flow, we must stop looking
      if (EffectAnalyzer(getPassOptions(), curr).branches) {
        return false;
      }
      if (i == 0) return false;
      i--;
    }
  }

  void doWalkFunction(Function* func) {
    // multiple cycles may be needed
    bool worked = false;
    do {
      anotherCycle = false;
      super::doWalkFunction(func);
      assert(ifStack.empty());
      // flows may contain returns, which are flowing out and so can be optimized
      for (size_t i = 0; i < flows.size(); i++) {
        auto* flow = (*flows[i])->dynCast<Return>();
        if (!flow) continue;
        if (!flow->value) {
          // return => nop
          ExpressionManipulator::nop(flow);
          anotherCycle = true;
        } else if (valueCanFlow) {
          // return with value => value
          *flows[i] = flow->value;
          anotherCycle = true;
        }
      }
      flows.clear();
      // optimize loops (we don't do it while tracking flows, as they can interfere)
      for (auto* loop : loops) {
        anotherCycle |= optimizeLoop(loop);
      }
      loops.clear();
      if (anotherCycle) worked = true;
    } while (anotherCycle);

    if (worked) {
      // Our work may alter block and if types, they may now return values that we made flow through them
      ReFinalize().walkFunctionInModule(func, getModule());
    }

    // thread trivial jumps
    struct JumpThreader : public ControlFlowWalker<JumpThreader> {
      // map of all value-less breaks going to a block (and not a loop)
      std::map<Block*, std::vector<Break*>> breaksToBlock;

      // the names to update
      std::map<Break*, Name> newNames;

      void visitBreak(Break* curr) {
        if (!curr->value) {
          if (auto* target = findBreakTarget(curr->name)->dynCast<Block>()) {
            breaksToBlock[target].push_back(curr);
          }
        }
      }
      // TODO: Switch?
      void visitBlock(Block* curr) {
        auto& list = curr->list;
        if (list.size() == 1 && curr->name.is()) {
          // if this block has just one child, a sub-block, then jumps to the former are jumps to us, really
          if (auto* child = list[0]->dynCast<Block>()) {
            // the two blocks must have the same type for us to update the branch, as otherwise
            // one block may be unreachable and the other concrete, so one might lack a value
            if (child->name.is() && child->name != curr->name && child->type == curr->type) {
              auto& breaks = breaksToBlock[child];
              for (auto* br : breaks) {
                newNames[br] = curr->name;
                breaksToBlock[curr].push_back(br); // update the list - we may push it even more later
              }
              breaksToBlock.erase(child);
            }
          }
        } else if (list.size() == 2) {
          // if this block has two children, a child-block and a simple jump, then jumps to child-block can be replaced with jumps to the new target
          auto* child = list[0]->dynCast<Block>();
          auto* jump = list[1]->dynCast<Break>();
          if (child && child->name.is() && jump && ExpressionAnalyzer::isSimple(jump)) {
            auto& breaks = breaksToBlock[child];
            for (auto* br : breaks) {
              newNames[br] = jump->name;
            }
            // if the jump is to another block then we can update the list, and maybe push it even more later
            if (auto* newTarget = findBreakTarget(jump->name)->dynCast<Block>()) {
              for (auto* br : breaks) {
                breaksToBlock[newTarget].push_back(br);
              }
            }
            breaksToBlock.erase(child);
          }
        }
      }

      void finish(Function* func) {
        for (auto& iter : newNames) {
          auto* br = iter.first;
          auto name = iter.second;
          br->name = name;
        }
        if (newNames.size() > 0) {
          // by changing where brs go, we may change block types etc.
          ReFinalize().walkFunctionInModule(func, getModule());
        }
      }
    };
    JumpThreader jumpThreader;
    jumpThreader.setModule(getModule());
    jumpThreader.walkFunction(func);
    jumpThreader.finish(func);

    // perform some final optimizations
    struct FinalOptimizer : public PostWalker<FinalOptimizer> {
      bool shrink;
      PassOptions& passOptions;

      bool needUniqify = false;

      FinalOptimizer(PassOptions& passOptions) : passOptions(passOptions) {}

      void visitBlock(Block* curr) {
        // if a block has an if br else br, we can un-conditionalize the latter, allowing
        // the if to become a br_if.
        // * note that if not in a block already, then we need to create a block for this, so not useful otherwise
        // * note that this only happens at the end of a block, as code after the if is dead
        // * note that we do this at the end, because un-conditionalizing can interfere with optimizeLoop()ing.
        auto& list = curr->list;
        for (Index i = 0; i < list.size(); i++) {
          auto* iff = list[i]->dynCast<If>();
          if (!iff || !iff->ifFalse || isConcreteType(iff->type)) continue; // if it lacked an if-false, it would already be a br_if, as that's the easy case
          auto* ifTrueBreak = iff->ifTrue->dynCast<Break>();
          if (ifTrueBreak && !ifTrueBreak->condition && canTurnIfIntoBrIf(iff->condition, ifTrueBreak->value, passOptions)) {
            // we are an if-else where the ifTrue is a break without a condition, so we can do this
            ifTrueBreak->condition = iff->condition;
            ifTrueBreak->finalize();
            list[i] = Builder(*getModule()).dropIfConcretelyTyped(ifTrueBreak);
            ExpressionManipulator::spliceIntoBlock(curr, i + 1, iff->ifFalse);
            continue;
          }
          // otherwise, perhaps we can flip the if
          auto* ifFalseBreak = iff->ifFalse->dynCast<Break>();
          if (ifFalseBreak && !ifFalseBreak->condition && canTurnIfIntoBrIf(iff->condition, ifFalseBreak->value, passOptions)) {
            ifFalseBreak->condition = Builder(*getModule()).makeUnary(EqZInt32, iff->condition);
            ifFalseBreak->finalize();
            list[i] = Builder(*getModule()).dropIfConcretelyTyped(ifFalseBreak);
            ExpressionManipulator::spliceIntoBlock(curr, i + 1, iff->ifTrue);
            continue;
          }
        }
        if (list.size() >= 2) {
          // combine/optimize adjacent br_ifs + a br (maybe _if) right after it
          for (Index i = 0; i < list.size() - 1; i++) {
            auto* br1 = list[i]->dynCast<Break>();
            // avoid unreachable brs, as they are dead code anyhow, and after merging
            // them the outer scope could need type changes
            if (!br1 || !br1->condition || br1->type == unreachable) continue;
            assert(!br1->value);
            auto* br2 = list[i + 1]->dynCast<Break>();
            if (!br2 || br1->name != br2->name) continue;
            assert(!br2->value); // same target as previous, which has no value
            // a br_if and then a br[_if] with the same target right after it
            if (br2->condition) {
              if (shrink && br2->type != unreachable) {
                // Join adjacent br_ifs to the same target, making one br_if with
                // a "selectified" condition that executes both.
                if (!EffectAnalyzer(passOptions, br2->condition).hasSideEffects()) {
                  // it's ok to execute them both, do it
                  Builder builder(*getModule());
                  br1->condition = builder.makeBinary(OrInt32, br1->condition, br2->condition);
                  ExpressionManipulator::nop(br2);
                }
              }
            } else {
              // merge, we go there anyhow
              Builder builder(*getModule());
              list[i] = builder.makeDrop(br1->condition);
            }
          }
          // combine adjacent br_ifs that test the same value into a br_table,
          // when that makes sense
          tablify(curr);
          // Restructuring of ifs: if we have
          //   (block $x
          //     (br_if $x (cond))
          //     .., no other references to $x
          //   )
          // then we can turn that into (if (!cond) ..).
          // Code size wise, we turn the block into an if (no change), and
          // lose the br_if (-2). .. turns into the body of the if in the binary
          // format. We need to flip the condition, which at worst adds 1.
          if (curr->name.is()) {
            auto* br = list[0]->dynCast<Break>();
            // we seek a regular br_if; if the type is unreachable that means it is not
            // actually reached, so ignore
            if (br && br->condition && br->name == curr->name && br->type != unreachable) {
              assert(!br->value); // can't, it would be dropped or last in the block
              if (BranchUtils::BranchSeeker::countNamed(curr, curr->name) == 1) {
                // no other breaks to that name, so we can do this
                Builder builder(*getModule());
                replaceCurrent(builder.makeIf(
                  builder.makeUnary(EqZInt32, br->condition),
                  curr
                ));
                curr->name = Name();
                ExpressionManipulator::nop(br);
                curr->finalize(curr->type);
                return;
              }
            }
          }
        }
      }

      void visitIf(If* curr) {
        // we may have simplified ifs enough to turn them into selects
        // this is helpful for code size, but can be a tradeoff with performance as we run both code paths
        if (!shrink) return;
        if (curr->ifFalse && isConcreteType(curr->ifTrue->type) && isConcreteType(curr->ifFalse->type)) {
          // if with else, consider turning it into a select if there is no control flow
          // TODO: estimate cost
          EffectAnalyzer condition(passOptions, curr->condition);
          if (!condition.hasSideEffects()) {
            EffectAnalyzer ifTrue(passOptions, curr->ifTrue);
            if (!ifTrue.hasSideEffects()) {
              EffectAnalyzer ifFalse(passOptions, curr->ifFalse);
              if (!ifFalse.hasSideEffects()) {
                auto* select = getModule()->allocator.alloc<Select>();
                select->condition = curr->condition;
                select->ifTrue = curr->ifTrue;
                select->ifFalse = curr->ifFalse;
                select->finalize();
                replaceCurrent(select);
              }
            }
          }
        }
      }

      void visitSetLocal(SetLocal* curr) {
        // Undo an if return value into a local, if one arm is a br, as we
        // prefer a br_if:
        //  (set_local $x
        //    (if (result i32)
        //      (..condition..)
        //      (br $somewhere)
        //      (..result)
        //    )
        //  )
        // =>
        //  (br_if $somewhere
        //    (..condition..)
        //  )
        //  (set_local $x
        //    (..result)
        //  )
        // TODO: handle a condition in the br? need to watch for side effects
        auto* iff = curr->value->dynCast<If>();
        if (!iff) return;
        if (!isConcreteType(iff->type) || !isConcreteType(iff->condition->type)) return;
        auto tryToOptimize = [&](Expression* one, Expression* two, bool flipCondition) {
          if (one->type == unreachable && two->type != unreachable) {
            if (auto* br = one->dynCast<Break>()) {
              if (ExpressionAnalyzer::isSimple(br)) {
                // Wonderful, do it!
                Builder builder(*getModule());
                br->condition = iff->condition;
                if (flipCondition) {
                  br->condition = builder.makeUnary(EqZInt32, br->condition);
                }
                br->finalize();
                curr->value = two;
                replaceCurrent(
                  builder.makeSequence(
                    br,
                    curr
                  )
                );
                return true;
              }
            }
          }
          return false;
        };
        if (!tryToOptimize(iff->ifTrue, iff->ifFalse, false)) {
          tryToOptimize(iff->ifFalse, iff->ifTrue, true);
        }
      }

      // (br_if)+ => br_table
      // we look for the specific pattern of
      //  (br_if ..target1..
      //    (i32.eq
      //      (..input..)
      //      (i32.const ..value1..)
      //    )
      //  )
      //  (br_if ..target2..
      //    (i32.eq
      //      (..input..)
      //      (i32.const ..value2..)
      //    )
      //  )
      // TODO: consider also looking at <= etc. and not just eq
      void tablify(Block* block) {
        auto &list = block->list;
        if (list.size() <= 1) return;

        // Heuristics. These are slightly inspired by the constants from the asm.js backend.

        // How many br_ifs we need to see to consider doing this
        const uint32_t MIN_NUM = 3;
        // How much of a range of values is definitely too big
        const uint32_t MAX_RANGE = 1024;
        // Multiplied by the number of br_ifs, then compared to the range. When
        // this is high, we allow larger ranges.
        const uint32_t NUM_TO_RANGE_FACTOR = 3;

        // check if the input is a proper br_if on an i32.eq of a condition value to a const,
        // and the const is in the proper range, [0-int32_max), to avoid overflow concerns.
        // returns the br_if if so, or nullptr otherwise
        auto getProperBrIf = [](Expression* curr) -> Break*{
          auto* br = curr->dynCast<Break>();
          if (!br) return nullptr;
          if (!br->condition || br->value) return nullptr;
          if (br->type != none) return nullptr; // no value, so can be unreachable or none. ignore unreachable ones, dce will clean it up
          auto* binary = br->condition->dynCast<Binary>();
          if (!binary) return nullptr;
          if (binary->op != EqInt32) return nullptr;
          auto* c = binary->right->dynCast<Const>();
          if (!c) return nullptr;
          uint32_t value = c->value.geti32();
          if (value >= std::numeric_limits<int32_t>::max()) return nullptr;
          return br;
        };

        // check if the input is a proper br_if
        // and returns the condition if so, or nullptr otherwise
        auto getProperBrIfConditionValue = [&getProperBrIf](Expression* curr) -> Expression* {
          auto* br = getProperBrIf(curr);
          if (!br) return nullptr;
          return br->condition->cast<Binary>()->left;
        };

        // returns the constant value, as a uint32_t
        auto getProperBrIfConstant = [&getProperBrIf](Expression* curr) -> uint32_t {
          return getProperBrIf(curr)->condition->cast<Binary>()->right->cast<Const>()->value.geti32();
        };
        Index start = 0;
        while (start < list.size() - 1) {
          auto* conditionValue = getProperBrIfConditionValue(list[start]);
          if (!conditionValue) {
            start++;
            continue;
          }
          // if the condition has side effects, we can't replace many appearances of it
          // with a single one
          if (EffectAnalyzer(passOptions, conditionValue).hasSideEffects()) {
            start++;
            continue;
          }
          // look for a "run" of br_ifs with all the same conditionValue, and having
          // unique constants (an overlapping constant could be handled, just the first
          // branch is taken, but we can't remove the other br_if (it may be the only
          // branch keeping a block reachable), which may make this bad for code size.
          Index end = start + 1;
          std::unordered_set<uint32_t> usedConstants;
          usedConstants.insert(getProperBrIfConstant(list[start]));
          while (end < list.size() &&
                 ExpressionAnalyzer::equal(getProperBrIfConditionValue(list[end]),
                                           conditionValue)) {
            if (!usedConstants.insert(getProperBrIfConstant(list[end])).second) {
              // this constant already appeared
              break;
            }
            end++;
          }
          auto num = end - start;
          if (num >= 2 && num >= MIN_NUM) {
            // we found a suitable range, [start, end), containing more than 1
            // element. let's see if it's worth it
            auto min = getProperBrIfConstant(list[start]);
            auto max = min;
            for (Index i = start + 1; i < end; i++) {
              auto* curr = list[i];
              min = std::min(min, getProperBrIfConstant(curr));
              max = std::max(max, getProperBrIfConstant(curr));
            }
            uint32_t range = max - min;
            // decision time
            if (range <= MAX_RANGE &&
                range <= num * NUM_TO_RANGE_FACTOR) {
              // great! let's do this
              std::unordered_set<Name> usedNames;
              for (Index i = start; i < end; i++) {
                usedNames.insert(getProperBrIf(list[i])->name);
              }
              // we need a name for the default too
              Name defaultName;
              Index i = 0;
              while (1) {
                defaultName = "tablify|" + std::to_string(i++);
                if (usedNames.count(defaultName) == 0) break;
              }
              std::vector<Name> table;
              for (Index i = start; i < end; i++) {
                auto name = getProperBrIf(list[i])->name;
                auto index = getProperBrIfConstant(list[i]);
                index -= min;
                while (table.size() <= index) {
                  table.push_back(defaultName);
                }
                assert(table[index] == defaultName); // we should have made sure there are no overlaps
                table[index] = name;
              }
              Builder builder(*getModule());
              // the table and condition are offset by the min
              if (min != 0) {
                conditionValue = builder.makeBinary(
                  SubInt32,
                  conditionValue,
                  builder.makeConst(Literal(int32_t(min)))
                );
              }
              list[end - 1] = builder.makeBlock(
                defaultName,
                builder.makeSwitch(
                  table,
                  defaultName,
                  conditionValue
                )
              );
              for (Index i = start; i < end - 1; i++) {
                ExpressionManipulator::nop(list[i]);
              }
              // the defaultName may exist elsewhere in this function,
              // uniquify it later
              needUniqify = true;
            }
          }
          start = end;
        }
      }
    };
    FinalOptimizer finalOptimizer(getPassOptions());
    finalOptimizer.setModule(getModule());
    finalOptimizer.shrink = getPassRunner()->options.shrinkLevel > 0;
    finalOptimizer.walkFunction(func);
    if (finalOptimizer.needUniqify) {
      wasm::UniqueNameMapper::uniquify(func->body);
    }
  }
};

Pass *createRemoveUnusedBrsPass() {
  return new RemoveUnusedBrs();
}

} // namespace wasm