1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
/*
* Copyright 2022 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Remove params from signature/function types where possible.
//
// This differs from DeadArgumentElimination in that DAE will look at each
// function by itself, and cannot handle indirectly-called functions. This pass
// looks at each heap type at a time, and if all functions with a heap type do
// not use a particular param, will remove the param.
//
#include "ir/find_all.h"
#include "ir/lubs.h"
#include "ir/module-utils.h"
#include "ir/type-updating.h"
#include "param-utils.h"
#include "pass.h"
#include "support/sorted_vector.h"
#include "wasm-type.h"
#include "wasm.h"
namespace wasm {
namespace {
struct SignaturePruning : public Pass {
// Maps each heap type to the possible pruned heap type. We will fill this
// during analysis and then use it while doing an update of the types. If a
// type has no improvement that we can find, it will not appear in this map.
std::unordered_map<HeapType, Signature> newSignatures;
void run(PassRunner* runner, Module* module) override {
if (getTypeSystem() != TypeSystem::Nominal) {
Fatal() << "SignaturePruning requires nominal typing";
}
if (!module->tables.empty()) {
// When there are tables we must also take their types into account, which
// would require us to take call_indirect, element segments, etc. into
// account. For now, do nothing if there are tables.
// TODO
return;
}
// First, find all the information we need. Start by collecting inside each
// function in parallel.
struct Info {
std::vector<Call*> calls;
std::vector<CallRef*> callRefs;
std::unordered_set<Index> usedParams;
void markUnoptimizable(Function* func) {
// To prevent any optimization, mark all the params as if there were
// used.
for (Index i = 0; i < func->getNumParams(); i++) {
usedParams.insert(i);
}
}
};
ModuleUtils::ParallelFunctionAnalysis<Info> analysis(
*module, [&](Function* func, Info& info) {
if (func->imported()) {
// Imports cannot be modified.
info.markUnoptimizable(func);
return;
}
info.calls = std::move(FindAll<Call>(func->body).list);
info.callRefs = std::move(FindAll<CallRef>(func->body).list);
info.usedParams = ParamUtils::getUsedParams(func);
});
// A map of types to all the information combined over all the functions
// with that type.
std::unordered_map<HeapType, Info> allInfo;
// Map heap types to all functions with that type.
std::unordered_map<HeapType, std::vector<Function*>> sigFuncs;
// Combine all the information we gathered into that map.
for (auto& [func, info] : analysis.map) {
// For direct calls, add each call to the type of the function being
// called.
for (auto* call : info.calls) {
allInfo[module->getFunction(call->target)->type].calls.push_back(call);
}
// For indirect calls, add each call_ref to the type the call_ref uses.
for (auto* callRef : info.callRefs) {
auto calledType = callRef->target->type;
if (calledType != Type::unreachable) {
allInfo[calledType.getHeapType()].callRefs.push_back(callRef);
}
}
// A parameter used in this function is used in the heap type - just one
// function is enough to prevent the parameter from being removed.
auto& allUsedParams = allInfo[func->type].usedParams;
for (auto index : info.usedParams) {
allUsedParams.insert(index);
}
sigFuncs[func->type].push_back(func);
}
// Exported functions cannot be modified.
for (auto& exp : module->exports) {
if (exp->kind == ExternalKind::Function) {
auto* func = module->getFunction(exp->value);
allInfo[func->type].markUnoptimizable(func);
}
}
// Find parameters to prune.
for (auto& [type, funcs] : sigFuncs) {
auto sig = type.getSignature();
auto& info = allInfo[type];
auto numParams = sig.params.size();
if (info.usedParams.size() == numParams) {
// All parameters are used, give up on this one.
continue;
}
// We found possible work! Find the specific params that are unused try to
// prune them.
SortedVector unusedParams;
for (Index i = 0; i < numParams; i++) {
if (info.usedParams.count(i) == 0) {
unusedParams.insert(i);
}
}
auto oldParams = sig.params;
auto removedIndexes = ParamUtils::removeParameters(
funcs, unusedParams, info.calls, info.callRefs, module, runner);
if (removedIndexes.empty()) {
continue;
}
// Success! Update the types.
std::vector<Type> newParams;
for (Index i = 0; i < numParams; i++) {
if (!removedIndexes.has(i)) {
newParams.push_back(oldParams[i]);
}
}
// Create a new signature. When the TypeRewriter operates below it will
// modify the existing heap type in place to change its signature to this
// one (which preserves identity, that is, even if after pruning the new
// signature is structurally identical to another one, it will remain
// nominally different from those).
newSignatures[type] = Signature(Type(newParams), sig.results);
// removeParameters() updates the type as it goes, but in this pass we
// need the type to match the other locations, nominally. That is, we need
// all the functions of a particular type to still have the same type
// after this operation, and that must be the exact same type at the
// relevant call_refs and so forth. The TypeRewriter below will do the
// right thing as it rewrites everything all at once, so we do not want
// the type to be modified by removeParameters(), and so we undo the type
// it made.
//
// Note that we cannot just ask removeParameters() to not update the type,
// as it adds a new local there, whose index depends on the type (which
// contains the # of parameters, and that determine where non-parameter
// local indexes begin). Rather than have it update the type and then undo
// that, which would add more complexity in that method, undo the change
// here.
for (auto* func : funcs) {
func->type = type;
}
}
// Rewrite the types.
GlobalTypeRewriter::updateSignatures(newSignatures, *module);
}
};
} // anonymous namespace
Pass* createSignaturePruningPass() { return new SignaturePruning(); }
} // namespace wasm
|