1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
|
/*
* Copyright 2019 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Simplify and optimize globals and their use.
//
// * Turns never-written and unwritable (not imported or exported)
// globals immutable.
// * If an immutable global is a copy of another, use the earlier one,
// to allow removal of the copies later.
// * Apply the constant values of immutable globals.
// * Apply the constant values of previous global.sets, in a linear
// execution trace.
// * Remove writes to globals that are never read from.
// * Remove writes to globals that are always assigned the same value.
// * Remove writes to globals that are only read from in order to write (see
// below, "readOnlyToWrite").
//
// Some globals may not have uses after these changes, which we leave
// to other passes to optimize.
//
// This pass has a "optimize" variant (similar to inlining and DAE)
// that also runs general function optimizations where we managed to replace
// a constant value. That is helpful as such a replacement often opens up
// further optimization opportunities.
//
#include <atomic>
#include "ir/effects.h"
#include "ir/find_all.h"
#include "ir/linear-execution.h"
#include "ir/properties.h"
#include "ir/utils.h"
#include "pass.h"
#include "wasm-builder.h"
#include "wasm.h"
namespace wasm {
namespace {
struct GlobalInfo {
// Whether the global is imported and exported.
bool imported = false;
bool exported = false;
// How many times the global is written and read.
std::atomic<Index> written{0};
std::atomic<Index> read{0};
// Whether the global is written a value different from its initial value.
std::atomic<bool> nonInitWritten{false};
// How many times the global is "read, but only to write", that is, is used in
// something like this pattern:
//
// if (global == X) { global = Y }
//
// The if's condition only uses |global| in order to decide to write to that
// same global, so it is "read, but only to write." If all we have are such
// reads only to write then the global is really not necessary, even though
// there are both reads and writes of it, and regardless of what the written
// values are etc.
//
// This pattern can show up in global initialization code, where in the block
// alongside "global = Y" there was some useful code, but the optimizer
// managed to remove it. For example,
//
// if (global == 0) { global = 1; sideEffect(); }
//
// If the global's initial value is the default 0, and there are no other uses
// of this global, then this code will run sideEffect() the very first time we
// reach here. We therefore need to keep this global and its reads and writes.
// However, if sideEffect() were removed, then we read the global only to
// write it - and nothing else - and so we can optimize away that global
// entirely.
std::atomic<Index> readOnlyToWrite{0};
};
using GlobalInfoMap = std::map<Name, GlobalInfo>;
struct GlobalUseScanner : public WalkerPass<PostWalker<GlobalUseScanner>> {
bool isFunctionParallel() override { return true; }
GlobalUseScanner(GlobalInfoMap* infos) : infos(infos) {}
std::unique_ptr<Pass> create() override {
return std::make_unique<GlobalUseScanner>(infos);
}
void visitGlobalSet(GlobalSet* curr) {
(*infos)[curr->name].written++;
// Check if there is a write of a value that may differ from the initial
// one. If there is anything but identical constants in both the initial
// value and the written value then we must assume that.
auto* global = getModule()->getGlobal(curr->name);
if (global->imported() || !Properties::isConstantExpression(curr->value) ||
!Properties::isConstantExpression(global->init) ||
Properties::getLiterals(curr->value) !=
Properties::getLiterals(global->init)) {
(*infos)[curr->name].nonInitWritten = true;
}
}
void visitGlobalGet(GlobalGet* curr) { (*infos)[curr->name].read++; }
void visitIf(If* curr) {
// We are looking for
//
// if (global == X) { global = Y }
//
// Ignore an if-else, which cannot be that.
if (curr->ifFalse) {
return;
}
auto global = readsGlobalOnlyToWriteIt(curr->condition, curr->ifTrue);
if (global.is()) {
// This is exactly the pattern we sought!
(*infos)[global].readOnlyToWrite++;
}
}
// Given a condition and some code that is executed based on the condition,
// check if the condition reads from some global in order to make the decision
// whether to run that code, and that code only writes to that global, which
// means the global is "read, but only to be written."
//
// The condition may also do other things than read from that global - it may
// compare it to a value, or negate it, or anything else, so long as the value
// of the global is only used to decide to run the code, like this:
//
// if (global % 17 < 4) { global = 1 }
//
// What we want to disallow is using the global to actually do something that
// is noticeeable *aside* from writing the global, like this:
//
// if (global ? foo() : bar()) { .. }
//
// Here ? : is another nested if, and we end up running different code based
// on global, which is noticeable: the global is *not* only read in order to
// write that global, but also for other reasons.
//
// Returns the global name if things like up, or a null name otherwise.
Name readsGlobalOnlyToWriteIt(Expression* condition, Expression* code) {
// See if writing a global is the only effect the code has. (Note that we
// don't need to care about the case where the code has no effects at
// all - other passes would handle that trivial situation.)
EffectAnalyzer codeEffects(getPassOptions(), *getModule(), code);
if (codeEffects.globalsWritten.size() != 1) {
return Name();
}
auto writtenGlobal = *codeEffects.globalsWritten.begin();
codeEffects.globalsWritten.clear();
if (codeEffects.hasAnything()) {
return Name();
}
// See if we read that global in the condition expression.
EffectAnalyzer conditionEffects(getPassOptions(), *getModule(), condition);
if (!conditionEffects.mutableGlobalsRead.count(writtenGlobal)) {
return Name();
}
// If the condition has no other (non-removable) effects other than reading
// that global then we have found what we looked for.
if (!conditionEffects.hasUnremovableSideEffects()) {
return writtenGlobal;
}
// There are unremovable side effects of some form. However, they may not
// be related to the reading of the global, that is, the global's value may
// not flow to anything that uses it in a dangerous way. It *would* be
// dangerous for the global's value to flow into a nested if condition, as
// mentioned in the comment earlier, but if it flows into an if arm for
// example then that is safe, so long as the final place it flows out to is
// the condition.
//
// To check this, find the get of the global in the condition, and look up
// through its parents to see how the global's value is used.
struct FlowScanner
: public ExpressionStackWalker<FlowScanner,
UnifiedExpressionVisitor<FlowScanner>> {
GlobalUseScanner& globalUseScanner;
Name writtenGlobal;
PassOptions& passOptions;
Module& wasm;
FlowScanner(GlobalUseScanner& globalUseScanner,
Name writtenGlobal,
PassOptions& passOptions,
Module& wasm)
: globalUseScanner(globalUseScanner), writtenGlobal(writtenGlobal),
passOptions(passOptions), wasm(wasm) {}
bool ok = true;
void visitExpression(Expression* curr) {
if (auto* get = curr->dynCast<GlobalGet>()) {
if (get->name == writtenGlobal) {
// We found the get of the global. Check where its value flows to,
// and how it is used there.
assert(expressionStack.back() == get);
for (int i = int(expressionStack.size()) - 2; i >= 0; i--) {
// Consider one pair of parent->child, and check if the parent
// causes any problems when the child's value reaches it.
auto* parent = expressionStack[i];
auto* child = expressionStack[i + 1];
EffectAnalyzer parentEffects(passOptions, wasm);
parentEffects.visit(parent);
if (parentEffects.hasUnremovableSideEffects()) {
// The parent has some side effect, and the child's value may
// be used to determine its manner, so this is dangerous.
ok = false;
break;
}
if (auto* iff = parent->dynCast<If>()) {
if (iff->condition == child) {
// The child is used to decide what code to run, which is
// dangerous: check what effects it causes. If it is a nested
// appearance of the pattern, that is one case that we know is
// actually safe.
if (!iff->ifFalse &&
globalUseScanner.readsGlobalOnlyToWriteIt(
iff->condition, iff->ifTrue) == writtenGlobal) {
// This is safe, and we can stop here: the value does not
// flow any further.
break;
}
// Otherwise, we found a problem, and can stop.
ok = false;
break;
}
}
}
}
}
}
};
FlowScanner scanner(*this, writtenGlobal, getPassOptions(), *getModule());
scanner.walk(condition);
return scanner.ok ? writtenGlobal : Name();
}
void visitFunction(Function* curr) {
// We are looking for a function body like this:
//
// if (global == X) return;
// global = Y;
//
// And nothing else at all. Note that this does not overlap with the if
// pattern above (the assignment is in the if body) so we will never have
// overlapping matchings (which would each count as 1, leading to a
// miscount).
if (curr->body->type != Type::none) {
return;
}
auto* block = curr->body->dynCast<Block>();
if (!block) {
return;
}
auto& list = block->list;
if (list.size() != 2) {
return;
}
auto* iff = list[0]->dynCast<If>();
if (!iff || iff->ifFalse || !iff->ifTrue->is<Return>()) {
return;
}
auto global = readsGlobalOnlyToWriteIt(iff->condition, list[1]);
if (global.is()) {
// This is exactly the pattern we sought!
(*infos)[global].readOnlyToWrite++;
}
}
private:
GlobalInfoMap* infos;
};
using NameNameMap = std::map<Name, Name>;
using NameSet = std::set<Name>;
struct GlobalUseModifier : public WalkerPass<PostWalker<GlobalUseModifier>> {
bool isFunctionParallel() override { return true; }
GlobalUseModifier(NameNameMap* copiedParentMap)
: copiedParentMap(copiedParentMap) {}
std::unique_ptr<Pass> create() override {
return std::make_unique<GlobalUseModifier>(copiedParentMap);
}
void visitGlobalGet(GlobalGet* curr) {
auto iter = copiedParentMap->find(curr->name);
if (iter != copiedParentMap->end()) {
auto original = iter->second;
// Only apply this optimization if the global we are switching to has the
// right type for us.
// TODO: We could also allow it to be more refined, but would then need to
// refinalize.
if (getModule()->getGlobal(original)->type == curr->type) {
curr->name = original;
}
}
}
private:
NameNameMap* copiedParentMap;
};
struct ConstantGlobalApplier
: public WalkerPass<
LinearExecutionWalker<ConstantGlobalApplier,
UnifiedExpressionVisitor<ConstantGlobalApplier>>> {
using Super = WalkerPass<
LinearExecutionWalker<ConstantGlobalApplier,
UnifiedExpressionVisitor<ConstantGlobalApplier>>>;
bool isFunctionParallel() override { return true; }
ConstantGlobalApplier(NameSet* constantGlobals, bool optimize)
: constantGlobals(constantGlobals), optimize(optimize) {}
std::unique_ptr<Pass> create() override {
return std::make_unique<ConstantGlobalApplier>(constantGlobals, optimize);
}
// It is ok to look at adjacent blocks together, as if a later part of a block
// is not reached that is fine - changes we make there would not be reached in
// that case.
bool connectAdjacentBlocks = true;
bool refinalize = false;
void replaceCurrent(Expression* rep) {
if (rep->type != getCurrent()->type) {
// This operation will change the type, so refinalize.
refinalize = true;
}
Super::replaceCurrent(rep);
}
void visitExpression(Expression* curr) {
if (auto* set = curr->dynCast<GlobalSet>()) {
if (Properties::isConstantExpression(set->value)) {
currConstantGlobals[set->name] =
getLiteralsFromConstExpression(set->value);
} else {
currConstantGlobals.erase(set->name);
}
return;
} else if (auto* get = curr->dynCast<GlobalGet>()) {
// Check if the global is known to be constant all the time.
if (constantGlobals->count(get->name)) {
auto* global = getModule()->getGlobal(get->name);
assert(Properties::isConstantExpression(global->init));
replaceCurrent(ExpressionManipulator::copy(global->init, *getModule()));
replaced = true;
return;
}
// Check if the global has a known value in this linear trace.
auto iter = currConstantGlobals.find(get->name);
if (iter != currConstantGlobals.end()) {
Builder builder(*getModule());
replaceCurrent(builder.makeConstantExpression(iter->second));
replaced = true;
}
return;
}
// Otherwise, invalidate if we need to. Note that we handled a GlobalSet
// earlier, but also need to handle calls. A general call forces us to
// forget everything, but in some cases we can do better, if we have a call
// and have computed function effects for it.
ShallowEffectAnalyzer effects(getPassOptions(), *getModule(), curr);
if (effects.calls) {
// Forget everything.
currConstantGlobals.clear();
} else {
// Forget just the globals written, if any.
for (auto writtenGlobal : effects.globalsWritten) {
currConstantGlobals.erase(writtenGlobal);
}
}
}
static void doNoteNonLinear(ConstantGlobalApplier* self, Expression** currp) {
self->currConstantGlobals.clear();
}
void visitFunction(Function* curr) {
if (replaced) {
if (refinalize) {
ReFinalize().walkFunctionInModule(curr, this->getModule());
}
if (optimize) {
PassRunner runner(getPassRunner());
runner.addDefaultFunctionOptimizationPasses();
runner.runOnFunction(curr);
}
}
}
private:
NameSet* constantGlobals;
bool optimize;
bool replaced = false;
// The globals currently constant in the linear trace.
std::map<Name, Literals> currConstantGlobals;
};
struct GlobalSetRemover : public WalkerPass<PostWalker<GlobalSetRemover>> {
GlobalSetRemover(const NameSet* toRemove, bool optimize)
: toRemove(toRemove), optimize(optimize) {}
bool isFunctionParallel() override { return true; }
std::unique_ptr<Pass> create() override {
return std::make_unique<GlobalSetRemover>(toRemove, optimize);
}
void visitGlobalSet(GlobalSet* curr) {
if (toRemove->count(curr->name) != 0) {
replaceCurrent(Builder(*getModule()).makeDrop(curr->value));
removed = true;
}
}
void visitFunction(Function* curr) {
if (removed && optimize) {
PassRunner runner(getPassRunner());
runner.addDefaultFunctionOptimizationPasses();
runner.runOnFunction(curr);
}
}
private:
const NameSet* toRemove;
bool optimize;
bool removed = false;
};
} // anonymous namespace
struct SimplifyGlobals : public Pass {
Module* module;
GlobalInfoMap map;
bool optimize;
SimplifyGlobals(bool optimize = false) : optimize(optimize) {}
void run(Module* module_) override {
module = module_;
while (iteration()) {
}
}
bool iteration() {
analyze();
// Fold single uses first, as it is simple to update the info from analyze()
// in this code (and harder to do in the things we do later, which is why we
// call analyze from scratch in each iteration).
foldSingleUses();
// Removing unneeded writes can in some cases lead to more optimizations
// that we need an entire additional iteration to perform, see below.
bool more = removeUnneededWrites();
preferEarlierImports();
propagateConstantsToGlobals();
propagateConstantsToCode();
return more;
}
void analyze() {
map.clear();
// First, find out all the relevant info.
for (auto& global : module->globals) {
auto& info = map[global->name];
if (global->imported()) {
info.imported = true;
}
}
for (auto& ex : module->exports) {
if (ex->kind == ExternalKind::Global) {
map[ex->value].exported = true;
}
}
GlobalUseScanner scanner(&map);
scanner.run(getPassRunner(), module);
scanner.runOnModuleCode(getPassRunner(), module);
// We now know which are immutable in practice.
for (auto& global : module->globals) {
auto& info = map[global->name];
if (global->mutable_ && !info.imported && !info.exported &&
!info.written) {
global->mutable_ = false;
}
}
}
// Removes writes from globals that will never do anything useful with the
// written value anyhow. Returns whether an addition iteration is necessary.
bool removeUnneededWrites() {
bool more = false;
// Globals that are not exports and not read from do not need their sets.
// Likewise, globals that only write their initial value later also do not
// need those writes. And, globals that are only read from in order to write
// to themselves as well. First, find such globals.
NameSet globalsNotNeedingSets;
for (auto& global : module->globals) {
auto& info = map[global->name];
if (!info.written) {
// No writes occur here, so there is nothing for us to remove.
continue;
}
if (info.imported || info.exported) {
// If the global is observable from the outside, we can't do anythng
// here.
//
// TODO: optimize the case of an imported but immutable global, etc.
continue;
}
// We only ever optimize read-only-to-write if all of our reads are done
// in places we identified as read-only-to-write. That is, we have
// eliminated the possibility of any other uses. (Technically, each
// read-to-write location might have more than one read since we did not
// count them, but only verified there was one read or more; but this is
// good enough as the common case has exactly one.)
//
// Note that there might be more writes, if there are additional writes
// besides those in the read-only-to-write locations. But we can ignore
// those, as whatever they write will not be read in order to do anything
// of value.
bool onlyReadOnlyToWrite = (info.read == info.readOnlyToWrite);
// There is at least one write in each read-only-to-write location, unless
// our logic is wrong somewhere.
assert(info.written >= info.readOnlyToWrite);
if (!info.read || !info.nonInitWritten || onlyReadOnlyToWrite) {
globalsNotNeedingSets.insert(global->name);
// We can now mark this global as immutable, and un-written, since we
// are about to remove all the sets on it.
global->mutable_ = false;
info.written = 0;
// Nested only-read-to-write expressions require another full iteration
// to optimize, as we have:
//
// if (a) {
// a = 1;
// if (b) {
// b = 1;
// }
// }
//
// The first iteration can only optimize b, as the outer if's body has
// more effects than we understand. After finishing the first iteration,
// b will no longer exist, removing those effects.
//
// TODO: In principle other situations exist as well where more
// iterations help, like if we remove a set that turns something
// into a read-only-to-write.
if (onlyReadOnlyToWrite) {
more = true;
}
}
}
// Remove all the sets on the unnecessary globals. Later optimizations can
// then see that since the global has no writes, it is a constant, which
// will lead to removal of gets, and after removing them, the global itself
// will be removed as well.
GlobalSetRemover(&globalsNotNeedingSets, optimize)
.run(getPassRunner(), module);
return more;
}
void preferEarlierImports() {
// Optimize uses of immutable globals, prefer the earlier one when there is
// a copy.
NameNameMap copiedParentMap;
for (auto& global : module->globals) {
auto child = global->name;
if (!global->mutable_ && !global->imported()) {
if (auto* get = global->init->dynCast<GlobalGet>()) {
auto parent = get->name;
if (!module->getGlobal(get->name)->mutable_) {
copiedParentMap[child] = parent;
}
}
}
}
if (!copiedParentMap.empty()) {
// Go all the way back.
for (auto& global : module->globals) {
auto child = global->name;
if (copiedParentMap.count(child)) {
while (copiedParentMap.count(copiedParentMap[child])) {
copiedParentMap[child] = copiedParentMap[copiedParentMap[child]];
}
}
}
// Apply to the gets.
GlobalUseModifier modifier(&copiedParentMap);
modifier.run(getPassRunner(), module);
modifier.runOnModuleCode(getPassRunner(), module);
}
}
// Constant propagation part 1: even an mutable global with a constant
// value can have that value propagated to another global that reads it,
// since we do know the value during startup, it can't be modified until
// code runs.
void propagateConstantsToGlobals() {
Builder builder(*module);
// We will note constant globals here as we compute them.
std::map<Name, Literals> constantGlobals;
// Given an init expression (something like the init of a global or a
// segment), see if it is a simple global.get of a constant that we can
// apply.
auto applyGlobals = [&](Expression*& init) {
if (!init) {
// This is the init of a passive segment, which is null.
return;
}
for (auto** getp : FindAllPointers<GlobalGet>(init).list) {
auto* get = (*getp)->cast<GlobalGet>();
auto iter = constantGlobals.find(get->name);
if (iter != constantGlobals.end()) {
*getp = builder.makeConstantExpression(iter->second);
}
}
};
// Go over the list of globals first, and note their constant values as we
// go, as well as applying them where possible.
for (auto& global : module->globals) {
if (!global->imported()) {
// Apply globals to this value, which may turn it into a constant we can
// further propagate, or it may already have been one.
applyGlobals(global->init);
if (Properties::isConstantExpression(global->init)) {
constantGlobals[global->name] =
getLiteralsFromConstExpression(global->init);
}
}
}
// Go over other things with inits and apply globals there.
for (auto& elementSegment : module->elementSegments) {
applyGlobals(elementSegment->offset);
}
for (auto& dataSegment : module->dataSegments) {
applyGlobals(dataSegment->offset);
}
}
// Constant propagation part 2: apply the values of immutable globals
// with constant values to global.gets in the code.
void propagateConstantsToCode() {
NameSet constantGlobals;
for (auto& global : module->globals) {
if (!global->mutable_ && !global->imported() &&
Properties::isConstantExpression(global->init)) {
constantGlobals.insert(global->name);
}
}
ConstantGlobalApplier(&constantGlobals, optimize)
.run(getPassRunner(), module);
// Note that we don't need to run on module code here, since we already
// handle applying constants in globals in propagateConstantsToGlobals (and
// in a more sophisticated manner, which takes into account that no sets of
// globals are possible during global instantiation).
}
// If we have a global that has a single use in the entire program, we can
// fold it into that use, if it is global. For example:
//
// var x = { foo: 5 };
// var y = { bar: x };
//
// This can become:
//
// var y = { bar: { foo: 5 } };
//
// If there is more than one use, or the use is in a function (where it might
// execute more than once) then we can't do this.
void foldSingleUses() {
struct Folder : public PostWalker<Folder> {
Module& wasm;
GlobalInfoMap& infos;
Folder(Module& wasm, GlobalInfoMap& infos) : wasm(wasm), infos(infos) {}
void visitGlobalGet(GlobalGet* curr) {
// If this is a get of a global with a single get and no sets, then we
// can fold that code into here.
auto name = curr->name;
auto& info = infos[name];
if (info.written == 0 && info.read == 1) {
auto* global = wasm.getGlobal(name);
if (global->init) {
// Copy that global's code. For simplicity we copy it as we have to
// keep that global valid for the operations that happen after us,
// even though that global will be removed later (we could remove it
// here, but it would add more complexity than seems worth it).
replaceCurrent(ExpressionManipulator::copy(global->init, wasm));
// Update info for later parts of this pass: we are removing a
// global.get, which is a read, so now there are 0 reads (we also
// have 0 writes, so no other work is needed here, but update to
// avoid confusion when debugging, and for possible future changes).
info.read = 0;
}
}
}
};
Folder folder(*module, map);
for (auto& global : module->globals) {
if (global->init) {
folder.walk(global->init);
}
}
}
};
// A pass mainly useful for testing that only performs the operation to
// propagate constant values between globals.
struct PropagateGlobalsGlobally : public SimplifyGlobals {
void run(Module* module_) override {
module = module_;
propagateConstantsToGlobals();
}
};
Pass* createSimplifyGlobalsPass() { return new SimplifyGlobals(false); }
Pass* createSimplifyGlobalsOptimizingPass() {
return new SimplifyGlobals(true);
}
Pass* createPropagateGlobalsGloballyPass() {
return new PropagateGlobalsGlobally();
}
} // namespace wasm
|