summaryrefslogtreecommitdiff
path: root/src/passes/TypeGeneralizing.cpp
blob: c0359b897c3178f686ff92ff50cff670cd48b72c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/*
 * Copyright 2023 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "analysis/cfg.h"
#include "analysis/lattice.h"
#include "analysis/lattices/inverted.h"
#include "analysis/lattices/shared.h"
#include "analysis/lattices/stack.h"
#include "analysis/lattices/tuple.h"
#include "analysis/lattices/valtype.h"
#include "analysis/lattices/vector.h"
#include "analysis/monotone-analyzer.h"
#include "ir/utils.h"
#include "pass.h"
#include "wasm-traversal.h"
#include "wasm.h"

#define TYPE_GENERALIZING_DEBUG 0

#if TYPE_GENERALIZING_DEBUG
#define DBG(statement) statement
#else
#define DBG(statement)
#endif

// Generalize the types of program locations as much as possible, both to
// eliminate unnecessarily refined types from the type section and (TODO) to
// weaken casts that cast to unnecessarily refined types. If the casts are
// weakened enough, they will be able to be removed by OptimizeInstructions.
//
// Perform a backward analysis tracking requirements on the types of program
// locations (currently just locals and stack values) to discover how much the
// type of each location can be generalized without breaking validation or
// changing program behavior.

namespace wasm {

namespace {

using namespace analysis;

// We will learn stricter and stricter requirements as we perform the analysis,
// so more specific types need to be higher up the lattice.
using TypeRequirement = Inverted<ValType>;

// Record a type requirement for each local variable. Shared the requirements
// across basic blocks.
using LocalTypeRequirements = SharedPath<Vector<TypeRequirement>>;

// The type requirements for each reference-typed value on the stack at a
// particular location.
using ValueStackTypeRequirements = Stack<TypeRequirement>;

// The full lattice used for the analysis.
using StateLattice =
  analysis::Tuple<LocalTypeRequirements, ValueStackTypeRequirements>;

// Equip the state lattice with helpful accessors.
struct State : StateLattice {
  using Element = StateLattice::Element;

  static constexpr int LocalsIndex = 0;
  static constexpr int StackIndex = 1;

  State(Function* func)
    : StateLattice{SharedPath{initLocals(func)}, initStack()} {}

  void push(Element& elem, Type type) const noexcept {
    stackLattice().push(stack(elem), std::move(type));
  }

  Type pop(Element& elem) const noexcept {
    return stackLattice().pop(stack(elem));
  }

  void clearStack(Element& elem) const noexcept {
    stack(elem) = stackLattice().getBottom();
  }

  const std::vector<Type>& getLocals(Element& elem) const noexcept {
    return *locals(elem);
  }

  const std::vector<Type>& getLocals() const noexcept {
    return *locals(getBottom());
  }

  Type getLocal(Element& elem, Index i) const noexcept {
    return getLocals(elem)[i];
  }

  bool updateLocal(Element& elem, Index i, Type type) const noexcept {
    return localsLattice().join(
      locals(elem),
      Vector<TypeRequirement>::SingletonElement(i, std::move(type)));
  }

private:
  static LocalTypeRequirements initLocals(Function* func) noexcept {
    return SharedPath{Vector{Inverted{ValType{}}, func->getNumLocals()}};
  }

  static ValueStackTypeRequirements initStack() noexcept {
    return Stack{Inverted{ValType{}}};
  }

  const LocalTypeRequirements& localsLattice() const noexcept {
    return std::get<LocalsIndex>(lattices);
  }

  const ValueStackTypeRequirements& stackLattice() const noexcept {
    return std::get<StackIndex>(lattices);
  }

  typename LocalTypeRequirements::Element&
  locals(Element& elem) const noexcept {
    return std::get<LocalsIndex>(elem);
  }

  const typename LocalTypeRequirements::Element&
  locals(const Element& elem) const noexcept {
    return std::get<LocalsIndex>(elem);
  }

  typename ValueStackTypeRequirements::Element&
  stack(Element& elem) const noexcept {
    return std::get<StackIndex>(elem);
  }

  const typename ValueStackTypeRequirements::Element&
  stack(const Element& elem) const noexcept {
    return std::get<StackIndex>(elem);
  }
};

struct TransferFn : OverriddenVisitor<TransferFn> {
  Module& wasm;
  Function* func;
  State lattice;
  typename State::Element* state = nullptr;

  // For each local, the set of blocks we may need to re-analyze when we update
  // the constraint on the local.
  std::vector<std::vector<const BasicBlock*>> localDependents;

  // The set of basic blocks that may depend on the result of the current
  // transfer.
  std::unordered_set<const BasicBlock*> currDependents;

  TransferFn(Module& wasm, Function* func, CFG& cfg)
    : wasm(wasm), func(func), lattice(func),
      localDependents(func->getNumLocals()) {
    // Initialize `localDependents`. Any block containing a `local.set l` may
    // need to be re-analyzed whenever the constraint on `l` is updated.
    auto numLocals = func->getNumLocals();
    std::vector<std::unordered_set<const BasicBlock*>> dependentSets(numLocals);
    for (const auto& bb : cfg) {
      for (const auto* inst : bb) {
        if (auto set = inst->dynCast<LocalSet>()) {
          dependentSets[set->index].insert(&bb);
        }
      }
    }
    for (size_t i = 0, n = dependentSets.size(); i < n; ++i) {
      localDependents[i] = std::vector<const BasicBlock*>(
        dependentSets[i].begin(), dependentSets[i].end());
    }
  }

  Type pop() noexcept { return lattice.pop(*state); }
  void push(Type type) noexcept { lattice.push(*state, type); }
  void clearStack() noexcept { lattice.clearStack(*state); }
  Type getLocal(Index i) noexcept { return lattice.getLocal(*state, i); }
  void updateLocal(Index i, Type type) noexcept {
    if (lattice.updateLocal(*state, i, type)) {
      currDependents.insert(localDependents[i].begin(),
                            localDependents[i].end());
    }
  }

  void dumpState() {
#if TYPE_GENERALIZING_DEBUG
    std::cerr << "locals: ";
    for (size_t i = 0, n = lattice.getLocals(*state).size(); i < n; ++i) {
      if (i != 0) {
        std::cerr << ", ";
      }
      std::cerr << getLocal(i);
    }
    std::cerr << "\nstack: ";
    auto& stack = std::get<1>(*state);
    for (size_t i = 0, n = stack.size(); i < n; ++i) {
      if (i != 0) {
        std::cerr << ", ";
      }
      std::cerr << stack[i];
    }
    std::cerr << "\n";
#endif // TYPE_GENERALIZING_DEBUG
  }

  std::unordered_set<const BasicBlock*>
  transfer(const BasicBlock& bb, typename State::Element& elem) noexcept {
    DBG(std::cerr << "transferring bb " << bb.getIndex() << "\n");
    state = &elem;

    // This is a backward analysis: The constraints on a type depend on how it
    // will be used in the future. Traverse the basic block in reverse and
    // return the predecessors as the dependent blocks.
    assert(currDependents.empty());
    const auto& preds = bb.preds();
    currDependents.insert(preds.begin(), preds.end());

    dumpState();
    if (bb.isExit()) {
      DBG(std::cerr << "visiting exit\n");
      visitFunctionExit();
      dumpState();
    }
    for (auto it = bb.rbegin(); it != bb.rend(); ++it) {
      DBG(std::cerr << "visiting " << ShallowExpression{*it} << "\n");
      visit(*it);
      dumpState();
    }
    if (bb.isEntry()) {
      DBG(std::cerr << "visiting entry\n");
      visitFunctionEntry();
      dumpState();
    }
    DBG(std::cerr << "\n");

    state = nullptr;

    // Return the blocks that may need to be re-analyzed.
    return std::move(currDependents);
  }

  void visitFunctionExit() {
    // We cannot change the types of results. Push a requirement that the stack
    // end up with the correct type.
    auto result = func->getResults();
    if (result.isRef()) {
      push(result);
    }
  }

  void visitFunctionEntry() {
    // We cannot change the types of parameters, so require that they have their
    // original types.
    Index i = 0;
    Index numParams = func->getNumParams();
    Index numLocals = func->getNumLocals();
    for (; i < numParams; ++i) {
      updateLocal(i, func->getLocalType(i));
    }
    // We also cannot change the types of any other non-ref locals. For
    // reference-typed locals, we cannot generalize beyond their top type.
    for (Index i = numParams; i < numLocals; ++i) {
      auto type = func->getLocalType(i);
      // TODO: Support optimizing tuple locals.
      if (type.isRef()) {
        updateLocal(i, Type(type.getHeapType().getTop(), Nullable));
      } else {
        updateLocal(i, type);
      }
    }
  }

  void visitNop(Nop* curr) {}
  void visitBlock(Block* curr) {}
  void visitIf(If* curr) {}
  void visitLoop(Loop* curr) {}

  void visitBreak(Break* curr) {
    if (curr->condition) {
      // `br_if` pops everything but the sent value off the stack if the branch
      // is taken, but if the branch is not taken, it only pops the condition.
      // We must therefore propagate all requirements from the fallthrough
      // successor but only the requirements for the sent value, if any, from
      // the branch successor. We don't have any way to differentiate between
      // requirements received from the two successors, however, so we cannot
      // yet do anything correct here!
      //
      // Here is a sample program that would break if we tried to conservatively
      // preserve the join of the requirements from both successors:
      //
      // (module
      //  (func $func_any (param funcref anyref)
      //   (unreachable)
      //  )
      //
      //  (func $extern_any-any (param externref anyref) (result anyref)
      //   (unreachable)
      //  )
      //
      //  (func $br-if-bad
      //   (local $bang externref)
      //   (call $func_any ;; 2. Requires [func, any]
      //    (ref.null nofunc)
      //    (block $l (result anyref)
      //     (call $extern_any-any ;; 1. Requires [extern, any]
      //      (local.get $bang)
      //      (br_if $l ;; 3. After join, requires [unreachable, any]
      //       (ref.null none)
      //       (i32.const 0)
      //      )
      //     )
      //    )
      //   )
      //  )
      // )
      //
      // To fix this, we need to insert an extra basic block encompassing the
      // liminal space between where the br_if determines it should take the
      // branch and when control arrives at the branch target. This is when the
      // extra values are popped off the stack.
      WASM_UNREACHABLE("TODO");
    } else {
      // `br` pops everything but the sent value off the stack, so do not
      // require anything of values on the stack except for that sent value, if
      // it exists.
      if (curr->value && curr->value->type.isRef()) {
        auto type = pop();
        clearStack();
        push(type);
      } else {
        // No sent value. Do not require anything.
        clearStack();
      }
    }
  }

  void visitSwitch(Switch* curr) {
    // Just like `br`, do not require anything of the values on the stack except
    // for the sent value, if it exists.
    if (curr->value && curr->value->type.isRef()) {
      auto type = pop();
      clearStack();
      push(type);
    } else {
      clearStack();
    }
  }

  template<typename T> void handleCall(T* curr, Type params) {
    if (curr->type.isRef()) {
      pop();
    }
    for (auto param : params) {
      // Cannot generalize beyond param types without interprocedural analysis.
      if (param.isRef()) {
        push(param);
      }
    }
  }

  void visitCall(Call* curr) {
    handleCall(curr, wasm.getFunction(curr->target)->getParams());
  }

  void visitCallIndirect(CallIndirect* curr) {
    handleCall(curr, curr->heapType.getSignature().params);
  }

  void visitLocalGet(LocalGet* curr) {
    if (!curr->type.isRef()) {
      return;
    }
    // Propagate the requirement on the local.get output to the local.
    updateLocal(curr->index, pop());
  }

  void visitLocalSet(LocalSet* curr) {
    if (!curr->value->type.isRef()) {
      return;
    }
    if (curr->isTee()) {
      // Same as the local.get.
      updateLocal(curr->index, pop());
    }
    // Propagate the requirement on the local to our input value.
    push(getLocal(curr->index));
  }

  void visitGlobalGet(GlobalGet* curr) {
    if (curr->type.isRef()) {
      // Cannot generalize globals without interprocedural analysis.
      pop();
    }
  }

  void visitGlobalSet(GlobalSet* curr) {
    auto type = wasm.getGlobal(curr->name)->type;
    if (type.isRef()) {
      // Cannot generalize globals without interprocedural analysis.
      push(type);
    }
  }

  void visitLoad(Load* curr) {}
  void visitStore(Store* curr) {}
  void visitAtomicRMW(AtomicRMW* curr) {}
  void visitAtomicCmpxchg(AtomicCmpxchg* curr) {}
  void visitAtomicWait(AtomicWait* curr) {}
  void visitAtomicNotify(AtomicNotify* curr) {}
  void visitAtomicFence(AtomicFence* curr) {}
  void visitSIMDExtract(SIMDExtract* curr) {}
  void visitSIMDReplace(SIMDReplace* curr) {}
  void visitSIMDShuffle(SIMDShuffle* curr) {}
  void visitSIMDTernary(SIMDTernary* curr) {}
  void visitSIMDShift(SIMDShift* curr) {}
  void visitSIMDLoad(SIMDLoad* curr) {}
  void visitSIMDLoadStoreLane(SIMDLoadStoreLane* curr) {}
  void visitMemoryInit(MemoryInit* curr) {}
  void visitDataDrop(DataDrop* curr) {}
  void visitMemoryCopy(MemoryCopy* curr) {}
  void visitMemoryFill(MemoryFill* curr) {}
  void visitConst(Const* curr) {}
  void visitUnary(Unary* curr) {}
  void visitBinary(Binary* curr) {}

  void visitSelect(Select* curr) {
    if (curr->type.isRef()) {
      // The inputs may be as general as the output.
      auto type = pop();
      push(type);
      push(type);
    }
  }

  void visitDrop(Drop* curr) {
    if (curr->type.isRef()) {
      pop();
    }
  }

  // This is handled by propagating the stack backward from the exit block.
  void visitReturn(Return* curr) {}

  void visitMemorySize(MemorySize* curr) {}
  void visitMemoryGrow(MemoryGrow* curr) {}

  void visitUnreachable(Unreachable* curr) {
    // Require nothing about values flowing into an unreachable.
    clearStack();
  }

  void visitPop(Pop* curr) { WASM_UNREACHABLE("TODO"); }

  void visitRefNull(RefNull* curr) { pop(); }

  void visitRefIsNull(RefIsNull* curr) {
    // ref.is_null works on any reference type, so do not impose any
    // constraints. We still need to push something, so push bottom.
    push(Type::none);
  }

  void visitRefFunc(RefFunc* curr) { pop(); }

  void visitRefEq(RefEq* curr) {
    // Both operands must be eqref.
    auto eqref = Type(HeapType::eq, Nullable);
    push(eqref);
    push(eqref);
  }

  void visitTableGet(TableGet* curr) {
    // Cannot generalize table types yet.
    pop();
  }

  void visitTableSet(TableSet* curr) {
    // Cannot generalize table types yet.
    push(wasm.getTable(curr->table)->type);
  }

  void visitTableSize(TableSize* curr) {}
  void visitTableGrow(TableGrow* curr) {}

  void visitTableFill(TableFill* curr) {
    // Cannot generalize table types yet.
    push(wasm.getTable(curr->table)->type);
  }

  void visitTableCopy(TableCopy* curr) {
    // Cannot generalize table types yet.
  }

  void visitTableInit(TableInit* curr) {}

  void visitTry(Try* curr) { WASM_UNREACHABLE("TODO"); }
  void visitTryTable(TryTable* curr) { WASM_UNREACHABLE("TODO"); }
  void visitThrow(Throw* curr) { WASM_UNREACHABLE("TODO"); }
  void visitRethrow(Rethrow* curr) { WASM_UNREACHABLE("TODO"); }
  void visitThrowRef(ThrowRef* curr) { WASM_UNREACHABLE("TODO"); }
  void visitTupleMake(TupleMake* curr) { WASM_UNREACHABLE("TODO"); }
  void visitTupleExtract(TupleExtract* curr) { WASM_UNREACHABLE("TODO"); }

  void visitRefI31(RefI31* curr) { pop(); }
  void visitI31Get(I31Get* curr) { push(Type(HeapType::i31, Nullable)); }

  void visitCallRef(CallRef* curr) {
    auto sigType = curr->target->type.getHeapType();
    if (sigType.isBottom()) {
      // This will be emitted as an unreachable, so impose no requirements on
      // the arguments, but do require that the target continue to have bottom
      // type.
      clearStack();
      push(Type(HeapType::nofunc, Nullable));
      return;
    }

    auto sig = sigType.getSignature();
    auto numParams = sig.params.size();
    std::optional<Type> resultReq;
    if (sig.results.isRef()) {
      resultReq = pop();
    }

    // We have a choice here: We can either try to generalize the type of the
    // incoming function reference or the type of the incoming function
    // arguments. Because function parameters are contravariant, generalizing
    // the function type inhibits generalizing the arguments and vice versa.
    // Attempt to split the difference by generalizing the function type only as
    // much as we can without imposing stronger requirements on the arguments.
    auto targetReq = sigType;
    while (true) {
      auto candidateReq = targetReq.getDeclaredSuperType();
      if (!candidateReq) {
        // There is no more general type we can require.
        break;
      }

      auto candidateSig = candidateReq->getSignature();

      if (resultReq && *resultReq != candidateSig.results &&
          Type::isSubType(*resultReq, candidateSig.results)) {
        // Generalizing further would violate the requirement on the result
        // type.
        break;
      }

      for (size_t i = 0; i < numParams; ++i) {
        if (candidateSig.params[i] != sig.params[i]) {
          // Generalizing further would restrict how much we could generalize
          // this argument, so we choose not to generalize futher.
          // TODO: Experiment with making the opposite choice.
          goto done;
        }
      }

      // We can generalize.
      targetReq = *candidateReq;
    }
  done:

    // Push the new requirements for the parameters.
    auto targetSig = targetReq.getSignature();
    for (auto param : targetSig.params) {
      if (param.isRef()) {
        push(param);
      }
    }
    // The new requirement for the call target.
    push(Type(targetReq, Nullable));
  }

  void visitRefTest(RefTest* curr) {
    // Do not require anything of the input.
    push(Type::none);
  }

  void visitRefCast(RefCast* curr) {
    // We do not have to require anything of the input, and not doing so might
    // allow us generalize the output of previous casts enough that they can be
    // optimized out. On the other hand, allowing the input to this cast to be
    // generalized might prevent us from optimizing this cast out, so this is
    // not a clear-cut decision. For now, leave the input unconstrained for
    // simplicity. TODO: Experiment with requiring the LUB of the output
    // requirement and the current input instead.
    pop();
    push(Type::none);
  }

  void visitBrOn(BrOn* curr) {
    // Like br_if, these instructions do different things to the stack depending
    // on whether the branch is taken or not. For branches that drop the tested
    // value, we need to push a requirement for that value, but for branches
    // that propagate the tested value, we need to propagate the existing
    // requirement instead. Like br_if, these instructions will require extra
    // basic blocks on the branches that drop values.
    WASM_UNREACHABLE("TODO");
  }

  void visitStructNew(StructNew* curr) {
    // We cannot yet generalize allocations. Push requirements for the types
    // needed to initialize the struct.
    pop();
    if (!curr->isWithDefault()) {
      auto type = curr->type.getHeapType();
      for (const auto& field : type.getStruct().fields) {
        if (field.type.isRef()) {
          push(field.type);
        }
      }
    }
  }

  HeapType
  generalizeStructType(HeapType type,
                       Index index,
                       std::optional<Type> reqFieldType = std::nullopt) {
    // Find the most general struct type for which this access could be valid,
    // i.e. the most general supertype that still has a field at the given index
    // where the field is a subtype of the required type, if any.
    while (true) {
      auto candidateType = type.getDeclaredSuperType();
      if (!candidateType) {
        // Cannot get any more general.
        break;
      }
      const auto& candidateFields = candidateType->getStruct().fields;
      if (candidateFields.size() <= index) {
        // Cannot get any more general and still have a field at the necessary
        // index.
        break;
      }
      if (reqFieldType) {
        auto candidateFieldType = candidateFields[index].type;
        if (candidateFieldType != *reqFieldType &&
            Type::isSubType(*reqFieldType, candidateFieldType)) {
          // Cannot generalize without violating the requirements on the field.
          break;
        }
      }
      type = *candidateType;
    }
    return type;
  }

  void visitStructGet(StructGet* curr) {
    auto type = curr->ref->type.getHeapType();
    if (type.isBottom()) {
      // This will be emitted as unreachable. Do not require anything of the
      // input, except that the ref remain bottom.
      clearStack();
      push(Type(HeapType::none, Nullable));
      return;
    }
    std::optional<Type> reqFieldType;
    if (curr->type.isRef()) {
      reqFieldType = pop();
    }
    auto generalized = generalizeStructType(type, curr->index, reqFieldType);
    push(Type(generalized, Nullable));
  }

  void visitStructSet(StructSet* curr) {
    auto type = curr->ref->type.getHeapType();
    if (type.isBottom()) {
      // This will be emitted as unreachable. Do not require anything of the
      // input except that the ref remain bottom.
      clearStack();
      push(Type(HeapType::none, Nullable));
      if (curr->value->type.isRef()) {
        push(Type::none);
      }
      return;
    }
    auto generalized = generalizeStructType(type, curr->index);
    push(Type(generalized, Nullable));
    push(generalized.getStruct().fields[curr->index].type);
  }

  void visitArrayNew(ArrayNew* curr) {
    // We cannot yet generalize allocations. Push a requirement for the
    // reference type needed to initialize the array, if any.
    pop();
    if (!curr->isWithDefault()) {
      auto type = curr->type.getHeapType();
      auto fieldType = type.getArray().element.type;
      if (fieldType.isRef()) {
        push(fieldType);
      }
    }
  }

  void visitArrayNewData(ArrayNewData* curr) {
    // We cannot yet generalize allocations.
    pop();
  }

  void visitArrayNewElem(ArrayNewElem* curr) {
    // We cannot yet generalize allocations or tables.
    pop();
  }

  void visitArrayNewFixed(ArrayNewFixed* curr) {
    // We cannot yet generalize allocations. Push a requirements for the
    // reference type needed to initialize the array, if any.
    pop();
    auto type = curr->type.getHeapType();
    auto fieldType = type.getArray().element.type;
    if (fieldType.isRef()) {
      for (size_t i = 0, n = curr->values.size(); i < n; ++i) {
        push(fieldType);
      }
    }
  }

  HeapType
  generalizeArrayType(HeapType type,
                      std::optional<Type> reqFieldType = std::nullopt) {
    // Find the most general array type for which this access could be valid.
    while (true) {
      auto candidateType = type.getDeclaredSuperType();
      if (!candidateType) {
        // Cannot get any more general.
        break;
      }
      if (reqFieldType) {
        auto candidateFieldType = candidateType->getArray().element.type;
        if (candidateFieldType != *reqFieldType &&
            Type::isSubType(*reqFieldType, candidateFieldType)) {
          // Cannot generalize without violating requirements on the field.
          break;
        }
      }
      type = *candidateType;
    }
    return type;
  }

  void visitArrayGet(ArrayGet* curr) {
    auto type = curr->ref->type.getHeapType();
    if (type.isBottom()) {
      // This will be emitted as unreachable. Do not require anything of the
      // input, except that the ref remain bottom.
      clearStack();
      push(Type(HeapType::none, Nullable));
      return;
    }
    std::optional<Type> reqFieldType;
    if (curr->type.isRef()) {
      reqFieldType = pop();
    }
    auto generalized = generalizeArrayType(type, reqFieldType);
    push(Type(generalized, Nullable));
  }

  void visitArraySet(ArraySet* curr) {
    auto type = curr->ref->type.getHeapType();
    if (type.isBottom()) {
      // This will be emitted as unreachable. Do not require anything of the
      // input, except that the ref remain bottom.
      clearStack();
      push(Type(HeapType::none, Nullable));
      if (curr->value->type.isRef()) {
        push(Type::none);
      }
      return;
    }
    auto generalized = generalizeArrayType(type);
    push(Type(generalized, Nullable));
    auto elemType = generalized.getArray().element.type;
    if (elemType.isRef()) {
      push(elemType);
    }
  }

  void visitArrayLen(ArrayLen* curr) {
    // The input must be an array.
    push(Type(HeapType::array, Nullable));
  }

  void visitArrayCopy(ArrayCopy* curr) {
    auto destType = curr->destRef->type.getHeapType();
    auto srcType = curr->srcRef->type.getHeapType();
    if (destType.isBottom() || srcType.isBottom()) {
      // This will be emitted as unreachable. Do not require anything of the
      // input, exept that the bottom refs remain bottom.
      clearStack();
      auto nullref = Type(HeapType::none, Nullable);
      push(destType.isBottom() ? nullref : Type::none);
      push(srcType.isBottom() ? nullref : Type::none);
      return;
    }
    // Model the copy as a get + set.
    ArraySet set;
    set.ref = curr->destRef;
    set.index = nullptr;
    set.value = nullptr;
    visitArraySet(&set);
    ArrayGet get;
    get.ref = curr->srcRef;
    get.index = nullptr;
    get.type = srcType.getArray().element.type;
    visitArrayGet(&get);
  }

  void visitArrayFill(ArrayFill* curr) {
    // Model the fill as a set.
    ArraySet set;
    set.ref = curr->ref;
    set.value = curr->value;
    visitArraySet(&set);
  }

  void visitArrayInitData(ArrayInitData* curr) {
    auto type = curr->ref->type.getHeapType();
    if (type.isBottom()) {
      // This will be emitted as unreachable. Do not require anything of the
      // input, except that the ref remain bottom.
      clearStack();
      push(Type(HeapType::none, Nullable));
      return;
    }
    auto generalized = generalizeArrayType(type);
    push(Type(generalized, Nullable));
  }

  void visitArrayInitElem(ArrayInitElem* curr) {
    auto type = curr->ref->type.getHeapType();
    if (type.isBottom()) {
      // This will be emitted as unreachable. Do not require anything of the
      // input, except that the ref remain bottom.
      clearStack();
      push(Type(HeapType::none, Nullable));
      return;
    }
    auto generalized = generalizeArrayType(type);
    push(Type(generalized, Nullable));
    // Cannot yet generalize table types.
  }

  void visitRefAs(RefAs* curr) {
    auto type = pop();
    switch (curr->op) {
      case RefAsNonNull:
        push(Type(type.getHeapType(), Nullable));
        return;
      case AnyConvertExtern:
        push(Type(HeapType::ext, type.getNullability()));
        return;
      case ExternConvertAny:
        push(Type(HeapType::any, type.getNullability()));
        return;
    }
    WASM_UNREACHABLE("unexpected op");
  }

  void visitStringNew(StringNew* curr) { WASM_UNREACHABLE("TODO"); }
  void visitStringConst(StringConst* curr) { WASM_UNREACHABLE("TODO"); }
  void visitStringMeasure(StringMeasure* curr) { WASM_UNREACHABLE("TODO"); }
  void visitStringEncode(StringEncode* curr) { WASM_UNREACHABLE("TODO"); }
  void visitStringConcat(StringConcat* curr) { WASM_UNREACHABLE("TODO"); }
  void visitStringEq(StringEq* curr) { WASM_UNREACHABLE("TODO"); }
  void visitStringWTF16Get(StringWTF16Get* curr) { WASM_UNREACHABLE("TODO"); }
  void visitStringSliceWTF(StringSliceWTF* curr) { WASM_UNREACHABLE("TODO"); }

  void visitContBind(ContBind* curr) { WASM_UNREACHABLE("TODO"); }
  void visitContNew(ContNew* curr) { WASM_UNREACHABLE("TODO"); }
  void visitResume(Resume* curr) { WASM_UNREACHABLE("TODO"); }
  void visitSuspend(Suspend* curr) { WASM_UNREACHABLE("TODO"); }
};

struct TypeGeneralizing : WalkerPass<PostWalker<TypeGeneralizing>> {
  std::vector<Type> localTypes;
  bool refinalize = false;

  bool isFunctionParallel() override { return true; }
  std::unique_ptr<Pass> create() override {
    return std::make_unique<TypeGeneralizing>();
  }

  void runOnFunction(Module* wasm, Function* func) override {
    // First, remove unreachable code. If we didn't, the unreachable code could
    // become invalid after this optimization because we do not materialize or
    // analyze unreachable blocks.
    PassRunner runner(getPassRunner());
    runner.add("dce");
    runner.runOnFunction(func);

    auto cfg = CFG::fromFunction(func);
    DBG(cfg.print(std::cerr));
    TransferFn txfn(*wasm, func, cfg);
    MonotoneCFGAnalyzer analyzer(txfn.lattice, txfn, cfg);
    analyzer.evaluate();

    // Optimize local types. TODO: Optimize casts as well.
    localTypes = txfn.lattice.getLocals();
    auto numParams = func->getNumParams();
    for (Index i = numParams; i < localTypes.size(); ++i) {
      func->vars[i - numParams] = localTypes[i];
    }

    // Update gets and sets accordingly.
    Super::runOnFunction(wasm, func);

    if (refinalize) {
      ReFinalize().walkFunctionInModule(func, wasm);
    }
  }

  void visitLocalGet(LocalGet* curr) {
    if (localTypes[curr->index] != curr->type) {
      curr->type = localTypes[curr->index];
      refinalize = true;
    }
  }

  void visitLocalSet(LocalSet* curr) {
    if (curr->isTee() && localTypes[curr->index] != curr->type) {
      curr->type = localTypes[curr->index];
      refinalize = true;
    }
  }
};

} // anonymous namespace

Pass* createTypeGeneralizingPass() { return new TypeGeneralizing; }

} // namespace wasm