1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
/*
* Copyright 2021 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Apply more specific subtypes to type fields where possible, where all the
// writes to that field in the entire program allow doing so.
//
#include "ir/lubs.h"
#include "ir/struct-utils.h"
#include "ir/type-updating.h"
#include "ir/utils.h"
#include "pass.h"
#include "support/unique_deferring_queue.h"
#include "wasm-type.h"
#include "wasm.h"
namespace wasm {
namespace {
// We use a LUBFinder to track field info, which includes the best LUB possible
// as well as relevant nulls (nulls force us to keep the type nullable).
using FieldInfo = LUBFinder;
struct FieldInfoScanner
: public StructUtils::StructScanner<FieldInfo, FieldInfoScanner> {
std::unique_ptr<Pass> create() override {
return std::make_unique<FieldInfoScanner>(functionNewInfos,
functionSetGetInfos);
}
FieldInfoScanner(
StructUtils::FunctionStructValuesMap<FieldInfo>& functionNewInfos,
StructUtils::FunctionStructValuesMap<FieldInfo>& functionSetGetInfos)
: StructUtils::StructScanner<FieldInfo, FieldInfoScanner>(
functionNewInfos, functionSetGetInfos) {}
void noteExpression(Expression* expr,
HeapType type,
Index index,
FieldInfo& info) {
info.note(expr->type);
}
void
noteDefault(Type fieldType, HeapType type, Index index, FieldInfo& info) {
// Default values must be noted, so that we know there is content there.
if (fieldType.isRef()) {
// All we need to note here is nullability (the field must remain
// nullable), but not anything else about the type.
fieldType = Type(fieldType.getHeapType().getBottom(), Nullable);
}
info.note(fieldType);
}
void noteCopy(HeapType type, Index index, FieldInfo& info) {
// Copies do not add any type requirements at all: the type will always be
// read and written to a place with the same type.
}
void noteRead(HeapType type, Index index, FieldInfo& info) {
// Nothing to do for a read, we just care about written values.
}
Properties::FallthroughBehavior getFallthroughBehavior() {
// Looking at fallthrough values may be dangerous here, because it ignores
// intermediate steps. Consider this:
//
// (struct.set $T 0
// (local.tee
// (struct.get $T 0)))
//
// This is a copy of a field to itself - normally something we can ignore
// (see above). But in this case, if we refine the field then that will
// update the struct.get, but the local.tee will still have the old type,
// which may not be refined enough. We could in theory always fix this up
// using casts later, but those casts may be expensive (especially ref.casts
// as opposed to ref.as_non_null), so for now just ignore tee fallthroughs.
// TODO: investigate more
return Properties::FallthroughBehavior::NoTeeBrIf;
}
};
struct TypeRefining : public Pass {
// Only affects GC type declarations and struct.gets.
bool requiresNonNullableLocalFixups() override { return false; }
StructUtils::StructValuesMap<FieldInfo> finalInfos;
void run(Module* module) override {
if (!module->features.hasGC()) {
return;
}
if (!getPassOptions().closedWorld) {
Fatal() << "TypeRefining requires --closed-world";
}
// Find and analyze struct operations inside each function.
StructUtils::FunctionStructValuesMap<FieldInfo> functionNewInfos(*module),
functionSetGetInfos(*module);
FieldInfoScanner scanner(functionNewInfos, functionSetGetInfos);
scanner.run(getPassRunner(), module);
scanner.runOnModuleCode(getPassRunner(), module);
// Combine the data from the functions.
StructUtils::StructValuesMap<FieldInfo> combinedNewInfos;
StructUtils::StructValuesMap<FieldInfo> combinedSetGetInfos;
functionNewInfos.combineInto(combinedNewInfos);
functionSetGetInfos.combineInto(combinedSetGetInfos);
// Propagate things written during new to supertypes, as they must also be
// able to contain that type. Propagate things written using set to subtypes
// as well, as the reference might be to a supertype if the field is present
// there.
StructUtils::TypeHierarchyPropagator<FieldInfo> propagator(*module);
propagator.propagateToSuperTypes(combinedNewInfos);
propagator.propagateToSuperAndSubTypes(combinedSetGetInfos);
// Combine everything together.
combinedNewInfos.combineInto(finalInfos);
combinedSetGetInfos.combineInto(finalInfos);
// While we do the following work, see if we have anything to optimize, so
// that we can avoid wasteful work later if not.
bool canOptimize = false;
// We cannot modify public types.
auto publicTypes = ModuleUtils::getPublicHeapTypes(*module);
std::unordered_set<HeapType> publicTypesSet(publicTypes.begin(),
publicTypes.end());
// We have combined all the information we have about writes to the fields,
// but we still need to make sure that the new types makes sense. In
// particular, subtyping cares about things like mutability, and we also
// need to handle the case where we have no writes to a type but do have
// them to subtypes or supertypes; in all these cases, we must preserve
// that a field is always a subtype of the parent field. To do so, we go
// through all the types downward from supertypes to subtypes, ensuring the
// subtypes are suitable.
auto& subTypes = propagator.subTypes;
UniqueDeferredQueue<HeapType> work;
for (auto type : subTypes.types) {
if (type.isStruct() && !type.getDeclaredSuperType()) {
work.push(type);
}
}
while (!work.empty()) {
auto type = work.pop();
for (auto subType : subTypes.getImmediateSubTypes(type)) {
work.push(subType);
}
if (publicTypesSet.count(type)) {
continue;
}
// First, find fields that have nothing written to them at all, and set
// their value to their old type. We must pick some type for the field,
// and we have nothing better to go on. (If we have a super, and it does
// have writes, then we may further update this type later, see the
// isSubType check in the loop after this.)
auto& fields = type.getStruct().fields;
for (Index i = 0; i < fields.size(); i++) {
auto oldType = fields[i].type;
auto& info = finalInfos[type][i];
if (!info.noted()) {
info = LUBFinder(oldType);
}
}
// Next ensure proper subtyping of this struct's fields versus its super.
if (auto super = type.getDeclaredSuperType()) {
auto& superFields = super->getStruct().fields;
for (Index i = 0; i < superFields.size(); i++) {
// The super's new type is either what we propagated, or, if it is
// public, unchanged since we cannot optimize it
Type newSuperType;
if (!publicTypesSet.count(*super)) {
newSuperType = finalInfos[*super][i].getLUB();
} else {
newSuperType = superFields[i].type;
}
auto& info = finalInfos[type][i];
auto newType = info.getLUB();
if (!Type::isSubType(newType, newSuperType)) {
// To ensure we are a subtype of the super's field, simply copy that
// value, which is more specific than us.
//
// This situation cannot happen normally, but if a type is not used
// then it can. For example, imagine that $B and $C are subtypes of
// $A, and that $C is never created anywhere. A struct.new of $B
// propagates info to $A (forcing $A's type to take it into account
// and not be more specific than it), but that does not reach $C
// (struct.new propagates only up, not down; if it propagated down
// then we could never specialize a subtype more than its super). If
// $C had some value written to it then that value would force the
// LUB of $A to take it into account, but as here $C is never even
// created, that does not happen. And then if we update $A's type
// to something more specific than $C's old type, we end up with the
// problem that this code path fixes: we just need to get $C's type
// to be identical to its super so that validation works.
info = LUBFinder(newSuperType);
} else if (fields[i].mutable_ == Mutable) {
// Mutable fields must have identical types, so we cannot
// specialize.
// TODO: Perhaps we should be using a new Field::isSubType() method
// here? This entire analysis might be done on fields, and not
// types, which would also handle more things added to fields
// in the future.
info = LUBFinder(newSuperType);
}
}
}
// After all those decisions, see if we found anything to optimize.
for (Index i = 0; i < fields.size(); i++) {
auto oldType = fields[i].type;
auto& lub = finalInfos[type][i];
auto newType = lub.getLUB();
if (newType != oldType) {
canOptimize = true;
}
}
}
if (canOptimize) {
updateInstructions(*module);
updateTypes(*module);
}
}
// If we change types then some instructions may need to be modified.
// Specifically, we assume that reads from structs impose no constraints on
// us, so that we can optimize maximally. If a struct is never created nor
// written to, but only read from, then we have literally no constraints on it
// at all, and we can end up with a situation where we alter the type to
// something that is invalid for that read. To ensure the code still
// validates, simply remove such reads.
void updateInstructions(Module& wasm) {
struct ReadUpdater : public WalkerPass<PostWalker<ReadUpdater>> {
bool isFunctionParallel() override { return true; }
// Only affects struct.gets.
bool requiresNonNullableLocalFixups() override { return false; }
TypeRefining& parent;
ReadUpdater(TypeRefining& parent) : parent(parent) {}
std::unique_ptr<Pass> create() override {
return std::make_unique<ReadUpdater>(parent);
}
void visitStructGet(StructGet* curr) {
if (curr->ref->type == Type::unreachable) {
return;
}
Type newFieldType;
if (!curr->ref->type.isNull()) {
auto oldType = curr->ref->type.getHeapType();
newFieldType = parent.finalInfos[oldType][curr->index].getLUB();
}
if (curr->ref->type.isNull() || newFieldType == Type::unreachable ||
!Type::isSubType(newFieldType, curr->type)) {
// This get will trap, or cannot be reached: either the ref is null,
// or the field is never written any contents, or the contents we see
// are invalid (they passed through some fallthrough that will trap at
// runtime). Emit unreachable code here.
Builder builder(*getModule());
replaceCurrent(builder.makeSequence(builder.makeDrop(curr->ref),
builder.makeUnreachable()));
return;
}
// This is the normal situation, where the new type is a refinement of
// the old type. Apply that type so that the type of the struct.get
// matches what is in the refined field. ReFinalize will later
// propagate this to parents.
//
// Note that ReFinalize will also apply the type of the field itself
// to a struct.get, so our doing it here in this pass is usually
// redundant. But ReFinalize also updates other types while doing so,
// which can cause a problem:
//
// (struct.get $A
// (block (result (ref null $A))
// (ref.null any)
// )
// )
//
// Here ReFinalize will turn the block's result into a bottom type,
// which means it won't know a type for the struct.get at that point.
// Doing it in this pass avoids that issue, as we have all the
// necessary information. (ReFinalize will still get into the
// situation where it doesn't know how to update the type of the
// struct.get, but it will just leave the existing type - it assumes
// no update is needed - which will be correct, since we've updated it
// ourselves here, before.)
curr->type = newFieldType;
}
};
ReadUpdater updater(*this);
updater.run(getPassRunner(), &wasm);
updater.runOnModuleCode(getPassRunner(), &wasm);
}
void updateTypes(Module& wasm) {
class TypeRewriter : public GlobalTypeRewriter {
TypeRefining& parent;
public:
TypeRewriter(Module& wasm, TypeRefining& parent)
: GlobalTypeRewriter(wasm), parent(parent) {}
void modifyStruct(HeapType oldStructType, Struct& struct_) override {
const auto& oldFields = oldStructType.getStruct().fields;
auto& newFields = struct_.fields;
for (Index i = 0; i < newFields.size(); i++) {
auto oldType = oldFields[i].type;
if (!oldType.isRef()) {
continue;
}
auto newType = parent.finalInfos[oldStructType][i].getLUB();
newFields[i].type = getTempType(newType);
}
}
};
TypeRewriter(wasm, *this).update();
ReFinalize().run(getPassRunner(), &wasm);
// After refinalizing, we may still have situations that do not validate.
// In some cases we can infer something more precise than can be represented
// in wasm, like here:
//
// (try (result A)
// (struct.get ..) ;; returns B.
// (catch
// (const A)
// )
//
// The try body cannot throw, so the catch is never reached, and we can
// infer the fallthrough has the subtype B. But in wasm the type of the try
// must remain the supertype A. If that try is written into a StructSet that
// we refined, that will error.
//
// To fix this, we add a cast here, and expect that other passes will remove
// the cast after other optimizations simplify things (in this example, the
// catch can be removed).
struct WriteUpdater : public WalkerPass<PostWalker<WriteUpdater>> {
bool isFunctionParallel() override { return true; }
// Only affects struct.new/sets.
bool requiresNonNullableLocalFixups() override { return false; }
std::unique_ptr<Pass> create() override {
return std::make_unique<WriteUpdater>();
}
void visitStructNew(StructNew* curr) {
if (curr->type == Type::unreachable || curr->isWithDefault()) {
return;
}
auto& fields = curr->type.getHeapType().getStruct().fields;
for (Index i = 0; i < fields.size(); i++) {
auto*& operand = curr->operands[i];
auto fieldType = fields[i].type;
if (!Type::isSubType(operand->type, fieldType)) {
operand = Builder(*getModule()).makeRefCast(operand, fieldType);
}
}
}
void visitStructSet(StructSet* curr) {
if (curr->type == Type::unreachable) {
// Ignore unreachable code.
return;
}
auto type = curr->ref->type.getHeapType();
if (type.isBottom()) {
// Ignore a bottom type.
return;
}
auto fieldType = type.getStruct().fields[curr->index].type;
if (!Type::isSubType(curr->value->type, fieldType)) {
curr->value =
Builder(*getModule()).makeRefCast(curr->value, fieldType);
}
}
};
WriteUpdater updater;
updater.run(getPassRunner(), &wasm);
updater.runOnModuleCode(getPassRunner(), &wasm);
}
};
} // anonymous namespace
Pass* createTypeRefiningPass() { return new TypeRefining(); }
} // namespace wasm
|