1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Removes obviously unneeded code
//
#include <ir/block-utils.h>
#include <ir/drop.h>
#include <ir/effects.h>
#include <ir/iteration.h>
#include <ir/literal-utils.h>
#include <ir/utils.h>
#include <pass.h>
#include <wasm-builder.h>
#include <wasm.h>
namespace wasm {
struct Vacuum : public WalkerPass<ExpressionStackWalker<Vacuum>> {
bool isFunctionParallel() override { return true; }
std::unique_ptr<Pass> create() override { return std::make_unique<Vacuum>(); }
void doWalkFunction(Function* func) {
walk(func->body);
ReFinalize().walkFunctionInModule(func, getModule());
}
// Returns nullptr if curr is dead, curr if it must stay as is, or one of its
// children if it can be replaced. Takes into account:
//
// * The result may be used or unused.
// * The type may or may not matter.
//
// For example,
//
// (drop
// (i32.eqz
// (call ..)))
//
// The drop means that the value is not used later. And while the call has
// side effects, the i32.eqz does not. So when we are called on the i32.eqz,
// and told the result does not matter, we can return the call. Note that in
// this case the type does not matter either, as drop doesn't care, and anyhow
// i32.eqz returns the same type as it receives. But for an expression that
// returns a different type, if the type matters then we cannot replace it.
Expression* optimize(Expression* curr, bool resultUsed, bool typeMatters) {
auto type = curr->type;
// If the type is none, then we can never replace it with another type.
if (type == Type::none) {
typeMatters = true;
}
// An unreachable node must not be changed. DCE will remove those.
if (type == Type::unreachable) {
return curr;
}
// resultUsed only makes sense when the type is concrete
assert(!resultUsed || curr->type != Type::none);
// If we actually need the result, then we must not change anything.
// TODO: maybe there is something clever though?
if (resultUsed) {
return curr;
}
// We iterate on possible replacements.
auto* prev = curr;
while (1) {
// If a replacement changes the type, and the type matters, return the
// previous one and stop.
if (typeMatters && curr->type != type) {
return prev;
}
prev = curr;
// Some instructions have special handling in visit*, and we should do
// nothing for them here.
if (curr->is<Drop>() || curr->is<Block>() || curr->is<If>() ||
curr->is<Loop>() || curr->is<Try>() || curr->is<TryTable>()) {
return curr;
}
// Check if this expression itself has side effects, ignoring children.
EffectAnalyzer self(getPassOptions(), *getModule());
self.visit(curr);
if (self.hasUnremovableSideEffects()) {
return curr;
}
// The result isn't used, and this has no side effects itself, so we can
// get rid of it. However, the children may have side effects.
SmallVector<Expression*, 1> childrenWithEffects;
for (auto* child : ChildIterator(curr)) {
if (EffectAnalyzer(getPassOptions(), *getModule(), child)
.hasUnremovableSideEffects()) {
childrenWithEffects.push_back(child);
}
}
if (childrenWithEffects.empty()) {
return nullptr;
}
if (childrenWithEffects.size() == 1) {
// We know the result isn't used, and curr has no side effects, so we
// can skip curr and keep looking into the child.
curr = childrenWithEffects[0];
continue;
}
// The result is not used, but multiple children have side effects, so we
// need to keep them around. We must also return something of the proper
// type - if we can do that, replace everything with the children + a
// dummy value of the proper type.
if (curr->type.isDefaultable()) {
auto* dummy = Builder(*getModule())
.makeConstantExpression(Literal::makeZeros(curr->type));
return getDroppedChildrenAndAppend(
curr, *getModule(), getPassOptions(), dummy);
}
// Otherwise, give up.
return curr;
}
}
void visitBlock(Block* curr) {
auto& list = curr->list;
// If traps are assumed to never happen, we can remove code on paths that
// must reach a trap:
//
// (block
// (i32.store ..)
// (br_if ..) ;; execution branches here, so the first store remains
// (i32.store ..) ;; this store can be removed
// (unreachable);
// )
//
// For this to be useful we need to have at least 2 elements: something to
// remove, and an unreachable.
if (getPassOptions().trapsNeverHappen && list.size() >= 2) {
// Go backwards. When we find a trap, mark the things before it as heading
// to a trap.
auto headingToTrap = false;
for (int i = list.size() - 1; i >= 0; i--) {
if (list[i]->is<Unreachable>()) {
headingToTrap = true;
continue;
}
if (!headingToTrap) {
continue;
}
// Check if we may no longer be heading to a trap. We can only optimize
// if the trap will actually be reached. Two situations can prevent that
// here: Control flow might branch away, or we might hang (which can
// happen in a call or a loop).
//
// We also cannot remove a pop as it is necessary for structural
// reasons.
EffectAnalyzer effects(getPassOptions(), *getModule(), list[i]);
if (effects.transfersControlFlow() || effects.calls ||
effects.mayNotReturn || effects.danglingPop) {
headingToTrap = false;
continue;
}
// This code can be removed! Turn it into a nop, and leave it for the
// code lower down to finish cleaning up.
ExpressionManipulator::nop(list[i]);
}
}
// compress out nops and other dead code
int skip = 0;
size_t size = list.size();
for (size_t z = 0; z < size; z++) {
auto* child = list[z];
// The last element may be used.
bool used =
z == size - 1 && curr->type.isConcrete() &&
ExpressionAnalyzer::isResultUsed(expressionStack, getFunction());
auto* optimized = optimize(child, used, true);
if (!optimized) {
auto childType = child->type;
if (childType.isConcrete()) {
if (LiteralUtils::canMakeZero(childType)) {
// We can't just skip a final concrete element, even if it isn't
// used. Instead, replace it with something that's easy to optimize
// out (for example, code-folding can merge out identical zeros at
// the end of if arms).
optimized = LiteralUtils::makeZero(childType, *getModule());
} else {
// Don't optimize it out.
optimized = child;
}
} else if (childType == Type::unreachable) {
// Don't try to optimize out an unreachable child (dce can do that
// properly).
optimized = child;
}
}
if (!optimized) {
skip++;
} else {
if (optimized != child) {
list[z] = optimized;
}
if (skip > 0) {
list[z - skip] = list[z];
list[z] = nullptr;
}
// if this is unreachable, the rest is dead code
if (list[z - skip]->type == Type::unreachable && z < size - 1) {
list.resize(z - skip + 1);
skip = 0; // nothing more to do on the list
break;
}
}
}
if (skip > 0) {
list.resize(size - skip);
}
// the block may now be a trivial one that we can get rid of and just leave
// its contents
replaceCurrent(BlockUtils::simplifyToContents(curr, this));
}
void visitIf(If* curr) {
// if the condition is a constant, just apply it
// we can just return the ifTrue or ifFalse.
if (auto* value = curr->condition->dynCast<Const>()) {
Expression* child;
if (value->value.getInteger()) {
child = curr->ifTrue;
} else {
if (curr->ifFalse) {
child = curr->ifFalse;
} else {
ExpressionManipulator::nop(curr);
return;
}
}
replaceCurrent(child);
return;
}
// if the condition is unreachable, just return it
if (curr->condition->type == Type::unreachable) {
replaceCurrent(curr->condition);
return;
}
// from here on, we can assume the condition executed
// In trapsNeverHappen mode, a definitely-trapping arm can be assumed to not
// happen. Such conditional code can be assumed to never be reached in this
// mode.
//
// Ignore the case of an unreachable if, such as having both arms be
// unreachable. In that case we'd need to fix up the IR to avoid changing
// the type; leave that for DCE to simplify first. After checking that
// curr->type != unreachable, we can assume that only one of the arms is
// unreachable (at most).
if (getPassOptions().trapsNeverHappen && curr->type != Type::unreachable) {
auto optimizeArm = [&](Expression* arm, Expression* otherArm) {
if (!arm->is<Unreachable>()) {
return false;
}
Builder builder(*getModule());
Expression* rep = builder.makeDrop(curr->condition);
if (otherArm) {
rep = builder.makeSequence(rep, otherArm);
}
replaceCurrent(rep);
return true;
};
// As mentioned above, do not try to optimize both arms; leave that case
// for DCE.
if (optimizeArm(curr->ifTrue, curr->ifFalse) ||
(curr->ifFalse && optimizeArm(curr->ifFalse, curr->ifTrue))) {
return;
}
}
if (curr->ifFalse) {
if (curr->ifFalse->is<Nop>()) {
curr->ifFalse = nullptr;
} else if (curr->ifTrue->is<Nop>()) {
curr->ifTrue = curr->ifFalse;
curr->ifFalse = nullptr;
curr->condition =
Builder(*getModule()).makeUnary(EqZInt32, curr->condition);
} else if (curr->ifTrue->is<Drop>() && curr->ifFalse->is<Drop>()) {
// instead of dropping both sides, drop the if, if they are the same
// type
auto* left = curr->ifTrue->cast<Drop>()->value;
auto* right = curr->ifFalse->cast<Drop>()->value;
if (left->type == right->type) {
curr->ifTrue = left;
curr->ifFalse = right;
curr->finalize();
replaceCurrent(Builder(*getModule()).makeDrop(curr));
}
}
} else {
// This is an if without an else. If the body is empty, we do not need it.
if (curr->ifTrue->is<Nop>()) {
replaceCurrent(Builder(*getModule()).makeDrop(curr->condition));
}
}
}
void visitLoop(Loop* curr) {
if (curr->body->is<Nop>()) {
ExpressionManipulator::nop(curr);
}
}
void visitDrop(Drop* curr) {
// optimize the dropped value, maybe leaving nothing
curr->value = optimize(curr->value, false, false);
if (curr->value == nullptr) {
ExpressionManipulator::nop(curr);
return;
}
// a drop of a tee is a set
if (auto* set = curr->value->dynCast<LocalSet>()) {
assert(set->isTee());
set->makeSet();
replaceCurrent(set);
return;
}
// If the value has no side effects, or it has side effects we can remove,
// do so. This basically means that if noTrapsHappen is set then we can
// use that assumption (that no trap actually happens at runtime) and remove
// a trapping value.
//
// TODO: A complete CFG analysis for noTrapsHappen mode, removing all code
// that definitely reaches a trap, *even if* it has side effects.
//
// Note that we check the type here to avoid removing unreachable code - we
// leave that for DCE.
if (curr->type == Type::none &&
!EffectAnalyzer(getPassOptions(), *getModule(), curr)
.hasUnremovableSideEffects()) {
ExpressionManipulator::nop(curr);
return;
}
// if we are dropping a block's return value, we might be able to remove it
// entirely
if (auto* block = curr->value->dynCast<Block>()) {
auto* last = block->list.back();
// note that the last element may be concrete but not the block, if the
// block has an unreachable element in the middle, making the block
// unreachable despite later elements and in particular the last
if (last->type.isConcrete() && block->type == last->type) {
last = optimize(last, false, false);
if (!last) {
// we may be able to remove this, if there are no brs
bool canPop = true;
if (block->name.is()) {
BranchUtils::BranchSeeker seeker(block->name);
Expression* temp = block;
seeker.walk(temp);
if (seeker.found && Type::hasLeastUpperBound(seeker.types)) {
canPop = false;
}
}
if (canPop) {
block->list.back() = last;
block->list.pop_back();
block->type = Type::none;
// we don't need the drop anymore, let's see what we have left in
// the block
if (block->list.size() > 1) {
replaceCurrent(block);
} else if (block->list.size() == 1) {
replaceCurrent(block->list[0]);
} else {
ExpressionManipulator::nop(curr);
}
return;
}
}
}
}
// sink a drop into an arm of an if-else if the other arm ends in an
// unreachable, as it if is a branch, this can make that branch optimizable
// and more vaccuming possible
auto* iff = curr->value->dynCast<If>();
if (iff && iff->ifFalse && iff->type.isConcrete()) {
// reuse the drop in both cases
if (iff->ifTrue->type == Type::unreachable &&
iff->ifFalse->type.isConcrete()) {
curr->value = iff->ifFalse;
iff->ifFalse = curr;
iff->type = Type::none;
replaceCurrent(iff);
} else if (iff->ifFalse->type == Type::unreachable &&
iff->ifTrue->type.isConcrete()) {
curr->value = iff->ifTrue;
iff->ifTrue = curr;
iff->type = Type::none;
replaceCurrent(iff);
}
}
}
void visitTry(Try* curr) {
// If try's body does not throw, the whole try-catch can be replaced with
// the try's body.
if (!EffectAnalyzer(getPassOptions(), *getModule(), curr->body).throws()) {
replaceCurrent(curr->body);
return;
}
// The try's body does throw. However, throwing may be the only thing it
// does, and if the try has a catch-all, then the entire try including
// children may have no effects. Note that this situation can only happen
// if we do have a catch-all, so avoid wasted work by checking that first.
// Also, we can't do this if a result is returned, so check the type.
if (curr->type == Type::none && curr->hasCatchAll() &&
!EffectAnalyzer(getPassOptions(), *getModule(), curr)
.hasUnremovableSideEffects()) {
ExpressionManipulator::nop(curr);
}
}
void visitTryTable(TryTable* curr) {
// If try_table's body does not throw, the whole try_table can be replaced
// with the try_table's body.
if (!EffectAnalyzer(getPassOptions(), *getModule(), curr->body).throws()) {
replaceCurrent(curr->body);
return;
}
}
void visitFunction(Function* curr) {
auto* optimized =
optimize(curr->body, curr->getResults() != Type::none, true);
if (optimized) {
curr->body = optimized;
} else {
ExpressionManipulator::nop(curr->body);
}
if (curr->getResults() == Type::none &&
!EffectAnalyzer(getPassOptions(), *getModule(), curr)
.hasUnremovableSideEffects()) {
ExpressionManipulator::nop(curr->body);
}
}
};
Pass* createVacuumPass() { return new Vacuum(); }
} // namespace wasm
|