1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/*
* Copyright 2015 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define wasm_support_bits_definitions
#include "support/bits.h"
#include "../compiler-support.h"
#include "support/utilities.h"
namespace wasm {
template<> int PopCount<uint8_t>(uint8_t v) {
// Small table lookup.
static const uint8_t tbl[32] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2,
3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3,
3, 4, 2, 3, 3, 4, 3, 4, 4, 5};
return tbl[v & 0xf] + tbl[v >> 4];
}
template<> int PopCount<uint16_t>(uint16_t v) {
return PopCount((uint8_t)(v & 0xff)) + PopCount((uint8_t)(v >> 8));
}
template<> int PopCount<uint32_t>(uint32_t v) {
// See Stanford bithacks, counting bits set in parallel, "best method":
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
}
template<> int PopCount<uint64_t>(uint64_t v) {
return PopCount((uint32_t)v) + PopCount((uint32_t)(v >> 32));
}
template<> uint32_t BitReverse<uint32_t>(uint32_t v) {
// See Hacker's Delight, first edition, figure 7-1.
v = ((v & 0x55555555) << 1) | ((v >> 1) & 0x55555555);
v = ((v & 0x33333333) << 2) | ((v >> 2) & 0x33333333);
v = ((v & 0x0F0F0F0F) << 4) | ((v >> 4) & 0x0F0F0F0F);
v = (v << 24) | ((v & 0xFF00) << 8) | ((v >> 8) & 0xFF00) | (v >> 24);
return v;
}
template<> int CountTrailingZeroes<uint32_t>(uint32_t v) {
// See Stanford bithacks, count the consecutive zero bits (trailing) on the
// right with multiply and lookup:
// http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightMultLookup
static const uint8_t tbl[32] = {0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20,
15, 25, 17, 4, 8, 31, 27, 13, 23, 21, 19,
16, 7, 26, 12, 18, 6, 11, 5, 10, 9};
return v ? (int)tbl[((uint32_t)((v & -v) * 0x077CB531U)) >> 27] : 32;
}
template<> int CountTrailingZeroes<uint64_t>(uint64_t v) {
return (uint32_t)v ? CountTrailingZeroes((uint32_t)v)
: 32 + CountTrailingZeroes((uint32_t)(v >> 32));
}
template<> int CountLeadingZeroes<uint32_t>(uint32_t v) {
// See Stanford bithacks, find the log base 2 of an N-bit integer in
// O(lg(N)) operations with multiply and lookup:
// http://graphics.stanford.edu/~seander/bithacks.html#IntegerLogDeBruijn
static const uint8_t tbl[32] = {31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15,
13, 9, 6, 28, 1, 23, 19, 11, 3, 16, 14,
7, 24, 12, 4, 8, 25, 5, 26, 27, 0};
v = v | (v >> 1);
v = v | (v >> 2);
v = v | (v >> 4);
v = v | (v >> 8);
v = v | (v >> 16);
return v ? (int)tbl[((uint32_t)(v * 0x07C4ACDDU)) >> 27] : 32;
}
template<> int CountLeadingZeroes<uint64_t>(uint64_t v) {
return v >> 32 ? CountLeadingZeroes((uint32_t)(v >> 32))
: 32 + CountLeadingZeroes((uint32_t)v);
}
uint32_t Log2(uint32_t v) {
switch (v) {
default:
WASM_UNREACHABLE("invalid value");
case 1:
return 0;
case 2:
return 1;
case 4:
return 2;
case 8:
return 3;
case 16:
return 4;
case 32:
return 5;
}
}
uint32_t Pow2(uint32_t v) {
switch (v) {
case 0:
return 1;
case 1:
return 2;
case 2:
return 4;
case 3:
return 8;
case 4:
return 16;
case 5:
return 32;
default:
return 1 << v;
}
}
} // namespace wasm
|