summaryrefslogtreecommitdiff
path: root/src/support/dfa_minimization.cpp
blob: 5df67c5850baf9a19cf312f9bd4a1a9ddf0f2e3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/*
 * Copyright 2023 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <map>

#include "dfa_minimization.h"

namespace wasm::DFA {

namespace {

// A vector of initial partitions, each of which is a vector of elements, each
// of which is a vector of successor indices.
using InputGraph = std::vector<std::vector<std::vector<size_t>>>;

// The Refined Partitions data structure used in Valmari-Lehtinen DFA
// minimization. The translation from terms used in the Valmari-Lehtinen paper
// to the more expanded terms used here is:
//
//   Block => Set
//   elems => elements
//   loc => elementIndices
//   sidx => setIndices
//   first => beginnings
//   end => endings
//   mid => pivots
//
struct Partitions {
  // The number of sets.
  size_t sets = 0;

  // The partitioned elements. Elements in the same set are next to each other.
  // Within each set, "marked" elements come first followed by "unmarked"
  // elements.
  std::vector<size_t> elements;

  // Maps elements to their indices in `elements`.
  std::vector<size_t> elementIndices;

  // Maps elements to their sets, identified by an index.
  std::vector<size_t> setIndices;

  // Maps sets to the indices of their first elements in `elements`.
  std::vector<size_t> beginnings;

  // Maps sets to (one past) the indices of their ends in `elements`.
  std::vector<size_t> endings;

  // Maps sets to the indices of their first unmarked elements in `elements`.
  std::vector<size_t> pivots;

  Partitions() = default;

  // Allocate space up front so we never need to re-allocate. The actual
  // contents of all the vectors will need to be externally initialized,
  // though.
  Partitions(size_t size)
    : elements(size), elementIndices(size), setIndices(size), beginnings(size),
      endings(size), pivots(size) {}

  struct Set {
    using Iterator = std::vector<size_t>::iterator;

    Partitions& partitions;
    size_t index;

    Set(Partitions& partitions, size_t index)
      : partitions(partitions), index(index) {}

    Iterator begin() {
      return partitions.elements.begin() + partitions.beginnings[index];
    }
    Iterator end() {
      return partitions.elements.begin() + partitions.endings[index];
    }
    size_t size() {
      return partitions.endings[index] - partitions.beginnings[index];
    }

    bool hasMarks() {
      return partitions.pivots[index] != partitions.beginnings[index];
    }

    // Split the set between marked and unmarked elements if there are both
    // marked and unmarked elements. Unmark all elements of this set regardless.
    // Return the index of the new partition or 0 if there was no split.
    size_t split() {
      size_t begin = partitions.beginnings[index];
      size_t end = partitions.endings[index];
      size_t pivot = partitions.pivots[index];
      if (pivot == begin) {
        // No elements marked, so there is nothing to do.
        return 0;
      }
      if (pivot == end) {
        // All elements were marked, so just unmark them.
        partitions.pivots[index] = begin;
        return 0;
      }
      // Create a new set covering the marked region.
      size_t newIndex = partitions.sets++;
      partitions.beginnings[newIndex] = begin;
      partitions.pivots[newIndex] = begin;
      partitions.endings[newIndex] = pivot;
      for (size_t i = begin; i < pivot; ++i) {
        partitions.setIndices[partitions.elements[i]] = newIndex;
      }
      // Update the old set. The end and pivot are already correct.
      partitions.beginnings[index] = pivot;
      return newIndex;
    }
  };

  Set getSet(size_t index) { return {*this, index}; }

  // Returns the set containing an element, which can be iterated upon. The set
  // may be invalidated by calls to `mark` or `Set::split`.
  Set getSetForElem(size_t element) { return getSet(setIndices[element]); }

  void mark(size_t element) {
    size_t index = elementIndices[element];
    size_t set = setIndices[element];
    size_t pivot = pivots[set];
    if (index >= pivot) {
      // Move the pivot element into the location of the newly marked element.
      elements[index] = elements[pivot];
      elementIndices[elements[index]] = index;
      // Move the newly marked element into the pivot location.
      elements[pivot] = element;
      elementIndices[element] = pivot;
      // Update the pivot index to mark the element.
      ++pivots[set];
    }
  }
};

Partitions initializeStatePartitions(const InputGraph& inputGraph,
                                     size_t numElements) {
  Partitions partitions(numElements);
  size_t elementIndex = 0;
  for (const auto& partition : inputGraph) {
    size_t set = partitions.sets++;
    partitions.beginnings[set] = elementIndex;
    partitions.pivots[set] = elementIndex;
    for (size_t i = 0; i < partition.size(); ++i) {
      partitions.elements[elementIndex] = elementIndex;
      partitions.elementIndices[elementIndex] = elementIndex;
      partitions.setIndices[elementIndex] = set;
      ++elementIndex;
    }
    partitions.endings[set] = elementIndex;
  }
  return partitions;
}

// A DFA transition into a state.
struct Transition {
  size_t pred;
  size_t label;
};

void initializeTransitions(const InputGraph& inputGraph,
                           size_t numElements,
                           size_t numTransitions,
                           std::vector<Transition>& transitions,
                           std::vector<size_t>& transitionIndices) {
  // Find the transitions into each state. Map destinations to input
  // transitions.
  std::map<size_t, std::vector<Transition>> transitionMap;
  size_t elementIndex = 0;
  for (const auto& partition : inputGraph) {
    for (const auto& elem : partition) {
      size_t label = 0;
      for (const auto& succ : elem) {
        transitionMap[succ].push_back({elementIndex, label++});
      }
      ++elementIndex;
    }
  }

  // Populate `transitions` and `transitionIndices`.
  transitions.reserve(numTransitions);
  transitionIndices.reserve(numElements + 1);
  for (size_t dest = 0; dest < numElements; ++dest) {
    // Record the first index of transitions leading to `dest`.
    transitionIndices.push_back(transitions.size());
    if (auto it = transitionMap.find(dest); it != transitionMap.end()) {
      transitions.insert(
        transitions.end(), it->second.begin(), it->second.end());
    }
  }
  // Record one-past the end of the transitions leading to the final `dest`.
  transitionIndices.push_back(transitions.size());
}

Partitions
initializeSplitterPartitions(Partitions& partitions,
                             const std::vector<Transition>& transitions,
                             const std::vector<size_t>& transitionIndices) {
  // The initial sets of splitters are partitioned by destination state
  // partition and transition label.
  Partitions splitters(transitions.size());
  size_t elementIndex = 0;
  for (size_t statePartition = 0; statePartition < partitions.sets;
       ++statePartition) {
    // The in-transitions leading to states in the current partition, organized
    // by transition label.
    std::map<size_t, std::vector<size_t>> currTransitions;
    for (size_t state : partitions.getSet(statePartition)) {
      for (size_t transition = transitionIndices[state],
                  end = transitionIndices[state + 1];
           transition < end;
           ++transition) {
        currTransitions[transitions[transition].label].push_back(transition);
      }
    }
    // Create a splitter partition for each in-transition label leading to the
    // current state partition.
    for (auto& pair : currTransitions) {
      size_t set = splitters.sets++;
      splitters.beginnings[set] = elementIndex;
      splitters.pivots[set] = elementIndex;
      for (size_t transition : pair.second) {
        splitters.elements[elementIndex] = transition;
        splitters.elementIndices[transition] = elementIndex;
        splitters.setIndices[transition] = set;
        ++elementIndex;
      }
      splitters.endings[set] = elementIndex;
    }
  }
  return splitters;
}

} // anonymous namespace

namespace Internal {

std::vector<std::vector<size_t>>
refinePartitionsImpl(const InputGraph& inputGraph) {
  // Find the number of states and transitions.
  size_t numElements = 0;
  size_t numTransitions = 0;
  for (const auto& partition : inputGraph) {
    numElements += partition.size();
    for (const auto& elem : partition) {
      numTransitions += elem.size();
    }
  }

  // The partitions of DFA states.
  Partitions partitions = initializeStatePartitions(inputGraph, numElements);

  // The transitions arranged such that the transitions leading to state `q` are
  // `transitions[transitionIndices[q] : transitionIndices[q+1]]`.
  std::vector<Transition> transitions;
  std::vector<size_t> transitionIndices;
  initializeTransitions(
    inputGraph, numElements, numTransitions, transitions, transitionIndices);

  // The splitters, which are partitions of the input transitions.
  Partitions splitters =
    initializeSplitterPartitions(partitions, transitions, transitionIndices);

  // The list of splitter partitions that might be able to split states in some
  // state partition. Starts out containing all splitter partitions.
  std::vector<size_t> potentialSplitters;
  potentialSplitters.reserve(splitters.sets);
  for (size_t i = 0; i < splitters.sets; ++i) {
    potentialSplitters.push_back(i);
  }

  while (!potentialSplitters.empty()) {
    size_t potentialSplitter = potentialSplitters.back();
    potentialSplitters.pop_back();

    // The partitions that may be able to be split.
    std::vector<size_t> markedPartitions;

    // Mark states that are predecessors via this splitter partition.
    for (size_t transition : splitters.getSet(potentialSplitter)) {
      size_t state = transitions[transition].pred;
      auto partition = partitions.getSetForElem(state);
      if (!partition.hasMarks()) {
        markedPartitions.push_back(partition.index);
      }
      partitions.mark(state);
    }

    // Try to split each partition with marked states.
    for (size_t partition : markedPartitions) {
      size_t newPartition = partitions.getSet(partition).split();
      if (!newPartition) {
        // There was nothing to split.
        continue;
      }

      // We only want to keep using the smaller of the two split partitions.
      if (partitions.getSet(newPartition).size() <
          partitions.getSet(partition).size()) {
        newPartition = partition;
      }

      // The splitter partitions that may need to be split to match the new
      // split of the state partitions.
      std::vector<size_t> markedSplitters;

      // Mark transitions that lead to the newly split off states.
      for (size_t state : partitions.getSet(newPartition)) {
        for (size_t t = transitionIndices[state],
                    end = transitionIndices[state + 1];
             t < end;
             ++t) {
          auto splitter = splitters.getSetForElem(t);
          if (!splitter.hasMarks()) {
            markedSplitters.push_back(splitter.index);
          }
          splitters.mark(t);
        }
      }

      // Split the splitters and update `potentialSplitters`.
      for (size_t splitter : markedSplitters) {
        size_t newSplitter = splitters.getSet(splitter).split();
        if (newSplitter) {
          potentialSplitters.push_back(newSplitter);
        }
      }
    }
  }

  // Return the refined partitions.
  std::vector<std::vector<size_t>> resultPartitions;
  resultPartitions.reserve(partitions.sets);
  for (size_t p = 0; p < partitions.sets; ++p) {
    auto partition = partitions.getSet(p);
    std::vector<size_t> resultPartition;
    resultPartition.reserve(partition.size());
    for (size_t elem : partition) {
      resultPartition.push_back(elem);
    }
    resultPartitions.emplace_back(std::move(resultPartition));
  }
  return resultPartitions;
}

} // namespace Internal

} // namespace wasm::DFA