1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
|
/*
* Copyright 2021 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// A set of elements, which is often small. While the number of items is small,
// the implementation simply stores them in an array that is linearly looked
// through. Once the size is large enough, we switch to using a std::set or
// std::unordered_set.
//
#ifndef wasm_support_small_set_h
#define wasm_support_small_set_h
#include <algorithm>
#include <array>
#include <cassert>
#include <set>
#include <unordered_set>
#include "utilities.h"
namespace wasm {
template<typename T, size_t N> struct FixedStorageBase {
size_t used = 0;
std::array<T, N> storage;
enum InsertResult {
// Either we inserted a new item, or the item already existed, so no error
// occurred.
NoError,
// We needed to insert (the item did not exist), but we were already at full
// size, so we could not insert, which is an error condition that the caller
// must handle.
CouldNotInsert
};
};
template<typename T, size_t N>
struct UnorderedFixedStorage : public FixedStorageBase<T, N> {
using InsertResult = typename FixedStorageBase<T, N>::InsertResult;
InsertResult insert(const T& x) {
for (size_t i = 0; i < this->used; i++) {
if (this->storage[i] == x) {
return InsertResult::NoError;
}
}
assert(this->used <= N);
if (this->used == N) {
return InsertResult::CouldNotInsert;
}
this->storage[this->used++] = x;
return InsertResult::NoError;
}
void erase(const T& x) {
for (size_t i = 0; i < this->used; i++) {
if (this->storage[i] == x) {
// We found the item; erase it by moving the final item to replace it
// and truncating the size.
this->used--;
this->storage[i] = this->storage[this->used];
return;
}
}
}
};
template<typename T, size_t N>
struct OrderedFixedStorage : public FixedStorageBase<T, N> {
using InsertResult = typename FixedStorageBase<T, N>::InsertResult;
InsertResult insert(const T& x) {
// Find the insertion point |i| where x should be placed.
size_t i = 0;
while (i < this->used && this->storage[i] < x) {
i++;
}
if (i < this->used && this->storage[i] == x) {
// The item already exists.
return InsertResult::NoError;
}
// |i| is now the location where x should be placed.
assert(this->used <= N);
if (this->used == N) {
return InsertResult::CouldNotInsert;
}
if (i != this->used) {
// Push things forward to make room for x.
for (size_t j = this->used; j >= i + 1; j--) {
this->storage[j] = this->storage[j - 1];
}
}
this->storage[i] = x;
this->used++;
return InsertResult::NoError;
}
void erase(const T& x) {
for (size_t i = 0; i < this->used; i++) {
if (this->storage[i] == x) {
// We found the item; move things backwards and shrink.
for (size_t j = i + 1; j < this->used; j++) {
this->storage[j - 1] = this->storage[j];
}
this->used--;
return;
}
}
}
};
template<typename T, size_t N, typename FixedStorage, typename FlexibleSet>
class SmallSetBase {
// fixed-space storage
FixedStorage fixed;
// flexible additional storage
FlexibleSet flexible;
bool usingFixed() const {
// If the flexible storage contains something, then we are using it.
// Otherwise we use the fixed storage. Note that if we grow and shrink then
// we will stay in flexible mode until we reach a size of zero, at which
// point we return to fixed mode. This is intentional, to avoid a lot of
// movement in switching between fixed and flexible mode.
return flexible.empty();
}
public:
using value_type = T;
using key_type = T;
using reference = T&;
using const_reference = const T&;
using set_type = FlexibleSet;
using size_type = size_t;
SmallSetBase() {}
SmallSetBase(std::initializer_list<T> init) {
for (T item : init) {
insert(item);
}
}
void insert(const T& x) {
if (usingFixed()) {
if (fixed.insert(x) == FixedStorage::InsertResult::CouldNotInsert) {
// We need to add an item but no fixed storage remains to grow. Switch
// to flexible.
assert(fixed.used == N);
assert(flexible.empty());
flexible.insert(fixed.storage.begin(),
fixed.storage.begin() + fixed.used);
flexible.insert(x);
assert(!usingFixed());
fixed.used = 0;
}
} else {
flexible.insert(x);
}
}
void erase(const T& x) {
if (usingFixed()) {
fixed.erase(x);
} else {
flexible.erase(x);
}
}
size_t count(const T& x) const {
if (usingFixed()) {
// Do a linear search.
for (size_t i = 0; i < fixed.used; i++) {
if (fixed.storage[i] == x) {
return 1;
}
}
return 0;
} else {
return flexible.count(x);
}
}
size_t size() const {
if (usingFixed()) {
return fixed.used;
} else {
return flexible.size();
}
}
bool empty() const { return size() == 0; }
void clear() {
fixed.used = 0;
flexible.clear();
}
bool
operator==(const SmallSetBase<T, N, FixedStorage, FlexibleSet>& other) const {
if (size() != other.size()) {
return false;
}
if (usingFixed()) {
return std::all_of(fixed.storage.begin(),
fixed.storage.begin() + fixed.used,
[&other](const T& x) { return other.count(x); });
} else if (other.usingFixed()) {
return std::all_of(other.fixed.storage.begin(),
other.fixed.storage.begin() + other.fixed.used,
[this](const T& x) { return count(x); });
} else {
return flexible == other.flexible;
}
}
bool
operator!=(const SmallSetBase<T, N, FixedStorage, FlexibleSet>& other) const {
return !(*this == other);
}
// iteration
template<typename Parent, typename FlexibleIterator> struct IteratorBase {
using iterator_category = std::forward_iterator_tag;
using difference_type = long;
using value_type = T;
using pointer = const value_type*;
using reference = const value_type&;
const Parent* parent;
using Iterator = IteratorBase<Parent, FlexibleIterator>;
// Whether we are using fixed storage in the parent. When doing so we have
// the index in fixedIndex. Otherwise, we are using flexible storage, and we
// will use flexibleIterator.
bool usingFixed;
size_t fixedIndex;
FlexibleIterator flexibleIterator;
IteratorBase(const Parent* parent)
: parent(parent), usingFixed(parent->usingFixed()) {}
void setBegin() {
if (usingFixed) {
fixedIndex = 0;
} else {
flexibleIterator = parent->flexible.begin();
}
}
void setEnd() {
if (usingFixed) {
fixedIndex = parent->size();
} else {
flexibleIterator = parent->flexible.end();
}
}
bool operator==(const Iterator& other) const {
if (parent != other.parent) {
return false;
}
// std::set allows changes while iterating. For us here, though, it would
// be nontrivial to support that given we have two iterators that we
// generalize over (switching "in the middle" would not be easy or fast),
// so error on that.
if (usingFixed != other.usingFixed) {
Fatal() << "SmallSet does not support changes while iterating";
}
if (usingFixed) {
return fixedIndex == other.fixedIndex;
} else {
return flexibleIterator == other.flexibleIterator;
}
}
bool operator!=(const Iterator& other) const { return !(*this == other); }
Iterator& operator++() {
if (usingFixed) {
fixedIndex++;
} else {
flexibleIterator++;
}
return *this;
}
const value_type& operator*() const {
if (this->usingFixed) {
return this->parent->fixed.storage[this->fixedIndex];
} else {
return *this->flexibleIterator;
}
}
};
using Iterator = IteratorBase<SmallSetBase<T, N, FixedStorage, FlexibleSet>,
typename FlexibleSet::const_iterator>;
Iterator begin() {
auto ret = Iterator(this);
ret.setBegin();
return ret;
}
Iterator end() {
auto ret = Iterator(this);
ret.setEnd();
return ret;
}
Iterator begin() const {
auto ret = Iterator(this);
ret.setBegin();
return ret;
}
Iterator end() const {
auto ret = Iterator(this);
ret.setEnd();
return ret;
}
using iterator = Iterator;
using const_iterator = Iterator;
// Test-only method to allow unit tests to verify the right internal
// behavior.
bool TEST_ONLY_NEVER_USE_usingFixed() { return usingFixed(); }
};
template<typename T, size_t N>
class SmallSet
: public SmallSetBase<T, N, OrderedFixedStorage<T, N>, std::set<T>> {};
template<typename T, size_t N>
class SmallUnorderedSet : public SmallSetBase<T,
N,
UnorderedFixedStorage<T, N>,
std::unordered_set<T>> {};
} // namespace wasm
#endif // wasm_support_small_set_h
|