summaryrefslogtreecommitdiff
path: root/src/support/strongly_connected_components.h
blob: 7fcbdf14c8e7f2e9bbf1d47e5ffe3e76ce070740 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*
 * Copyright 2024 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef wasm_support_strongly_connected_components_h
#define wasm_support_strongly_connected_components_h

#include <cassert>
#include <optional>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include <iostream>

namespace wasm {

// A CRTP utility implementing Tarjan's Strongly Connected Component algorithm
// (https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm)
// in terms of iterators. Given the beginning and end iterators over the
// elements in a graph an implementation of `pushChildren` in the CRTP subclass
// that pushes an element's children, provides an iterable over the SCCs, each
// of which is an iterable over the elements in the SCC. All implemented
// iterators are input iterators that mutate the underlying state, so this
// utility can only be used for single-pass algorithms.
template<typename It, typename Class> struct SCCs {
  SCCs(It inputIt, It inputEnd) : inputIt(inputIt), inputEnd(inputEnd) {}

private:
  using T = typename It::value_type;

  // The iterators over the graph we are calculating the SCCs for.
  It inputIt;
  It inputEnd;

  // Stack of pending elements to visit, used instead of a recursive visitor.
  struct WorkItem {
    T item;
    std::optional<T> parent = std::nullopt;
    bool processedChildren = false;
  };
  std::vector<WorkItem> workStack;

  // The Tarjan's algorithm stack. Similar to a DFS stack, but elements are only
  // popped off once they are committed to a strongly connected component.
  // Elements stay on the stack after they are visited iff they have a back edge
  // to an element earlier in the stack.
  std::vector<T> stack;

  struct ElementInfo {
    // Index assigned based on element visitation order.
    size_t index;
    // The smallest index of the elements reachable from this element.
    size_t lowlink;
    // Whether this element is still on `stack`.
    bool onStack;
  };
  std::unordered_map<T, ElementInfo> elementInfo;

  // The parent to record when calling into the subclass to push children.
  std::optional<T> currParent;

  // The root (i.e. deepest element in the stack) for the current SCC. Empty
  // whenever we have yet to find the next SCC.
  std::optional<T> currRoot;

  bool stepToNextGroup() {
    while (inputIt != inputEnd || !workStack.empty()) {
      if (workStack.empty()) {
        workStack.push_back({*inputIt++});
      }
      while (!workStack.empty()) {
        auto& work = workStack.back();
        auto& item = work.item;

        if (!work.processedChildren) {
          auto newIndex = elementInfo.size();
          auto [it, inserted] =
            elementInfo.insert({item, {newIndex, newIndex, true}});
          if (inserted) {
            // This is a new item we have never seen before. We have already
            // initialized its associated data.
            stack.push_back(item);

            // Leave the element on the work stack because we will have to do
            // more work after we have finished processing its children.
            work.processedChildren = true;
            currParent = item;
            static_cast<Class*>(this)->pushChildren(item);
            currParent = std::nullopt;
            // Process the pushed children first; we will come back to this item
            // later.
            continue;
          }

          auto& info = it->second;
          if (info.onStack) {
            assert(work.parent);
            // Item is already in the current SCC. Update the parent's lowlink
            // if this child has a smaller index than we have seen so far.
            auto& parentLowlink = elementInfo[*work.parent].lowlink;
            parentLowlink = std::min(parentLowlink, info.index);
          } else {
            // Item is in an SCC we have already processed, so ignore it
            // entirely.
          }
          // Do not recurse for this item we have seen before. We are done with
          // it.
          workStack.pop_back();
          continue;
        }

        // We have finished processing the children for the current element, so
        // we know its final lowlink value. Use it to potentially update the
        // parent's lowlink value.
        auto& info = elementInfo[item];
        if (work.parent) {
          auto& parentLowlink = elementInfo[*work.parent].lowlink;
          parentLowlink = std::min(parentLowlink, info.lowlink);
        }

        if (info.index == info.lowlink) {
          // This element reaches and is reachable by all shallower elements in
          // the stack (otherwise they would have already been popped) and does
          // not itself reach any deeper elements, so we have found an SCC and
          // the current item is its root.
          currRoot = item;
          workStack.pop_back();
          return true;
        }
        workStack.pop_back();
      }
    }
    // We are at the end.
    return false;
  }

  void stepToNextElem() {
    assert(currRoot);
    if (stack.back() == *currRoot) {
      // This was the last element in the current SCC. We have to find the next
      // SCC now.
      currRoot = std::nullopt;
    }
    elementInfo[stack.back()].onStack = false;
    stack.pop_back();
  }

  void pushChildren(const T& parent) {
    static_assert(&SCCs<It, Class>::pushChildren != &Class::pushChildren,
                  "SCCs subclass must implement `pushChildren`");
  }

protected:
  // Call this from `Class::pushChildren` to add a child.
  void push(const T& item) {
    assert(currParent);
    workStack.push_back({item, currParent});
  }

public:
  struct SCC {
    SCCs<It, Class>* parent;

    // Iterate over the elements in a strongly connected component.
    struct Iterator {
      using value_type = T;
      using difference_type = std::ptrdiff_t;
      using reference = T&;
      using pointer = T*;
      using iterator_category = std::input_iterator_tag;

      SCCs<It, Class>* parent;
      std::optional<T> val = std::nullopt;

      bool isEnd() const { return !parent || !parent->currRoot; }
      bool operator==(const Iterator& other) const {
        return isEnd() == other.isEnd();
      }
      bool operator!=(const Iterator& other) const { return !(*this == other); }
      T operator*() { return *val; }
      T* operator->() { return &*val; }
      void setVal() {
        if (isEnd()) {
          val = std::nullopt;
        } else {
          val = parent->stack.back();
        }
      }

      Iterator& operator++() {
        parent->stepToNextElem();
        setVal();
        return *this;
      }
      Iterator operator++(int) {
        auto it = *this;
        ++(*this);
        return it;
      }
    };

    Iterator begin() {
      Iterator it = {parent};
      it.setVal();
      return it;
    }
    Iterator end() { return {nullptr}; }
  };

  // Iterate over the strongly connected components of the graph.
  struct Iterator {
    using value_type = SCC;
    using difference_type = std::ptrdiff_t;
    using reference = SCC&;
    using pointer = SCC*;
    using iterator_category = std::input_iterator_tag;

    // scc.parent is null iff we are at the end.
    SCC scc;

    bool isEnd() const { return !scc.parent; }
    bool operator==(const Iterator& other) const {
      return isEnd() == other.isEnd();
    }
    bool operator!=(const Iterator& other) const { return !(*this == other); }
    SCC operator*() { return scc; }
    SCC* operator->() { return &scc; }
    Iterator& operator++() {
      // Skip the rest of the current SCC, if for some reason it was not
      // consumed.
      for (auto elem : *(*this)) {
        (void)elem;
      }
      if (!scc.parent->stepToNextGroup()) {
        // We are at the end, so mark ourselves as such.
        scc.parent = nullptr;
      }
      return *this;
    }
    void operator++(int) { ++(*this); }
  };

  Iterator begin() { return ++Iterator{this}; }
  Iterator end() { return {nullptr}; }
};

} // namespace wasm

#endif // wasm_support_strongly_connected_components_h