1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
// This file began as an import from LLVM, and so it has the same license as
// LLVM, copied below together with the code.
//===- llvm/Support/SuffixTree.cpp - Implement Suffix Tree ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Suffix Tree class.
//
//===----------------------------------------------------------------------===//
#include "support/suffix_tree.h"
#include "support/suffix_tree_node.h"
#include "llvm/Support/Casting.h"
using namespace llvm;
namespace wasm {
/// \returns the number of elements in the substring associated with \p N.
static size_t numElementsInSubstring(const SuffixTreeNode* N) {
assert(N && "Got a null node?");
if (auto* Internal = dyn_cast<SuffixTreeInternalNode>(N)) {
if (Internal->isRoot()) {
return 0;
}
}
return N->getEndIdx() - N->getStartIdx() + 1;
}
SuffixTree::SuffixTree(const std::vector<unsigned>& Str) : Str(Str) {
Root = insertRoot();
Active.Node = Root;
// Keep track of the number of suffixes we have to add of the current
// prefix.
unsigned SuffixesToAdd = 0;
// Construct the suffix tree iteratively on each prefix of the string.
// PfxEndIdx is the end index of the current prefix.
// End is one past the last element in the string.
for (unsigned PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
SuffixesToAdd++;
LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
}
// Set the suffix indices of each leaf.
assert(Root && "Root node can't be nullptr!");
setSuffixIndices();
}
SuffixTreeNode* SuffixTree::insertLeaf(SuffixTreeInternalNode& Parent,
unsigned StartIdx,
unsigned Edge) {
assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
auto* N = new (LeafNodeAllocator.Allocate())
SuffixTreeLeafNode(StartIdx, &LeafEndIdx);
Parent.Children[Edge] = N;
return N;
}
SuffixTreeInternalNode*
SuffixTree::insertInternalNode(SuffixTreeInternalNode* Parent,
unsigned StartIdx,
unsigned EndIdx,
unsigned Edge) {
assert(StartIdx <= EndIdx && "String can't start after it ends!");
assert(!(!Parent && StartIdx != SuffixTreeNode::EmptyIdx) &&
"Non-root internal nodes must have parents!");
auto* N = new (InternalNodeAllocator.Allocate())
SuffixTreeInternalNode(StartIdx, EndIdx, Root);
if (Parent) {
Parent->Children[Edge] = N;
}
return N;
}
SuffixTreeInternalNode* SuffixTree::insertRoot() {
return insertInternalNode(/*Parent = */ nullptr,
SuffixTreeNode::EmptyIdx,
SuffixTreeNode::EmptyIdx,
/*Edge = */ 0);
}
void SuffixTree::setSuffixIndices() {
// List of nodes we need to visit along with the current length of the
// string.
std::vector<std::pair<SuffixTreeNode*, unsigned>> ToVisit;
// Current node being visited.
SuffixTreeNode* CurrNode = Root;
// Sum of the lengths of the nodes down the path to the current one.
unsigned CurrNodeLen = 0;
ToVisit.push_back({CurrNode, CurrNodeLen});
while (!ToVisit.empty()) {
std::tie(CurrNode, CurrNodeLen) = ToVisit.back();
ToVisit.pop_back();
// Length of the current node from the root down to here.
CurrNode->setConcatLen(CurrNodeLen);
if (auto* InternalNode = dyn_cast<SuffixTreeInternalNode>(CurrNode)) {
for (auto& ChildPair : InternalNode->Children) {
assert(ChildPair.second && "Node had a null child!");
ToVisit.push_back(
{ChildPair.second,
CurrNodeLen + numElementsInSubstring(ChildPair.second)});
}
}
// No children, so we are at the end of the string.
if (auto* LeafNode = dyn_cast<SuffixTreeLeafNode>(CurrNode)) {
LeafNode->setSuffixIdx(Str.size() - CurrNodeLen);
}
}
}
unsigned SuffixTree::extend(unsigned EndIdx, unsigned SuffixesToAdd) {
SuffixTreeInternalNode* NeedsLink = nullptr;
while (SuffixesToAdd > 0) {
// Are we waiting to add anything other than just the last character?
if (Active.Len == 0) {
// If not, then say the active index is the end index.
Active.Idx = EndIdx;
}
assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
// The first character in the current substring we're looking at.
unsigned FirstChar = Str[Active.Idx];
// Have we inserted anything starting with FirstChar at the current node?
if (Active.Node->Children.count(FirstChar) == 0) {
// If not, then we can just insert a leaf and move to the next step.
insertLeaf(*Active.Node, EndIdx, FirstChar);
// The active node is an internal node, and we visited it, so it must
// need a link if it doesn't have one.
if (NeedsLink) {
NeedsLink->setLink(Active.Node);
NeedsLink = nullptr;
}
} else {
// There's a match with FirstChar, so look for the point in the tree to
// insert a new node.
SuffixTreeNode* NextNode = Active.Node->Children[FirstChar];
unsigned SubstringLen = numElementsInSubstring(NextNode);
// Is the current suffix we're trying to insert longer than the size of
// the child we want to move to?
if (Active.Len >= SubstringLen) {
// If yes, then consume the characters we've seen and move to the next
// node.
// TODO: Enable the below assert
// assert(isa<SuffixTreeInternalNode>(NextNode) &&
// "Expected an internal node?");
Active.Idx += SubstringLen;
Active.Len -= SubstringLen;
Active.Node = cast<SuffixTreeInternalNode>(NextNode);
continue;
}
// Otherwise, the suffix we're trying to insert must be contained in the
// next node we want to move to.
unsigned LastChar = Str[EndIdx];
// Is the string we're trying to insert a substring of the next node?
if (Str[NextNode->getStartIdx() + Active.Len] == LastChar) {
// If yes, then we're done for this step. Remember our insertion point
// and move to the next end index. At this point, we have an implicit
// suffix tree.
if (NeedsLink && !Active.Node->isRoot()) {
NeedsLink->setLink(Active.Node);
NeedsLink = nullptr;
}
Active.Len++;
break;
}
// The string we're trying to insert isn't a substring of the next node,
// but matches up to a point. Split the node.
//
// For example, say we ended our search at a node n and we're trying to
// insert ABD. Then we'll create a new node s for AB, reduce n to just
// representing C, and insert a new leaf node l to represent d. This
// allows us to ensure that if n was a leaf, it remains a leaf.
//
// | ABC ---split---> | AB
// n s
// C / \ D
// n l
// The node s from the diagram
SuffixTreeInternalNode* SplitNode =
insertInternalNode(Active.Node,
NextNode->getStartIdx(),
NextNode->getStartIdx() + Active.Len - 1,
FirstChar);
// Insert the new node representing the new substring into the tree as
// a child of the split node. This is the node l from the diagram.
insertLeaf(*SplitNode, EndIdx, LastChar);
// Make the old node a child of the split node and update its start
// index. This is the node n from the diagram.
NextNode->incrementStartIdx(Active.Len);
SplitNode->Children[Str[NextNode->getStartIdx()]] = NextNode;
// SplitNode is an internal node, update the suffix link.
if (NeedsLink) {
NeedsLink->setLink(SplitNode);
}
NeedsLink = SplitNode;
}
// We've added something new to the tree, so there's one less suffix to
// add.
SuffixesToAdd--;
if (Active.Node->isRoot()) {
if (Active.Len > 0) {
Active.Len--;
Active.Idx = EndIdx - SuffixesToAdd + 1;
}
} else {
// Start the next phase at the next smallest suffix.
Active.Node = Active.Node->getLink();
}
}
return SuffixesToAdd;
}
void SuffixTree::RepeatedSubstringIterator::advance() {
// Clear the current state. If we're at the end of the range, then this
// is the state we want to be in.
RS = RepeatedSubstring();
N = nullptr;
// Each leaf node represents a repeat of a string.
std::vector<unsigned> RepeatedSubstringStarts;
// Continue visiting nodes until we find one which repeats more than once.
while (!InternalNodesToVisit.empty()) {
RepeatedSubstringStarts.clear();
auto* Curr = InternalNodesToVisit.back();
InternalNodesToVisit.pop_back();
// Keep track of the length of the string associated with the node. If
// it's too short, we'll quit.
unsigned Length = Curr->getConcatLen();
// Iterate over each child, saving internal nodes for visiting, and
// leaf nodes in LeafChildren. Internal nodes represent individual
// strings, which may repeat.
for (auto& ChildPair : Curr->Children) {
// Save all of this node's children for processing.
if (auto* InternalChild =
dyn_cast<SuffixTreeInternalNode>(ChildPair.second)) {
InternalNodesToVisit.push_back(InternalChild);
continue;
}
if (Length < MinLength) {
continue;
}
// Have an occurrence of a potentially repeated string. Save it.
auto* Leaf = cast<SuffixTreeLeafNode>(ChildPair.second);
RepeatedSubstringStarts.push_back(Leaf->getSuffixIdx());
}
// The root never represents a repeated substring. If we're looking at
// that, then skip it.
if (Curr->isRoot()) {
continue;
}
// Do we have any repeated substrings?
if (RepeatedSubstringStarts.size() < 2) {
continue;
}
// Yes. Update the state to reflect this, and then bail out.
N = Curr;
RS.Length = Length;
for (unsigned StartIdx : RepeatedSubstringStarts) {
RS.StartIndices.push_back(StartIdx);
}
break;
}
// At this point, either NewRS is an empty RepeatedSubstring, or it was
// set in the above loop. Similarly, N is either nullptr, or the node
// associated with NewRS.
}
} // namespace wasm
|