1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
|
/*
* Copyright 2016 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <assert.h>
#include <iostream>
#include "threads.h"
// debugging tools
#ifdef BINARYEN_THREAD_DEBUG
static std::mutex debug;
#define DEBUG_THREAD(x) { std::lock_guard<std::mutex> lock(debug); std::cerr << "[THREAD " << std::this_thread::get_id() << "] " << x; }
#define DEBUG_POOL(x) { std::lock_guard<std::mutex> lock(debug); std::cerr << "[POOL] " << x; }
#else
#define DEBUG_THREAD(x)
#define DEBUG_POOL(x)
#endif
namespace wasm {
// Global thread information
static std::unique_ptr<ThreadPool> pool;
// Thread
Thread::Thread() {
assert(!ThreadPool::get()->isRunning());
thread = std::unique_ptr<std::thread>(new std::thread(mainLoop, this));
}
Thread::~Thread() {
assert(!ThreadPool::get()->isRunning());
{
std::lock_guard<std::mutex> lock(mutex);
// notify the thread that it can exit
done = true;
condition.notify_one();
}
thread->join();
}
void Thread::work(std::function<ThreadWorkState ()> doWork_) {
// TODO: fancy work stealing
DEBUG_THREAD("send work to thread\n");
{
std::lock_guard<std::mutex> lock(mutex);
// notify the thread that it can do some work
doWork = doWork_;
condition.notify_one();
DEBUG_THREAD("work sent\n");
}
}
void Thread::mainLoop(void *self_) {
auto* self = static_cast<Thread*>(self_);
while (1) {
DEBUG_THREAD("checking for work\n");
{
std::unique_lock<std::mutex> lock(self->mutex);
if (self->doWork) {
DEBUG_THREAD("doing work\n");
// run tasks until they are all done
while (self->doWork() == ThreadWorkState::More) {}
self->doWork = nullptr;
} else if (self->done) {
DEBUG_THREAD("done\n");
return;
}
}
ThreadPool::get()->notifyThreadIsReady();
{
std::unique_lock<std::mutex> lock(self->mutex);
if (!self->done && !self->doWork) {
DEBUG_THREAD("thread waiting\n");
self->condition.wait(lock);
}
}
}
}
// ThreadPool
void ThreadPool::initialize(size_t num) {
if (num == 1) return; // no multiple cores, don't create threads
DEBUG_POOL("initialize()\n");
std::unique_lock<std::mutex> lock(mutex);
ready.store(threads.size()); // initial state before first resetThreadsAreReady()
resetThreadsAreReady();
for (size_t i = 0; i < num; i++) {
threads.emplace_back(std::unique_ptr<Thread>(new Thread()));
}
DEBUG_POOL("initialize() waiting\n");
condition.wait(lock, [this]() { return areThreadsReady(); });
DEBUG_POOL("initialize() is done\n");
}
ThreadPool* ThreadPool::get() {
if (!pool) {
size_t num = std::max(1U, std::thread::hardware_concurrency());
if (getenv("BINARYEN_CORES")) {
num = std::stoi(getenv("BINARYEN_CORES"));
}
pool = std::unique_ptr<ThreadPool>(new ThreadPool());
pool->initialize(num);
}
return pool.get();
}
void ThreadPool::work(std::vector<std::function<ThreadWorkState ()>>& doWorkers) {
size_t num = threads.size();
// If no multiple cores, or on a side thread, do not use worker threads
if (num == 0) {
// just run sequentially
DEBUG_POOL("work() sequentially\n");
assert(doWorkers.size() > 0);
while (doWorkers[0]() == ThreadWorkState::More) {}
return;
}
// run in parallel on threads
// TODO: fancy work stealing
DEBUG_POOL("work() on threads\n");
assert(doWorkers.size() == num);
assert(!running);
running = true;
std::unique_lock<std::mutex> lock(mutex);
resetThreadsAreReady();
for (size_t i = 0; i < num; i++) {
threads[i]->work(doWorkers[i]);
}
DEBUG_POOL("main thread waiting\n");
condition.wait(lock, [this]() { return areThreadsReady(); });
DEBUG_POOL("main thread waiting\n");
running = false;
DEBUG_POOL("work() is done\n");
}
size_t ThreadPool::size() {
return std::max(size_t(1), threads.size());
}
bool ThreadPool::isRunning() {
return pool && pool->running;
}
void ThreadPool::notifyThreadIsReady() {
DEBUG_POOL("notify thread is ready\n";)
std::lock_guard<std::mutex> lock(mutex);
ready.fetch_add(1);
condition.notify_one();
}
void ThreadPool::resetThreadsAreReady() {
DEBUG_POOL("reset threads are ready\n";)
auto old = ready.exchange(0);
assert(old == threads.size());
}
bool ThreadPool::areThreadsReady() {
DEBUG_POOL("are threads ready?\n";)
return ready.load() == threads.size();
}
} // namespace wasm
|