1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
/*
* Copyright 2024 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cassert>
#include "topological_orders.h"
namespace wasm {
TopologicalOrders::Selector
TopologicalOrders::Selector::select(TopologicalOrders& ctx,
SelectionMethod method = InPlace) {
assert(count >= 1);
assert(start + count <= ctx.buf.size());
if (method == MinHeap) {
ctx.buf[start] = ctx.popChoice();
}
auto selection = ctx.buf[start];
// The next selector will select the next index and will not be able to choose
// the vertex we just selected.
Selector next = {start + 1, count - 1, 0};
// Append any child that this selection makes available to the choices for the
// next selector.
for (auto child : ctx.graph[selection]) {
assert(ctx.indegrees[child] > 0);
if (--ctx.indegrees[child] == 0) {
if (method == MinHeap) {
ctx.pushChoice(child);
} else {
ctx.buf[next.start + next.count] = child;
}
++next.count;
}
}
return next;
}
std::optional<TopologicalOrders::Selector>
TopologicalOrders::Selector::advance(TopologicalOrders& ctx) {
assert(count >= 1);
// Undo the current selection. Backtrack by incrementing the in-degree for
// each child of the vertex we are unselecting. No need to remove the newly
// unavailable children from the buffer; they will be overwritten with valid
// selections.
auto unselected = ctx.buf[start];
for (auto child : ctx.graph[unselected]) {
++ctx.indegrees[child];
}
if (index == count - 1) {
// We are wrapping back to the original configuration. The current selection
// element needs to go back on the end and everything else needs to be
// shifted back to its original location. This ensures that we leave
// everything how we found it so the previous selector can make its next
// selection without observing anything having changed in the meantime.
for (size_t i = 1; i < count; ++i) {
ctx.buf[start + i - 1] = ctx.buf[start + i];
}
ctx.buf[start + count - 1] = unselected;
return std::nullopt;
}
// Otherwise, just swap the next selection into the first position and
// finalize the selection.
std::swap(ctx.buf[start], ctx.buf[start + ++index]);
return select(ctx);
}
TopologicalOrders::TopologicalOrders(
const std::vector<std::vector<size_t>>& graph, SelectionMethod method)
: graph(graph), indegrees(graph.size()), buf(graph.size()) {
if (graph.size() == 0) {
return;
}
// Find the in-degree of each vertex.
for (const auto& vertex : graph) {
for (auto child : vertex) {
++indegrees[child];
}
}
// Set up the first selector with its possible selections.
selectors.reserve(graph.size());
selectors.push_back({0, 0, 0});
auto& first = selectors.back();
for (size_t i = 0; i < graph.size(); ++i) {
if (indegrees[i] == 0) {
if (method == MinHeap) {
pushChoice(i);
} else {
buf[first.count] = i;
}
++first.count;
}
}
// Initialize the full stack of selectors.
while (selectors.size() < graph.size()) {
selectors.push_back(selectors.back().select(*this, method));
}
selectors.back().select(*this, method);
}
TopologicalOrders& TopologicalOrders::operator++() {
// Find the last selector that can be advanced, popping any that cannot.
std::optional<Selector> next;
while (!selectors.empty() && !(next = selectors.back().advance(*this))) {
selectors.pop_back();
}
if (!next) {
// No selector could be advanced, so we've seen every possible ordering.
assert(selectors.empty());
return *this;
}
// We've advanced the last selector on the stack, so initialize the
// subsequent selectors.
assert(selectors.size() < graph.size());
selectors.push_back(*next);
while (selectors.size() < graph.size()) {
selectors.push_back(selectors.back().select(*this));
}
return *this;
}
void TopologicalOrders::pushChoice(size_t choice) {
choiceHeap.push_back(choice);
std::push_heap(choiceHeap.begin(), choiceHeap.end(), std::greater<size_t>{});
}
size_t TopologicalOrders::popChoice() {
std::pop_heap(choiceHeap.begin(), choiceHeap.end(), std::greater<size_t>{});
auto choice = choiceHeap.back();
choiceHeap.pop_back();
return choice;
}
} // namespace wasm
|