1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
/*
* Copyright 2024 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef wasm_support_topological_orders_h
#define wasm_support_topological_orders_h
#include <cassert>
#include <cstddef>
#include <optional>
#include <unordered_map>
#include <vector>
namespace wasm {
// A utility for iterating through all possible topological orders in a graph
// using an extension of Kahn's algorithm (see
// https://en.wikipedia.org/wiki/Topological_sorting) that iteratively makes all
// possible choices for each position of the output order.
struct TopologicalOrders {
using value_type = const std::vector<size_t>;
using difference_type = std::ptrdiff_t;
using reference = const std::vector<size_t>&;
using pointer = const std::vector<size_t>*;
using iterator_category = std::input_iterator_tag;
// Takes an adjacency list, where the list for each vertex is a sorted list of
// the indices of its children, which will appear after it in the order.
TopologicalOrders(const std::vector<std::vector<size_t>>& graph)
: TopologicalOrders(graph, InPlace) {}
TopologicalOrders begin() { return TopologicalOrders(graph); }
TopologicalOrders end() { return TopologicalOrders({}); }
bool operator==(const TopologicalOrders& other) const {
return selectors.empty() == other.selectors.empty();
}
bool operator!=(const TopologicalOrders& other) const {
return !(*this == other);
}
const std::vector<size_t>& operator*() const { return buf; }
const std::vector<size_t>* operator->() const { return &buf; }
TopologicalOrders& operator++();
TopologicalOrders operator++(int) { return ++(*this); }
protected:
enum SelectionMethod { InPlace, MinHeap };
TopologicalOrders(const std::vector<std::vector<size_t>>& graph,
SelectionMethod method);
private:
// The input graph given as an adjacency list with edges from vertices to
// their dependent children.
const std::vector<std::vector<size_t>>& graph;
// The current in-degrees for each vertex. When a vertex is appended to our
// permutation, the in-degrees of its children are decremented and those that
// go to zero become available for the next selection.
std::vector<size_t> indegrees;
// The buffer in which we are constructing a permutation. It contains a
// sequence of selected vertices followed by a sequence of possible choices
// for the next vertex.
std::vector<size_t> buf;
// When we are finding the minimal topological order, store the possible
// choices in this separate min-heap instead of directly in `buf`.
std::vector<size_t> choiceHeap;
// The state for tracking the possible choices for a single vertex in the
// output order.
struct Selector {
// The start index of the sequence of available choices. Also the index
// where we place the current choice.
size_t start;
// The number of choices we have.
size_t count;
// The index of the current choice in the original order.
size_t index;
// Select the next available vertex, decrement in-degrees, and update the
// sequence of available vertices. Return the Selector for the next vertex.
Selector select(TopologicalOrders& ctx, SelectionMethod method);
// Undo the current selection, move the next selection into the first
// position and return the new selector for the next position. Returns
// nullopt if advancing wraps back around to the original configuration.
std::optional<Selector> advance(TopologicalOrders& ctx);
};
void pushChoice(size_t);
size_t popChoice();
// A stack of selectors, one for each vertex in a complete topological order.
// Empty if we've already seen every possible ordering.
std::vector<Selector> selectors;
};
// A utility for finding a single topological order of a graph.
struct TopologicalSort : private TopologicalOrders {
TopologicalSort(const std::vector<std::vector<size_t>>& graph)
: TopologicalOrders(graph) {}
const std::vector<size_t>& operator*() const {
return TopologicalOrders::operator*();
}
};
// A utility for finding the topological order that is as close as possible to
// the original order of elements. Internally uses a min-heap to choose the best
// available next element.
struct MinTopologicalSort : private TopologicalOrders {
MinTopologicalSort(const std::vector<std::vector<size_t>>& graph)
: TopologicalOrders(graph, MinHeap) {}
const std::vector<size_t>& operator*() const {
return TopologicalOrders::operator*();
}
};
// A utility that finds a topological sort of a graph with arbitrary element
// types.
template<typename T, typename TopoSort = TopologicalSort>
struct TopologicalSortOf {
std::vector<T> order;
// The value of the iterators must be a pair of an element and an iterable of
// its children.
template<typename It> TopologicalSortOf(It begin, It end) {
std::unordered_map<T, size_t> indices;
std::vector<T> elements;
// Assign indices to each element.
for (auto it = begin; it != end; ++it) {
auto inserted = indices.insert({it->first, elements.size()});
assert(inserted.second && "unexpected repeat element");
elements.push_back(inserted.first->first);
}
// Collect the graph in terms of indices.
std::vector<std::vector<size_t>> indexGraph;
indexGraph.reserve(elements.size());
for (auto it = begin; it != end; ++it) {
indexGraph.emplace_back();
for (const auto& child : it->second) {
indexGraph.back().push_back(indices.at(child));
}
}
// Compute the topological order and convert back to original elements.
order.reserve(elements.size());
auto indexOrder = *TopoSort(indexGraph);
for (auto i : indexOrder) {
order.emplace_back(std::move(elements[i]));
}
}
const std::vector<T>& operator*() const { return order; }
};
// A utility that finds the minimum topological sort of a graph with arbitrary
// element types.
template<typename T>
using MinTopologicalSortOf = TopologicalSortOf<T, MinTopologicalSort>;
} // namespace wasm
#endif // wasm_support_topological_orders_h
|