1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
|
/*
* Copyright 2024 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef wasm_support_topological_sort_h
#define wasm_support_topological_sort_h
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <functional>
#include <optional>
#include <type_traits>
#include <unordered_map>
#include <variant>
#include <vector>
#include "support/index.h"
namespace wasm {
namespace TopologicalSort {
// An adjacency list containing edges from vertices to their successors. Uses
// `Index` because we are primarily sorting elements of Wasm modules. If we ever
// need to sort signficantly larger objects, we might need to switch to
// `size_t` or make this a template parameter.
using Graph = std::vector<std::vector<Index>>;
// Return a topological sort of the vertices in the given adjacency graph.
inline std::vector<Index> sort(const Graph& graph);
// Return the topological sort of the vertices in the given adjacency graph that
// is lexicographically minimal with respect to the provided comparator on
// vertex indices. Implemented using a min-heap internally.
template<typename F = std::less<Index>>
std::vector<Index> minSort(const Graph& graph, F cmp = std::less<Index>{});
// A utility that finds a topological sort of a graph with arbitrary element
// types. The provided iterators must be to pairs of elements and collections of
// their children.
template<typename It, typename SortT, SortT Sort, typename... Args>
decltype(auto) sortOfImpl(It begin, It end, Args... args) {
using T = std::remove_cv_t<typename It::value_type::first_type>;
std::unordered_map<T, Index> indices;
std::vector<T> elements;
// Assign indices to each element.
for (auto it = begin; it != end; ++it) {
auto inserted = indices.insert({it->first, elements.size()});
assert(inserted.second && "unexpected repeat element");
elements.push_back(inserted.first->first);
}
// Collect the graph in terms of indices.
Graph indexGraph;
indexGraph.reserve(elements.size());
for (auto it = begin; it != end; ++it) {
indexGraph.emplace_back();
for (const auto& child : it->second) {
indexGraph.back().push_back(indices.at(child));
}
}
// Compute the topological order and convert back to original elements.
std::vector<T> order;
order.reserve(elements.size());
for (auto i : Sort(indexGraph, std::forward<Args>(args)...)) {
order.emplace_back(std::move(elements[i]));
}
return order;
}
template<typename It> decltype(auto) sortOf(It begin, It end) {
return sortOfImpl<It, std::vector<Index> (&)(const Graph&), sort>(begin, end);
}
template<typename It, typename Cmp>
decltype(auto) minSortOf(It begin, It end, Cmp cmp) {
return sortOfImpl<It,
std::vector<Index> (&)(const Graph&, Cmp),
minSort,
Cmp>(begin, end, cmp);
}
} // namespace TopologicalSort
template<typename F = std::monostate> struct TopologicalOrdersImpl;
// A utility for iterating through all possible topological orders in a graph
// using an extension of Kahn's algorithm (see
// https://en.wikipedia.org/wiki/Topological_sorting) that iteratively makes all
// possible choices for each position of the output order.
using TopologicalOrders = TopologicalOrdersImpl<std::monostate>;
// The template parameter `Cmp` is only used as in internal implementation
// detail of `minSort`.
template<typename Cmp> struct TopologicalOrdersImpl {
using Graph = TopologicalSort::Graph;
using value_type = const std::vector<Index>;
using difference_type = std::ptrdiff_t;
using reference = const std::vector<Index>&;
using pointer = const std::vector<Index>*;
using iterator_category = std::input_iterator_tag;
// Takes an adjacency list, where the list for each vertex is a sorted list of
// the indices of its children, which will appear after it in the order.
TopologicalOrdersImpl(const Graph& graph)
: TopologicalOrdersImpl(graph, {}) {}
TopologicalOrdersImpl begin() { return TopologicalOrdersImpl(graph); }
TopologicalOrdersImpl end() { return TopologicalOrdersImpl({}); }
bool operator==(const TopologicalOrdersImpl& other) const {
return selectors.empty() == other.selectors.empty();
}
bool operator!=(const TopologicalOrdersImpl& other) const {
return !(*this == other);
}
const std::vector<Index>& operator*() const { return buf; }
const std::vector<Index>* operator->() const { return &buf; }
TopologicalOrdersImpl& operator++() {
// Find the last selector that can be advanced, popping any that cannot.
std::optional<Selector> next;
while (!selectors.empty() && !(next = selectors.back().advance(*this))) {
selectors.pop_back();
}
if (!next) {
// No selector could be advanced, so we've seen every possible ordering.
assert(selectors.empty());
return *this;
}
// We've advanced the last selector on the stack, so initialize the
// subsequent selectors.
assert(selectors.size() < graph.size());
selectors.push_back(*next);
while (selectors.size() < graph.size()) {
selectors.push_back(selectors.back().select(*this));
}
return *this;
}
TopologicalOrdersImpl operator++(int) { return ++(*this); }
private:
TopologicalOrdersImpl(const Graph& graph, Cmp cmp)
: graph(graph), indegrees(graph.size()), buf(graph.size()), cmp(cmp) {
if (graph.size() == 0) {
return;
}
// Find the in-degree of each vertex.
for (const auto& vertex : graph) {
for (auto child : vertex) {
++indegrees[child];
}
}
// Set up the first selector with its possible selections.
selectors.reserve(graph.size());
selectors.push_back({0, 0, 0});
auto& first = selectors.back();
for (Index i = 0; i < graph.size(); ++i) {
if (indegrees[i] == 0) {
if constexpr (useMinHeap) {
pushChoice(i);
} else {
buf[first.count] = i;
}
++first.count;
}
}
// Initialize the full stack of selectors.
while (selectors.size() < graph.size()) {
selectors.push_back(selectors.back().select(*this));
}
selectors.back().select(*this);
}
// The input graph given as an adjacency list with edges from vertices to
// their dependent children.
const Graph& graph;
// The current in-degrees for each vertex. When a vertex is appended to our
// permutation, the in-degrees of its children are decremented and those that
// go to zero become available for the next selection.
std::vector<Index> indegrees;
// The buffer in which we are constructing a permutation. It contains a
// sequence of selected vertices followed by a sequence of possible choices
// for the next vertex.
std::vector<Index> buf;
// When we are finding a minimal topological order, store the possible
// choices in this separate min-heap instead of directly in `buf`.
std::vector<Index> choiceHeap;
// When we are finding a minimal topological order, use this function to
// compare possible choices. Empty iff we are not finding a minimal
// topological order.
Cmp cmp;
static constexpr bool useMinHeap = !std::is_same_v<Cmp, std::monostate>;
// The state for tracking the possible choices for a single vertex in the
// output order.
struct Selector {
// The start index of the sequence of available choices. Also the index
// where we place the current choice.
Index start;
// The number of choices we have.
Index count;
// The index of the current choice in the original order.
Index index;
// Select the next available vertex, decrement in-degrees, and update the
// sequence of available vertices. Return the Selector for the next vertex.
Selector select(TopologicalOrdersImpl& ctx) {
assert(count >= 1);
assert(start + count <= ctx.buf.size());
if constexpr (TopologicalOrdersImpl::useMinHeap) {
ctx.buf[start] = ctx.popChoice();
}
auto selection = ctx.buf[start];
// The next selector will select the next index and will not be able to
// choose the vertex we just selected.
Selector next = {start + 1, count - 1, 0};
// Append any child that this selection makes available to the choices for
// the next selector.
for (auto child : ctx.graph[selection]) {
assert(ctx.indegrees[child] > 0);
if (--ctx.indegrees[child] == 0) {
if constexpr (TopologicalOrdersImpl::useMinHeap) {
ctx.pushChoice(child);
} else {
ctx.buf[next.start + next.count] = child;
}
++next.count;
}
}
return next;
}
// Undo the current selection, move the next selection into the first
// position and return the new selector for the next position. Returns
// nullopt if advancing wraps back around to the original configuration.
std::optional<Selector> advance(TopologicalOrdersImpl& ctx) {
assert(count >= 1);
// Undo the current selection. Backtrack by incrementing the in-degree for
// each child of the vertex we are unselecting. No need to remove the
// newly unavailable children from the buffer; they will be overwritten
// with valid selections.
auto unselected = ctx.buf[start];
for (auto child : ctx.graph[unselected]) {
++ctx.indegrees[child];
}
if (index == count - 1) {
// We are wrapping back to the original configuration. The current
// selection element needs to go back on the end and everything else
// needs to be shifted back to its original location. This ensures that
// we leave everything how we found it so the previous selector can make
// its next selection without observing anything having changed in the
// meantime.
for (Index i = 1; i < count; ++i) {
ctx.buf[start + i - 1] = ctx.buf[start + i];
}
ctx.buf[start + count - 1] = unselected;
return std::nullopt;
}
// Otherwise, just swap the next selection into the first position and
// finalize the selection.
std::swap(ctx.buf[start], ctx.buf[start + ++index]);
return select(ctx);
}
};
void pushChoice(Index choice) {
choiceHeap.push_back(choice);
std::push_heap(choiceHeap.begin(), choiceHeap.end(), [&](Index a, Index b) {
return cmp(b, a);
});
}
Index popChoice() {
std::pop_heap(choiceHeap.begin(), choiceHeap.end(), [&](Index a, Index b) {
return cmp(b, a);
});
auto choice = choiceHeap.back();
choiceHeap.pop_back();
return choice;
}
// A stack of selectors, one for each vertex in a complete topological order.
// Empty if we've already seen every possible ordering.
std::vector<Selector> selectors;
friend std::vector<Index> TopologicalSort::minSort<Cmp>(const Graph&, Cmp);
};
namespace TopologicalSort {
std::vector<Index> sort(const Graph& graph) {
return *TopologicalOrders(graph);
}
template<typename Cmp> std::vector<Index> minSort(const Graph& graph, Cmp cmp) {
return *TopologicalOrdersImpl<Cmp>(graph, cmp);
}
} // namespace TopologicalSort
} // namespace wasm
#endif // wasm_support_topological_sort_h
|