summaryrefslogtreecommitdiff
path: root/src/tools/wasm-ctor-eval.cpp
blob: 89727d0122043ecf1d96bf6d20cd389d9319b37a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
/*
 * Copyright 2017 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

//
// Loads wasm plus a list of functions that are global ctors, i.e.,
// are to be executed. It then executes as many of them as it can,
// applying their changes to memory etc as needed, then writes it. In
// other words, this executes code at compile time to speed up
// startup later.
//

#include <memory>

#include "asmjs/shared-constants.h"
#include "ir/find_all.h"
#include "ir/gc-type-utils.h"
#include "ir/global-utils.h"
#include "ir/import-utils.h"
#include "ir/literal-utils.h"
#include "ir/memory-utils.h"
#include "ir/names.h"
#include "pass.h"
#include "support/colors.h"
#include "support/file.h"
#include "support/insert_ordered.h"
#include "support/small_set.h"
#include "support/string.h"
#include "support/topological_sort.h"
#include "tool-options.h"
#include "wasm-builder.h"
#include "wasm-interpreter.h"
#include "wasm-io.h"
#include "wasm-validator.h"

using namespace wasm;

namespace {

struct FailToEvalException {
  std::string why;
  FailToEvalException(std::string why) : why(why) {}
};

// Check whether a field is both nullable and mutable. This is a useful
// property for breaking cycles of GC data, see below.
bool isNullableAndMutable(Expression* ref, Index fieldIndex) {
  // Find the field for the given reference, and check its properties.
  auto field = GCTypeUtils::getField(ref->type, fieldIndex);
  assert(field);
  return field->type.isNullable() && field->mutable_ == Mutable;
}

// The prefix for a recommendation, so it is aligned properly with the rest of
// the output.
#define RECOMMENDATION "\n       recommendation: "

class EvallingModuleRunner : public ModuleRunnerBase<EvallingModuleRunner> {
public:
  EvallingModuleRunner(
    Module& wasm,
    ExternalInterface* externalInterface,
    std::map<Name, std::shared_ptr<EvallingModuleRunner>> linkedInstances_ = {})
    : ModuleRunnerBase(wasm, externalInterface, linkedInstances_) {}

  Flow visitGlobalGet(GlobalGet* curr) {
    // Error on reads of imported globals.
    auto* global = wasm.getGlobal(curr->name);
    if (global->imported()) {
      throw FailToEvalException(std::string("read from imported global ") +
                                global->module.toString() + "." +
                                global->base.toString());
    }

    return ModuleRunnerBase<EvallingModuleRunner>::visitGlobalGet(curr);
  }
};

// Build an artificial `env` module based on a module's imports, so that the
// interpreter can use correct object instances. It initializes usable global
// imports, and fills the rest with fake values since those are dangerous to
// use. we will fail if dangerous globals are used.
std::unique_ptr<Module> buildEnvModule(Module& wasm) {
  auto env = std::make_unique<Module>();
  env->name = "env";

  // create empty functions with similar signature
  ModuleUtils::iterImportedFunctions(wasm, [&](Function* func) {
    if (func->module == env->name) {
      Builder builder(*env);
      auto* copied = ModuleUtils::copyFunction(func, *env);
      copied->module = Name();
      copied->base = Name();
      copied->body = builder.makeUnreachable();
      env->addExport(
        builder.makeExport(func->base, copied->name, ExternalKind::Function));
    }
  });

  // create tables with similar initial and max values
  ModuleUtils::iterImportedTables(wasm, [&](Table* table) {
    if (table->module == env->name) {
      auto* copied = ModuleUtils::copyTable(table, *env);
      copied->module = Name();
      copied->base = Name();
      env->addExport(Builder(*env).makeExport(
        table->base, copied->name, ExternalKind::Table));
    }
  });

  ModuleUtils::iterImportedGlobals(wasm, [&](Global* global) {
    if (global->module == env->name) {
      auto* copied = ModuleUtils::copyGlobal(global, *env);
      copied->module = Name();
      copied->base = Name();

      Builder builder(*env);
      copied->init = builder.makeConst(Literal::makeZero(global->type));
      env->addExport(
        builder.makeExport(global->base, copied->name, ExternalKind::Global));
    }
  });

  // create an exported memory with the same initial and max size
  ModuleUtils::iterImportedMemories(wasm, [&](Memory* memory) {
    if (memory->module == env->name) {
      auto* copied = ModuleUtils::copyMemory(memory, *env);
      copied->module = Name();
      copied->base = Name();
      env->addExport(Builder(*env).makeExport(
        memory->base, copied->name, ExternalKind::Memory));
    }
  });

  return env;
}

// Whether to ignore external input to the program as it runs. If set, we will
// assume that stdin is empty, that any env vars we try to read are not set,
// that there are not arguments passed to main, etc.
static bool ignoreExternalInput = false;

struct CtorEvalExternalInterface : EvallingModuleRunner::ExternalInterface {
  Module* wasm;
  EvallingModuleRunner* instance;
  std::map<Name, std::shared_ptr<EvallingModuleRunner>> linkedInstances;

  // A representation of the contents of wasm memory as we execute.
  std::unordered_map<Name, std::vector<char>> memories;

  // All the names of globals we've seen in the module. We cannot reuse these.
  // We must track these manually as we will be adding more, and as we do so we
  // also reorder them, so we remove and re-add globals, which means the module
  // itself is not aware of all the globals that belong to it (those that have
  // not yet been re-added are a blind spot for it).
  std::unordered_set<Name> usedGlobalNames;

  // Set to true after we create the instance.
  bool instanceInitialized = false;

  CtorEvalExternalInterface(
    std::map<Name, std::shared_ptr<EvallingModuleRunner>> linkedInstances_ =
      {}) {
    linkedInstances.swap(linkedInstances_);
  }

  // Called when we want to apply the current state of execution to the Module.
  // Until this is called the Module is never changed.
  void applyToModule() {
    clearApplyState();

    // If nothing was ever written to memories then there is nothing to update.
    if (!memories.empty()) {
      applyMemoryToModule();
    }

    applyGlobalsToModule();
  }

  void init(Module& wasm_, EvallingModuleRunner& instance_) override {
    wasm = &wasm_;
    instance = &instance_;
    for (auto& memory : wasm->memories) {
      if (!memory->imported()) {
        std::vector<char> data;
        memories[memory->name] = data;
      }
    }

    for (auto& global : wasm->globals) {
      usedGlobalNames.insert(global->name);
    }
  }

  void importGlobals(GlobalValueSet& globals, Module& wasm_) override {
    ModuleUtils::iterImportedGlobals(wasm_, [&](Global* global) {
      auto it = linkedInstances.find(global->module);
      if (it != linkedInstances.end()) {
        auto* inst = it->second.get();
        auto* globalExport = inst->wasm.getExportOrNull(global->base);
        if (!globalExport) {
          throw FailToEvalException(std::string("importGlobals: ") +
                                    global->module.toString() + "." +
                                    global->base.toString());
        }
        globals[global->name] = inst->globals[globalExport->value];
      } else {
        throw FailToEvalException(std::string("importGlobals: ") +
                                  global->module.toString() + "." +
                                  global->base.toString());
      }
    });
  }

  Literals callImport(Function* import, const Literals& arguments) override {
    Name WASI("wasi_snapshot_preview1");

    if (ignoreExternalInput) {
      if (import->module == WASI) {
        if (import->base == "environ_sizes_get") {
          if (arguments.size() != 2 || arguments[0].type != Type::i32 ||
              import->getResults() != Type::i32) {
            throw FailToEvalException("wasi environ_sizes_get has wrong sig");
          }

          // Write out a count of i32(0) and return __WASI_ERRNO_SUCCESS (0).
          store32(arguments[0].geti32(), 0, wasm->memories[0]->name);
          return {Literal(int32_t(0))};
        }

        if (import->base == "environ_get") {
          if (arguments.size() != 2 || arguments[0].type != Type::i32 ||
              import->getResults() != Type::i32) {
            throw FailToEvalException("wasi environ_get has wrong sig");
          }

          // Just return __WASI_ERRNO_SUCCESS (0).
          return {Literal(int32_t(0))};
        }

        if (import->base == "args_sizes_get") {
          if (arguments.size() != 2 || arguments[0].type != Type::i32 ||
              import->getResults() != Type::i32) {
            throw FailToEvalException("wasi args_sizes_get has wrong sig");
          }

          // Write out an argc of i32(0) and return a __WASI_ERRNO_SUCCESS (0).
          store32(arguments[0].geti32(), 0, wasm->memories[0]->name);
          return {Literal(int32_t(0))};
        }

        if (import->base == "args_get") {
          if (arguments.size() != 2 || arguments[0].type != Type::i32 ||
              import->getResults() != Type::i32) {
            throw FailToEvalException("wasi args_get has wrong sig");
          }

          // Just return __WASI_ERRNO_SUCCESS (0).
          return {Literal(int32_t(0))};
        }

        // Otherwise, we don't recognize this import; continue normally to
        // error.
      }
    }

    std::string extra;
    if (import->module == ENV && import->base == "___cxa_atexit") {
      extra = RECOMMENDATION "build with -s NO_EXIT_RUNTIME=1 so that calls "
                             "to atexit are not emitted";
    } else if (import->module == WASI && !ignoreExternalInput) {
      extra = RECOMMENDATION "consider --ignore-external-input";
    }
    throw FailToEvalException(std::string("call import: ") +
                              import->module.toString() + "." +
                              import->base.toString() + extra);
  }

  // We assume the table is not modified FIXME
  Literals callTable(Name tableName,
                     Address index,
                     HeapType sig,
                     Literals& arguments,
                     Type result,
                     EvallingModuleRunner& instance) override {

    std::unordered_map<wasm::Name, std::vector<wasm::Name>>::iterator it;

    auto* table = wasm->getTableOrNull(tableName);
    if (!table) {
      throw FailToEvalException("callTable on non-existing table");
    }

    // Look through the segments and find the function. Segments can overlap,
    // so we want the last one.
    Name targetFunc;
    for (auto& segment : wasm->elementSegments) {
      if (segment->table != tableName) {
        continue;
      }

      Index start;
      // look for the index in this segment. if it has a constant offset, we
      // look in the proper range. if it instead gets a global, we rely on the
      // fact that when not dynamically linking then the table is loaded at
      // offset 0.
      if (auto* c = segment->offset->dynCast<Const>()) {
        start = c->value.getInteger();
      } else if (segment->offset->is<GlobalGet>()) {
        start = 0;
      } else {
        // wasm spec only allows const and global.get there
        WASM_UNREACHABLE("invalid expr type");
      }
      auto end = start + segment->data.size();
      if (start <= index && index < end) {
        auto entry = segment->data[index - start];
        if (auto* get = entry->dynCast<RefFunc>()) {
          targetFunc = get->func;
        } else {
          throw FailToEvalException(
            std::string("callTable on uninitialized entry"));
        }
      }
    }

    if (!targetFunc.is()) {
      throw FailToEvalException(
        std::string("callTable on index not found in static segments: ") +
        std::to_string(index));
    }

    // If this is one of our functions, we can call it; if it was
    // imported, fail.
    auto* func = wasm->getFunction(targetFunc);
    if (func->type != sig) {
      throw FailToEvalException(std::string("callTable signature mismatch: ") +
                                targetFunc.toString());
    }
    if (!func->imported()) {
      return instance.callFunction(targetFunc, arguments);
    } else {
      throw FailToEvalException(
        std::string("callTable on imported function: ") +
        targetFunc.toString());
    }
  }

  Index tableSize(Name tableName) override {
    // See callTable above, we assume the table is not modified FIXME
    return wasm->getTableOrNull(tableName)->initial;
  }

  Literal tableLoad(Name tableName, Address index) override {
    throw FailToEvalException("table.get: TODO");
  }

  // called during initialization
  void
  tableStore(Name tableName, Address index, const Literal& value) override {
    // We allow stores to the table during initialization, but not after, as we
    // assume the table does not change at runtime.
    // TODO: Allow table changes by updating the table later like we do with the
    //       memory, by tracking and serializing them.
    if (instanceInitialized) {
      throw FailToEvalException("tableStore after init: TODO");
    }
  }

  int8_t load8s(Address addr, Name memoryName) override {
    return doLoad<int8_t>(addr, memoryName);
  }
  uint8_t load8u(Address addr, Name memoryName) override {
    return doLoad<uint8_t>(addr, memoryName);
  }
  int16_t load16s(Address addr, Name memoryName) override {
    return doLoad<int16_t>(addr, memoryName);
  }
  uint16_t load16u(Address addr, Name memoryName) override {
    return doLoad<uint16_t>(addr, memoryName);
  }
  int32_t load32s(Address addr, Name memoryName) override {
    return doLoad<int32_t>(addr, memoryName);
  }
  uint32_t load32u(Address addr, Name memoryName) override {
    return doLoad<uint32_t>(addr, memoryName);
  }
  int64_t load64s(Address addr, Name memoryName) override {
    return doLoad<int64_t>(addr, memoryName);
  }
  uint64_t load64u(Address addr, Name memoryName) override {
    return doLoad<uint64_t>(addr, memoryName);
  }
  std::array<uint8_t, 16> load128(Address addr, Name memoryName) override {
    return doLoad<std::array<uint8_t, 16>>(addr, memoryName);
  }

  void store8(Address addr, int8_t value, Name memoryName) override {
    doStore<int8_t>(addr, value, memoryName);
  }
  void store16(Address addr, int16_t value, Name memoryName) override {
    doStore<int16_t>(addr, value, memoryName);
  }
  void store32(Address addr, int32_t value, Name memoryName) override {
    doStore<int32_t>(addr, value, memoryName);
  }
  void store64(Address addr, int64_t value, Name memoryName) override {
    doStore<int64_t>(addr, value, memoryName);
  }
  void store128(Address addr,
                const std::array<uint8_t, 16>& value,
                Name memoryName) override {
    doStore<std::array<uint8_t, 16>>(addr, value, memoryName);
  }

  bool growMemory(Name memoryName,
                  Address /*oldSize*/,
                  Address /*newSize*/) override {
    throw FailToEvalException("grow memory");
  }

  bool growTable(Name /*name*/,
                 const Literal& /*value*/,
                 Index /*oldSize*/,
                 Index /*newSize*/) override {
    throw FailToEvalException("grow table");
  }

  void trap(const char* why) override {
    throw FailToEvalException(std::string("trap: ") + why);
  }

  void hostLimit(const char* why) override {
    throw FailToEvalException(std::string("trap: ") + why);
  }

  void throwException(const WasmException& exn) override {
    std::stringstream ss;
    ss << "exception thrown: " << exn;
    throw FailToEvalException(ss.str());
  }

private:
  // We limit the size of memory to some reasonable amount. We handle memory in
  // a linear/dense manner, so when we see a write to address X we allocate X
  // memory to represent that, and so very high addresses can lead to OOM. In
  // practice, ctor-eval should only run on low addresses anyhow, since static
  // memory tends to be reasonably-sized and mallocs start at the start of the
  // heap, so it's simpler to add an arbitrary limit here to avoid OOMs for now.
  const size_t MaximumMemory = 100 * 1024 * 1024;

  // TODO: handle unaligned too, see shell-interface
  template<typename T> T* getMemory(Address address, Name memoryName) {
    auto it = memories.find(memoryName);
    assert(it != memories.end());
    auto& memory = it->second;
    // resize the memory buffer as needed.
    auto max = address + sizeof(T);
    if (max > memory.size()) {
      if (max > MaximumMemory) {
        throw FailToEvalException("excessively high memory address accessed");
      }
      memory.resize(max);
    }
    return (T*)(&memory[address]);
  }

  template<typename T> void doStore(Address address, T value, Name memoryName) {
    // do a memcpy to avoid undefined behavior if unaligned
    memcpy(getMemory<T>(address, memoryName), &value, sizeof(T));
  }

  template<typename T> T doLoad(Address address, Name memoryName) {
    // do a memcpy to avoid undefined behavior if unaligned
    T ret;
    memcpy(&ret, getMemory<T>(address, memoryName), sizeof(T));
    return ret;
  }

  // Clear the state of the operation of applying the interpreter's runtime
  // information into the module.
  //
  // This happens each time we apply contents to the module, which is basically
  // once per ctor function, but can be more fine-grained also if we execute a
  // line at a time.
  void clearApplyState() {
    // The process of allocating "defining globals" begins here, from scratch
    // each time (things live before may no longer be).
    definingGlobals.clear();

    // Clear any startup operations as well (which may apply to globals that
    // become no longer live; we'll create new start operations as we need
    // them).
    clearStartBlock();
  }

  void applyMemoryToModule() {
    // Memory must have already been flattened into the standard form: one
    // segment at offset 0, or none.
    auto& memory = wasm->memories[0];
    if (wasm->dataSegments.empty()) {
      Builder builder(*wasm);
      auto curr = builder.makeDataSegment();
      curr->offset =
        builder.makeConst(Literal::makeFromInt32(0, memory->addressType));
      curr->setName(Name::fromInt(0), false);
      curr->memory = memory->name;
      wasm->addDataSegment(std::move(curr));
    }
    auto& segment = wasm->dataSegments[0];
    assert(segment->offset->cast<Const>()->value.getInteger() == 0);

    // Copy the current memory contents after execution into the Module's
    // memory.
    segment->data = memories[memory->name];
  }

  // Serializing GC data requires more work than linear memory, because
  // allocations have an identity, and they are created using struct.new /
  // array.new, which we must emit in a proper location in the wasm. This
  // affects how we serialize globals, which can contain GC data, and also, we
  // use globals to store GC data, so overall the process of computing the
  // globals is where most of the GC logic ends up.
  //
  // The general idea for handling GC data is as follows: After evaluating the
  // code, we end up with some live allocations in the interpreter, which we
  // need to somehow serialize into the wasm module. We will put each such live
  // GC data item into its own "defining global", a global whose purpose is to
  // create and store that data. Each such global is immutable, and has the
  // exact type of the data, for simplicity. Every other reference to that GC
  // data in the interpreter's memory can then be serialized by simply emitting
  // a global.get of that defining global.
  void applyGlobalsToModule() {
    if (!wasm->features.hasGC()) {
      // Without GC, we can simply serialize the globals in place as they are.
      for (const auto& [name, values] : instance->globals) {
        wasm->getGlobal(name)->init = getSerialization(values);
      }
      return;
    }

    // We need to emit the "defining globals" of GC data before the existing
    // globals, as the normal ones may refer to them. We do this by removing all
    // the existing globals, and then adding them one by one, during which time
    // we call getSerialization() for their init expressions. If their init
    // refes to GC data, then we will allocate a defining global for that data,
    // and refer to it. Put another way, we place the existing globals back into
    // the module one at a time, adding their dependencies as we go.
    auto oldGlobals = std::move(wasm->globals);
    // After clearing the globals vector, clear the map as well.
    wasm->updateMaps();

    for (auto& oldGlobal : oldGlobals) {
      // Serialize the global's value. While doing so, pass in the name of this
      // global, as we may be able to reuse the global as the defining global
      // for the value. See getSerialization() for more details.
      Name name;
      if (!oldGlobal->mutable_ && oldGlobal->type == oldGlobal->init->type) {
        // This has the properties we need of a defining global - immutable and
        // of the precise type - so use it as such.
        name = oldGlobal->name;
      }

      // If the instance has an evalled value here, compute the serialization
      // for it. (If there is no value, then this is a new global we've added
      // during execution, for whom we've already set up a proper serialized
      // value when we created it.)
      auto iter = instance->globals.find(oldGlobal->name);
      if (iter != instance->globals.end()) {
        oldGlobal->init = getSerialization(iter->second, name);
      }

      // Add the global back to the module.
      wasm->addGlobal(std::move(oldGlobal));
    }

    // Finally, we need to fix up cycles. The serialization we just emitted
    // ignores them, so we can end up with things like this:
    //
    //  (global $a (struct.new $A (global.get $a)))
    //
    // That global refers to an object that should have a self-reference, and
    // the serialization logic simply emits global.gets for all references, so
    // we end up with a situation like this where a global.get refers to a
    // global before it is valid to do so. To fix this up, we can reorder
    // globals as needed, and break up cycles by writing a null in the initial
    // struct.new in the global's definition, and later in the start function we
    // can perform additional struct.sets that cause cycles to form.
    //
    // The existing algorithm here is rather simple: we find things that
    // definitely force a certain order and sort according to them. Then in that
    // order we break forward references with fixups as described above. This is
    // not always the best, as there may be a more optimal order, and we may end
    // up doing more fixups than are absolutely necessary, but this algorithm is
    // simple and works in linear time (or nlogn including the sort). The
    // general problem here is NP-hard (the maximum acyclic subgraph problem),
    // but there are probably greedy algorithms we could consider if we need to
    // do better.

    Builder builder(*wasm);

    // First, find what constraints we have on the ordering of the globals. We
    // will build up a map of each global to the globals it must be before.
    using MustBeBefore = InsertOrderedMap<Name, InsertOrderedSet<Name>>;
    MustBeBefore mustBeBefore;

    for (auto& global : wasm->globals) {
      if (!global->init) {
        continue;
      }

      struct InitScanner : PostWalker<InitScanner> {
        // All the global.gets that we can't fix up by replacing the value with
        // a null and adding a set in the start function. These will be hard
        // constraints on our sorting (if we could fix things up with a null +
        // set then we would not need to reorder).
        InsertOrderedSet<GlobalGet*> unfixableGets;

        void visitGlobalGet(GlobalGet* curr) {
          // Assume this is unfixable, unless we reach the parent and see that
          // it is.
          unfixableGets.insert(curr);
        }

        // Checks if a child is a global.get that we need to handle, and if we
        // can fix it if so. The index is the position of the child in the
        // parent (which is 0 for all array children, as their position does not
        // matter, they all have the same field info).
        void handleChild(Expression* child,
                         Expression* parent,
                         Index fieldIndex = 0) {
          if (!child) {
            return;
          }

          if (auto* get = child->dynCast<GlobalGet>()) {
            if (isNullableAndMutable(parent, fieldIndex)) {
              // We can replace the child with a null, and set the value later
              // (in the start function), so this is not a constraint on our
              // sorting - we'll just fix it up later, and the order won't be
              // an issue.
              unfixableGets.erase(get);
            }
          }
        }

        void visitStructNew(StructNew* curr) {
          Index i = 0;
          for (auto* child : curr->operands) {
            handleChild(child, curr, i++);
          }
        }
        void visitArrayNew(ArrayNew* curr) { handleChild(curr->init, curr); }
        void visitArrayNewFixed(ArrayNewFixed* curr) {
          for (auto* child : curr->values) {
            handleChild(child, curr);
          }
        }
      };

      InitScanner scanner;
      scanner.walk(global->init);

      // Any global.gets that cannot be fixed up are constraints.
      for (auto* get : scanner.unfixableGets) {
        mustBeBefore[global->name];
        mustBeBefore[get->name].insert(global->name);
      }
    }

    if (!mustBeBefore.empty()) {
      auto oldGlobals = std::move(wasm->globals);
      // After clearing the globals vector, clear the map as well.
      wasm->updateMaps();

      std::unordered_map<Name, Index> globalIndexes;
      for (Index i = 0; i < oldGlobals.size(); i++) {
        globalIndexes[oldGlobals[i]->name] = i;
      }
      // Add the globals that had an important ordering, in the right order.
      for (auto global :
           TopologicalSort::sortOf(mustBeBefore.begin(), mustBeBefore.end())) {
        wasm->addGlobal(std::move(oldGlobals[globalIndexes[global]]));
      }
      // Add all other globals after them.
      for (auto& global : oldGlobals) {
        if (global) {
          wasm->addGlobal(std::move(global));
        }
      }
    }

    // After sorting (*), perform the fixups that we need, that is, replace the
    // relevant fields in cycles with a null and prepare a set in the start
    // function.
    //
    // We'll track the set of readable globals as we go (which are the globals
    // we've seen already, and fully finished processing).
    //
    // (*) Note that we may need these fixups even if we didn't need to do any
    //     sorting. There may be a single global with a cycle in it, for
    //     example.
    std::unordered_set<Name> readableGlobals;

    for (auto& global : wasm->globals) {
      if (!global->init) {
        continue;
      }

      struct InitFixer : PostWalker<InitFixer> {
        CtorEvalExternalInterface& evaller;
        std::unique_ptr<Global>& global;
        std::unordered_set<Name>& readableGlobals;

        InitFixer(CtorEvalExternalInterface& evaller,
                  std::unique_ptr<Global>& global,
                  std::unordered_set<Name>& readableGlobals)
          : evaller(evaller), global(global), readableGlobals(readableGlobals) {
        }

        // Handles a child by fixing things up if needed. Returns true if we
        // did in fact fix things up.
        bool handleChild(Expression*& child,
                         Expression* parent,
                         Index fieldIndex = 0) {
          if (!child) {
            return false;
          }

          if (auto* get = child->dynCast<GlobalGet>()) {
            if (!readableGlobals.count(get->name)) {
              // This get cannot be read - it is a global that appears after
              // us - and so we must fix it up, using the method mentioned
              // before (setting it to null now, and later in the start
              // function writing to it).
              assert(isNullableAndMutable(parent, fieldIndex));
              evaller.addStartFixup(
                {global->name, global->type}, fieldIndex, get);
              child =
                Builder(*getModule()).makeRefNull(get->type.getHeapType());
              return true;
            }
          }

          return false;
        }

        // This code will need to be updated for all new GC-creating
        // instructions that we use when serializing GC data, that is, things we
        // put in defining globals. (All other instructions, even constant ones
        // in globals, will simply end up referring to them using a global.get,
        // but will not be referred to. That is, cycles will only appear in
        // defining globals.)

        void visitStructNew(StructNew* curr) {
          Index i = 0;
          for (auto*& child : curr->operands) {
            handleChild(child, curr, i++);
          }
        }
        void visitArrayNew(ArrayNew* curr) {
          if (handleChild(curr->init, curr)) {
            // Handling array.new is tricky as the number of items may be
            // unknown at compile time, so we'd need to loop at runtime. But,
            // in practice we emit an array.new_fixed anyhow, so this should
            // not be needed for now.
            WASM_UNREACHABLE("TODO: ArrayNew in ctor-eval cycles");
          }
        }
        void visitArrayNewFixed(ArrayNewFixed* curr) {
          Index i = 0;
          for (auto*& child : curr->values) {
            handleChild(child, curr, i++);
          }
        }
      };

      InitFixer fixer(*this, global, readableGlobals);
      fixer.setModule(wasm);
      fixer.walk(global->init);

      // Only after we've fully processed this global is it ok to be read from
      // by later globals.
      readableGlobals.insert(global->name);
    }
  }

public:
  // Maps each GC data in the interpreter to its defining global: the global in
  // which it is created, and then all other users of it can just global.get
  // that. For each such global we track its name and type.
  struct DefiningGlobalInfo {
    Name name;
    Type type;
  };
  std::unordered_map<GCData*, DefiningGlobalInfo> definingGlobals;

  // If |possibleDefiningGlobal| is provided, it is the name of a global that we
  // are in the init expression of, and which can be reused as defining global,
  // if the other conditions are suitable.
  Expression* getSerialization(Literal value,
                               Name possibleDefiningGlobal = Name()) {
    Builder builder(*wasm);

    // If this is externalized then we want to inspect the inner data, handle
    // that, and emit a ref.externalize around it as needed. To simplify the
    // logic here, we save the original (possible externalized) value, and then
    // look at the internals from here on out.
    Literal original = value;
    if (value.type.isRef() &&
        value.type.getHeapType().isMaybeShared(HeapType::ext)) {
      value = value.internalize();

      // We cannot serialize truly external things, only data and i31s.
      assert(value.isData() ||
             value.type.getHeapType().isMaybeShared(HeapType::i31));
    }

    // GC data (structs and arrays) must be handled with the special global-
    // creating logic later down. But MVP types as well as i31s (even
    // externalized i31s) can be handled by the general makeConstantExpression
    // logic (which knows how to handle externalization, for i31s; and it also
    // can handle string constants).
    if (!value.isData() || value.isString()) {
      return builder.makeConstantExpression(original);
    }

    // This is GC data, which we must handle in a more careful way.
    auto* data = value.getGCData().get();
    assert(data);

    auto type = value.type;
    Name definingGlobalName;

    if (auto it = definingGlobals.find(data); it != definingGlobals.end()) {
      // Use the existing defining global.
      definingGlobalName = it->second.name;
    } else {
      // This is the first usage of this data. Generate a struct.new /
      // array.new for it.
      auto& values = value.getGCData()->values;
      std::vector<Expression*> args;

      // The initial values for this allocation may themselves be GC
      // allocations. Recurse and add globals as necessary. First, pick the
      // global name (note that we must do so first, as we may need to read from
      // definingGlobals to find where this global will be, in the case of a
      // cycle; see below).
      if (possibleDefiningGlobal.is()) {
        // No need to allocate a new global, as we are in the definition of
        // one, which will be the defining global.
        definingGlobals[data] =
          DefiningGlobalInfo{possibleDefiningGlobal, type};
        definingGlobalName = possibleDefiningGlobal;
      } else {
        // Allocate a new defining global.
        definingGlobalName =
          Names::getValidNameGivenExisting("ctor-eval$global", usedGlobalNames);
        usedGlobalNames.insert(definingGlobalName);
        definingGlobals[data] = DefiningGlobalInfo{definingGlobalName, type};
      }

      for (auto& value : values) {
        args.push_back(getSerialization(value));
      }

      Expression* init;
      auto heapType = type.getHeapType();
      if (heapType.isStruct()) {
        init = builder.makeStructNew(heapType, args);
      } else if (heapType.isArray()) {
        // TODO: for repeated identical values, can use ArrayNew
        init = builder.makeArrayNewFixed(heapType, args);
      } else {
        WASM_UNREACHABLE("bad gc type");
      }

      if (possibleDefiningGlobal.is()) {
        // We didn't need to allocate a new global, as we are in the definition
        // of one, so just return the initialization expression, which will be
        // placed in that global's |init| field.
        return init;
      }

      // There is no existing defining global, so we must allocate a new one.
      //
      // We set the global's init to null temporarily, and we'll fix it up
      // later down after we create the init expression.
      wasm->addGlobal(
        builder.makeGlobal(definingGlobalName, type, init, Builder::Immutable));
    }

    // Refer to this GC allocation by reading from the global that is
    // designated to contain it.
    Expression* ret = builder.makeGlobalGet(definingGlobalName, value.type);
    if (original != value) {
      // The original is externalized.
      assert(original.type.getHeapType().isMaybeShared(HeapType::ext));
      ret = builder.makeRefAs(ExternConvertAny, ret);
    }
    return ret;
  }

  Expression* getSerialization(const Literals& values,
                               Name possibleDefiningGlobal = Name()) {
    if (values.size() > 1) {
      // We do not support multivalues in defining globals, which store GC refs.
      assert(possibleDefiningGlobal.isNull());
      std::vector<Expression*> children;
      for (const auto& value : values) {
        children.push_back(getSerialization(value));
      }
      return Builder(*wasm).makeTupleMake(children);
    }
    assert(values.size() == 1);
    return getSerialization(values[0], possibleDefiningGlobal);
  }

  // This is called when we hit a cycle in setting up defining globals. For
  // example, if the data we want to emit is
  //
  //    global globalA = new A{ field = &A }; // A has a reference to itself
  //
  // then we'll emit
  //
  //    global globalA = new A{ field = null };
  //
  // and put this in the start function:
  //
  //   globalA.field = globalA;
  //
  // The parameters here are a global and a field index to that global, and the
  // global we want to assign to it, that is, our goal is to have
  //
  //  global[index] = valueGlobal
  //
  // run during the start function.
  void addStartFixup(DefiningGlobalInfo global, Index index, GlobalGet* value) {
    if (!startBlock) {
      createStartBlock();
    }

    Builder builder(*wasm);
    auto* getGlobal = builder.makeGlobalGet(global.name, global.type);

    Expression* set;
    if (global.type.isStruct()) {
      set = builder.makeStructSet(index, getGlobal, value);
    } else {
      set = builder.makeArraySet(
        getGlobal, builder.makeConst(int32_t(index)), value);
    }

    (*startBlock)->list.push_back(set);
  }

  // A block in the start function where we put the operations we need to occur
  // during startup.
  std::optional<Block*> startBlock;

  void createStartBlock() {
    Builder builder(*wasm);
    startBlock = builder.makeBlock();
    if (wasm->start.is()) {
      // Put our block before any user start code.
      auto* existingStart = wasm->getFunction(wasm->start);
      existingStart->body =
        builder.makeSequence(*startBlock, existingStart->body);
    } else {
      // Make a new start function.
      wasm->start = Names::getValidFunctionName(*wasm, "start");
      wasm->addFunction(builder.makeFunction(
        wasm->start, Signature{Type::none, Type::none}, {}, *startBlock));
    }
  }

  void clearStartBlock() {
    if (startBlock) {
      (*startBlock)->list.clear();
    }
  }
};

// Whether to emit informative logging to stdout about the eval process.
static bool quiet = false;

// The outcome of evalling a ctor is one of three states:
//
// 1. We failed to eval it completely (but perhaps we succeeded partially). In
//    that case the std::optional here contains nothing.
// 2. We evalled it completely, and it is a function with no return value, so
//    it contains an empty Literals.
// 3. We evalled it completely, and it is a function with a return value, so
//    it contains Literals with those results.
using EvalCtorOutcome = std::optional<Literals>;

// Eval a single ctor function. Returns whether we succeeded to completely
// evaluate the ctor (which means that the caller can proceed to try to eval
// further ctors if there are any), and if we did, the results if the function
// returns any.
EvalCtorOutcome evalCtor(EvallingModuleRunner& instance,
                         CtorEvalExternalInterface& interface,
                         Name funcName,
                         Name exportName) {
  auto& wasm = instance.wasm;
  auto* func = wasm.getFunction(funcName);
  if (func->imported()) {
    // We cannot evaluate an import.
    if (!quiet) {
      std::cout << "  ...stopping since could not eval: call import: "
                << func->module.toString() << "." << func->base.toString()
                << '\n';
    }
    return EvalCtorOutcome();
  }

  // We don't know the values of parameters, so give up if there are any, unless
  // we are ignoring them.
  if (func->getNumParams() > 0 && !ignoreExternalInput) {
    if (!quiet) {
      std::cout << "  ...stopping due to params\n";
      std::cout << RECOMMENDATION "consider --ignore-external-input";
    }
    return EvalCtorOutcome();
  }

  // If there are params, we are ignoring them (or we would have quit earlier);
  // set those up with zeros.
  // TODO: Have a safer option here, either
  //        1. Statically or dynamically stop evalling when a param is actually
  //           used, or
  //        2. Split out --ignore-external-input into separate flags.
  Literals params;
  for (Index i = 0; i < func->getNumParams(); i++) {
    auto type = func->getLocalType(i);
    if (!LiteralUtils::canMakeZero(type)) {
      if (!quiet) {
        std::cout << "  ...stopping due to non-zeroable param\n";
      }
      return EvalCtorOutcome();
    }
    params.push_back(Literal::makeZero(type));
  }

  // After we successfully eval a line we will store the operations to set up
  // the locals here. That is, we need to save the local state in the function,
  // which we do by setting up at the entry. We update this list of expressions
  // at the same time as applyToModule() - we must only do it after an entire
  // atomic "chunk" has been processed succesfully, we do not want partial
  // updates from an item in the block that we only partially evalled. When we
  // construct the (partially) evalled function, we will create local.sets of
  // these expressions at the beginning.
  std::vector<Expression*> localExprs;

  // We might have to evaluate multiple functions due to return calls.
start_eval:
  while (true) {
    // We want to handle the form of the global constructor function in LLVM.
    // That looks like this:
    //
    //    (func $__wasm_call_ctors
    //      (call $ctor.1)
    //      (call $ctor.2)
    //      (call $ctor.3)
    //    )
    //
    // Some of those ctors may be inlined, however, which would mean that the
    // function could have locals, control flow, etc. However, we assume for now
    // that it does not have parameters at least (whose values we can't tell).
    // And for now we look for a toplevel block and process its children one at
    // a time. This allows us to eval some of the $ctor.* functions (or their
    // inlined contents) even if not all.
    //
    // TODO: Support complete partial evalling, that is, evaluate parts of an
    //       arbitrary function, and not just a sequence in a single toplevel
    //       block.
    Builder builder(wasm);
    auto* block = builder.blockify(func->body);

    // Go through the items in the block and try to execute them. We do all this
    // in a single function scope for all the executions.
    EvallingModuleRunner::FunctionScope scope(func, params, instance);

    Literals results;
    Index successes = 0;

    for (auto* curr : block->list) {
      Flow flow;
      try {
        flow = instance.visit(curr);
      } catch (FailToEvalException& fail) {
        if (!quiet) {
          if (successes == 0) {
            std::cout << "  ...stopping (in block) since could not eval: "
                      << fail.why << "\n";
          } else {
            std::cout << "  ...partial evalling successful, but stopping since "
                         "could not eval: "
                      << fail.why << "\n";
          }
        }
        break;
      }

      if (flow.breakTo == RETURN_CALL_FLOW) {
        // The return-called function is stored in the last value.
        func = wasm.getFunction(flow.values.back().getFunc());
        flow.values.pop_back();
        params = std::move(flow.values);

        // Serialize the arguments for the new function and save the module
        // state in case we fail to eval the new function.
        localExprs.clear();
        for (auto& param : params) {
          localExprs.push_back(interface.getSerialization(param));
        }
        interface.applyToModule();
        goto start_eval;
      }

      // So far so good! Serialize the values of locals, and apply to the
      // module. Note that we must serialize the locals now as doing so may
      // cause changes that must be applied to the module (e.g. GC data may
      // cause globals to be added). And we must apply to the module now, and
      // not later, as we must do so right after a successfull partial eval
      // (after any failure to eval, the global state is no long valid to be
      // applied to the module, as incomplete changes may have occurred).
      //
      // Note that we make no effort to optimize locals: we just write out all
      // of them, and leave it to the optimizer to remove redundant or
      // unnecessary operations. We just recompute the entire local
      // serialization sets from scratch each time here, for all locals.
      localExprs.clear();
      for (Index i = 0; i < func->getNumLocals(); i++) {
        localExprs.push_back(interface.getSerialization(scope.locals[i]));
      }
      interface.applyToModule();
      successes++;

      // Note the values here, if any. If we are exiting the function now then
      // these will be returned.
      results = flow.values;

      if (flow.breaking()) {
        // We are returning out of the function (either via a return, or via a
        // break to |block|, which has the same outcome. That means we don't
        // need to execute any more lines, and can consider them to be
        // executed.
        if (!quiet) {
          std::cout << "  ...stopping in block due to break\n";
        }

        // Mark us as having succeeded on the entire block, since we have: we
        // are skipping the rest, which means there is no problem there. We
        // must set this here so that lower down we realize that we've evalled
        // everything.
        successes = block->list.size();
        break;
      }
    }

    // If we have not fully evaluated the current function, but we have
    // evaluated part of it, have return-called to a different function, or have
    // precomputed values for the current return-called function, then we can
    // replace the export with a new function that does less work than the
    // original.
    if ((func->imported() || successes < block->list.size()) &&
        (successes > 0 || func->name != funcName ||
         (localExprs.size() && func->getParams() != Type::none))) {
      auto originalFuncType = wasm.getFunction(funcName)->type;
      auto copyName = Names::getValidFunctionName(wasm, funcName);
      wasm.getExport(exportName)->value = copyName;

      if (func->imported()) {
        // We must have return-called this imported function. Generate a new
        // function that return-calls the import with the arguments we have
        // evalled.
        auto copyFunc = builder.makeFunction(
          copyName,
          originalFuncType,
          {},
          builder.makeCall(func->name, localExprs, func->getResults(), true));
        wasm.addFunction(std::move(copyFunc));
        return EvalCtorOutcome();
      }

      // We may have managed to eval some but not all. That means we can't just
      // remove the entire function, but need to keep parts of it - the parts we
      // have not evalled - around. To do so, we create a copy of the function
      // with the partially-evalled contents and make the export use that (as
      // the function may be used in other places than the export, which we do
      // not want to affect).
      auto* copyBody =
        builder.blockify(ExpressionManipulator::copy(func->body, wasm));

      // Remove the items we've evalled.
      for (Index i = 0; i < successes; i++) {
        copyBody->list[i] = builder.makeNop();
      }

      // Put the local sets at the front of the function body.
      auto* setsBlock = builder.makeBlock();
      for (Index i = 0; i < localExprs.size(); ++i) {
        setsBlock->list.push_back(builder.makeLocalSet(i, localExprs[i]));
      }
      copyBody = builder.makeSequence(setsBlock, copyBody, copyBody->type);

      // We may have return-called into a function with different parameter
      // types, but we ultimately need to export a function with the original
      // signature. If there is a mismatch, shift the local indices to make room
      // for the unused parameters.
      std::vector<Type> localTypes;
      auto originalParams = originalFuncType.getSignature().params;
      if (originalParams != func->getParams()) {
        // Add locals for the body to use instead of using the params.
        for (auto type : func->getParams()) {
          localTypes.push_back(type);
        }

        // Shift indices in the body so they will refer to the new locals.
        auto localShift = originalParams.size();
        if (localShift != 0) {
          for (auto* get : FindAll<LocalGet>(copyBody).list) {
            get->index += localShift;
          }
          for (auto* set : FindAll<LocalSet>(copyBody).list) {
            set->index += localShift;
          }
        }
      }

      // Add vars from current function.
      localTypes.insert(localTypes.end(), func->vars.begin(), func->vars.end());

      // Create and add the new function.
      auto* copyFunc = wasm.addFunction(builder.makeFunction(
        copyName, originalFuncType, std::move(localTypes), copyBody));

      // Interesting optimizations may be possible both due to removing some but
      // not all of the code, and due to the locals we just added.
      PassRunner passRunner(&wasm,
                            PassOptions::getWithDefaultOptimizationOptions());
      passRunner.addDefaultFunctionOptimizationPasses();
      passRunner.runOnFunction(copyFunc);
    }

    // Return true if we evalled the entire block. Otherwise, even if we evalled
    // some of it, the caller must stop trying to eval further things.
    if (successes == block->list.size()) {
      return EvalCtorOutcome(results);
    } else {
      return EvalCtorOutcome();
    }
  }
}

// Eval all ctors in a module.
void evalCtors(Module& wasm,
               std::vector<std::string>& ctors,
               std::vector<std::string>& keptExports) {
  std::unordered_set<std::string> keptExportsSet(keptExports.begin(),
                                                 keptExports.end());

  std::map<Name, std::shared_ptr<EvallingModuleRunner>> linkedInstances;

  // build and link the env module
  auto envModule = buildEnvModule(wasm);
  CtorEvalExternalInterface envInterface;
  auto envInstance =
    std::make_shared<EvallingModuleRunner>(*envModule, &envInterface);
  linkedInstances[envModule->name] = envInstance;

  CtorEvalExternalInterface interface(linkedInstances);
  try {
    // create an instance for evalling
    EvallingModuleRunner instance(wasm, &interface, linkedInstances);
    interface.instanceInitialized = true;
    // go one by one, in order, until we fail
    // TODO: if we knew priorities, we could reorder?
    for (auto& ctor : ctors) {
      if (!quiet) {
        std::cout << "trying to eval " << ctor << '\n';
      }
      Export* ex = wasm.getExportOrNull(ctor);
      if (!ex) {
        Fatal() << "export not found: " << ctor;
      }
      auto funcName = ex->value;
      auto outcome = evalCtor(instance, interface, funcName, ctor);
      if (!outcome) {
        if (!quiet) {
          std::cout << "  ...stopping\n";
        }
        return;
      }

      // Success! And we can continue to try more.
      if (!quiet) {
        std::cout << "  ...success on " << ctor << ".\n";
      }

      // Remove the export if we should.
      auto* exp = wasm.getExport(ctor);
      if (!keptExportsSet.count(ctor)) {
        wasm.removeExport(exp->name);
      } else {
        // We are keeping around the export, which should now refer to an
        // empty function since calling the export should do nothing.
        auto* func = wasm.getFunction(exp->value);
        auto copyName = Names::getValidFunctionName(wasm, func->name);
        auto* copyFunc = ModuleUtils::copyFunction(func, wasm, copyName);
        if (func->getResults() == Type::none) {
          copyFunc->body = Builder(wasm).makeNop();
        } else {
          copyFunc->body = interface.getSerialization(*outcome);
        }
        wasm.getExport(exp->name)->value = copyName;
      }
    }
  } catch (FailToEvalException& fail) {
    // that's it, we failed to even create the instance
    if (!quiet) {
      std::cout << "  ...stopping since could not create module instance: "
                << fail.why << "\n";
    }
    return;
  }
}

static bool canEval(Module& wasm) {
  // Check if we can flatten memory. We need to do so currently because of how
  // we assume memory is simple and flat. TODO
  if (!MemoryUtils::flatten(wasm)) {
    if (!quiet) {
      std::cout << "  ...stopping since could not flatten memory\n";
    }
    return false;
  }
  return true;
}

} // anonymous namespace

//
// main
//

int main(int argc, const char* argv[]) {
  Name entry;
  std::vector<std::string> passes;
  bool emitBinary = true;
  bool debugInfo = false;
  String::Split ctors;
  String::Split keptExports;

  const std::string WasmCtorEvalOption = "wasm-ctor-eval options";

  ToolOptions options("wasm-ctor-eval", "Execute code at compile time");
  options
    .add("--output",
         "-o",
         "Output file (stdout if not specified)",
         WasmCtorEvalOption,
         Options::Arguments::One,
         [](Options* o, const std::string& argument) {
           o->extra["output"] = argument;
           Colors::setEnabled(false);
         })
    .add("--emit-text",
         "-S",
         "Emit text instead of binary for the output file",
         WasmCtorEvalOption,
         Options::Arguments::Zero,
         [&](Options* o, const std::string& argument) { emitBinary = false; })
    .add("--debuginfo",
         "-g",
         "Emit names section and debug info",
         WasmCtorEvalOption,
         Options::Arguments::Zero,
         [&](Options* o, const std::string& arguments) { debugInfo = true; })
    .add("--ctors",
         "-c",
         "Comma-separated list of global constructor functions to evaluate",
         WasmCtorEvalOption,
         Options::Arguments::One,
         [&](Options* o, const std::string& argument) {
           ctors = String::Split(argument, ",");
         })
    .add(
      "--kept-exports",
      "-ke",
      "Comma-separated list of ctors whose exports we keep around even if we "
      "eval those ctors",
      WasmCtorEvalOption,
      Options::Arguments::One,
      [&](Options* o, const std::string& argument) {
        keptExports = String::Split(argument, ",");
      })
    .add("--ignore-external-input",
         "-ipi",
         "Assumes no env vars are to be read, stdin is empty, etc.",
         WasmCtorEvalOption,
         Options::Arguments::Zero,
         [&](Options* o, const std::string& argument) {
           ignoreExternalInput = true;
         })
    .add("--quiet",
         "-q",
         "Do not emit verbose logging about the eval process",
         WasmCtorEvalOption,
         Options::Arguments::Zero,
         [&](Options* o, const std::string& argument) { quiet = true; })
    .add_positional("INFILE",
                    Options::Arguments::One,
                    [](Options* o, const std::string& argument) {
                      o->extra["infile"] = argument;
                    });
  options.parse(argc, argv);

  Module wasm;
  options.applyOptionsBeforeParse(wasm);

  {
    if (options.debug) {
      std::cout << "reading...\n";
    }
    ModuleReader reader;
    try {
      reader.read(options.extra["infile"], wasm);
    } catch (ParseException& p) {
      p.dump(std::cout);
      Fatal() << "error in parsing input";
    }
  }

  options.applyOptionsAfterParse(wasm);

  if (!WasmValidator().validate(wasm)) {
    std::cout << wasm << '\n';
    Fatal() << "error in validating input";
  }

  if (canEval(wasm)) {
    evalCtors(wasm, ctors, keptExports);

    if (!WasmValidator().validate(wasm)) {
      std::cout << wasm << '\n';
      Fatal() << "error in validating output";
    }

    // Do some useful optimizations after the evalling
    {
      PassRunner passRunner(&wasm);
      passRunner.add("memory-packing"); // we flattened it, so re-optimize
      // TODO: just do -Os for the one function
      passRunner.add("remove-unused-names");
      passRunner.add("dce");
      passRunner.add("merge-blocks");
      passRunner.add("vacuum");
      passRunner.add("remove-unused-module-elements");
      passRunner.run();
    }
  }

  if (options.extra.count("output") > 0) {
    if (options.debug) {
      std::cout << "writing..." << std::endl;
    }
    ModuleWriter writer(options.passOptions);
    writer.setBinary(emitBinary);
    writer.setDebugInfo(debugInfo);
    writer.write(wasm, options.extra["output"]);
  }
}