1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
|
/*
* Copyright 2023 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <optional>
#include <random>
#include <string>
#include <type_traits>
#include <variant>
#include "analysis/lattice.h"
#include "analysis/lattices/array.h"
#include "analysis/lattices/bool.h"
#include "analysis/lattices/flat.h"
#include "analysis/lattices/int.h"
#include "analysis/lattices/inverted.h"
#include "analysis/lattices/lift.h"
#include "analysis/lattices/shared.h"
#include "analysis/lattices/stack.h"
#include "analysis/lattices/tuple.h"
#include "analysis/lattices/valtype.h"
#include "analysis/lattices/vector.h"
#include "analysis/liveness-transfer-function.h"
#include "analysis/reaching-definitions-transfer-function.h"
#include "analysis/transfer-function.h"
#include "support/command-line.h"
#include "tools/fuzzing.h"
#include "tools/fuzzing/random.h"
namespace wasm {
using RandEngine = std::mt19937_64;
using namespace analysis;
// Helps printing error messages.
std::string LatticeComparisonNames[4] = {
"No Relation", "Equal", "Less", "Greater"};
uint64_t getSeed() {
// Return a (truly) random 64-bit value.
std::random_device rand;
return std::uniform_int_distribution<uint64_t>{}(rand);
}
// Actually a pointer to `L::ElementImpl`, but we erase the type to avoid
// getting into a situation where `L` satisfying `Lattice` or `FullLattice`
// circularly requires that `L` satisfies `Lattice` or `FullLattice`. C++ does
// not allow concepts to depend on themselves. Also make the pointer copyable to
// satisfy that constraint on lattice elements.
template<typename L>
struct RandomElement : std::unique_ptr<void, void (*)(void*)> {
RandomElement() = default;
RandomElement(typename L::ElementImpl&& other)
: std::unique_ptr<void, void (*)(void*)>(
new typename L::ElementImpl(std::move(other)),
[](void* e) { delete static_cast<typename L::ElementImpl*>(e); }) {}
RandomElement(const RandomElement& other)
: RandomElement([&]() {
auto copy = *other;
return copy;
}()) {}
RandomElement(RandomElement&& other) = default;
RandomElement& operator=(const RandomElement& other) {
if (this != &other) {
new (this) RandomElement(other);
}
return *this;
}
RandomElement& operator=(RandomElement&& other) = default;
typename L::ElementImpl& operator*() {
return *static_cast<typename L::ElementImpl*>(get());
}
const typename L::ElementImpl& operator*() const {
return *static_cast<const typename L::ElementImpl*>(get());
}
typename L::ElementImpl* operator->() { return &*(*this); }
const typename L::ElementImpl* operator->() const { return &*(*this); }
};
struct RandomFullLattice {
// The inner lattice and lattice element types. These must be defined later
// because they depend on `RandomFullLattice` satisfying `FullLattice`, but
// that requires the type to be complete.
struct LatticeImpl;
struct ElementImpl;
using Element = RandomElement<RandomFullLattice>;
Random& rand;
// Indirect because LatticeImpl recursively contains RandomFullLattice.
std::unique_ptr<LatticeImpl> lattice;
RandomFullLattice(Random& rand,
size_t depth = 0,
std::optional<uint32_t> maybePick = std::nullopt);
// Make a random element of this lattice.
Element makeElement() const noexcept;
Element getBottom() const noexcept;
Element getTop() const noexcept;
LatticeComparison compare(const Element& a, const Element& b) const noexcept;
bool join(Element& a, const Element& b) const noexcept;
bool meet(Element& a, const Element& b) const noexcept;
};
struct RandomLattice {
// The inner lattice and lattice element types. These must be defined later
// because they depend on `RandomLattice` satisfying `Lattice`, but that
// requires the type to be complete.
struct LatticeImpl;
struct ElementImpl;
using Element = RandomElement<RandomLattice>;
Random& rand;
// Indirect because L recursively contains RandomLattice.
std::unique_ptr<LatticeImpl> lattice;
RandomLattice(Random& rand, size_t depth = 0);
// Make a random element of this lattice.
Element makeElement() const noexcept;
Element getBottom() const noexcept;
LatticeComparison compare(const Element& a, const Element& b) const noexcept;
bool join(Element& a, const Element& b) const noexcept;
};
#if __cplusplus >= 202002L
static_assert(FullLattice<RandomFullLattice>);
static_assert(Lattice<RandomLattice>);
#endif
using ArrayFullLattice = analysis::Array<RandomFullLattice, 2>;
using ArrayLattice = analysis::Array<RandomLattice, 2>;
using TupleFullLattice = analysis::Tuple<RandomFullLattice, RandomFullLattice>;
using TupleLattice = analysis::Tuple<RandomLattice, RandomLattice>;
using FullLatticeVariant = std::variant<Bool,
UInt32,
ValType,
Inverted<RandomFullLattice>,
ArrayFullLattice,
Vector<RandomFullLattice>,
TupleFullLattice>;
struct RandomFullLattice::LatticeImpl : FullLatticeVariant {};
using FullLatticeElementVariant =
std::variant<typename Bool::Element,
typename UInt32::Element,
typename ValType::Element,
typename Inverted<RandomFullLattice>::Element,
typename ArrayFullLattice::Element,
typename Vector<RandomFullLattice>::Element,
typename TupleFullLattice::Element>;
struct RandomFullLattice::ElementImpl : FullLatticeElementVariant {};
using LatticeVariant = std::variant<RandomFullLattice,
Flat<uint32_t>,
Lift<RandomLattice>,
ArrayLattice,
Vector<RandomLattice>,
TupleLattice,
SharedPath<RandomLattice>>;
struct RandomLattice::LatticeImpl : LatticeVariant {};
using LatticeElementVariant =
std::variant<typename RandomFullLattice::Element,
typename Flat<uint32_t>::Element,
typename Lift<RandomLattice>::Element,
typename ArrayLattice::Element,
typename Vector<RandomLattice>::Element,
typename TupleLattice::Element,
typename SharedPath<RandomLattice>::Element>;
struct RandomLattice::ElementImpl : LatticeElementVariant {};
constexpr int FullLatticePicks = 7;
RandomFullLattice::RandomFullLattice(Random& rand,
size_t depth,
std::optional<uint32_t> maybePick)
: rand(rand) {
// TODO: Limit the depth once we get lattices with more fan-out.
uint32_t pick = maybePick ? *maybePick : rand.upTo(FullLatticePicks);
switch (pick) {
case 0:
lattice = std::make_unique<LatticeImpl>(LatticeImpl{Bool{}});
return;
case 1:
lattice = std::make_unique<LatticeImpl>(LatticeImpl{UInt32{}});
return;
case 2:
lattice = std::make_unique<LatticeImpl>(LatticeImpl{ValType{}});
return;
case 3:
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{Inverted{RandomFullLattice{rand, depth + 1}}});
return;
case 4:
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{ArrayFullLattice{RandomFullLattice{rand, depth + 1}}});
return;
case 5:
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{Vector{RandomFullLattice{rand, depth + 1}, rand.upTo(4)}});
return;
case 6:
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{TupleFullLattice{RandomFullLattice{rand, depth + 1},
RandomFullLattice{rand, depth + 1}}});
return;
}
WASM_UNREACHABLE("unexpected pick");
}
RandomLattice::RandomLattice(Random& rand, size_t depth) : rand(rand) {
// TODO: Limit the depth once we get lattices with more fan-out.
uint32_t pick = rand.upTo(FullLatticePicks + 6);
if (pick < FullLatticePicks) {
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{RandomFullLattice{rand, depth, pick}});
return;
}
switch (pick) {
case FullLatticePicks + 0:
lattice = std::make_unique<LatticeImpl>(LatticeImpl{Flat<uint32_t>{}});
return;
case FullLatticePicks + 1:
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{Lift{RandomLattice{rand, depth + 1}}});
return;
case FullLatticePicks + 2:
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{ArrayLattice{RandomLattice{rand, depth + 1}}});
return;
case FullLatticePicks + 3:
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{Vector{RandomLattice{rand, depth + 1}, rand.upTo(4)}});
return;
case FullLatticePicks + 4:
lattice = std::make_unique<LatticeImpl>(LatticeImpl{TupleLattice{
RandomLattice{rand, depth + 1}, RandomLattice{rand, depth + 1}}});
return;
case FullLatticePicks + 5:
lattice = std::make_unique<LatticeImpl>(
LatticeImpl{SharedPath{RandomLattice{rand, depth + 1}}});
return;
}
WASM_UNREACHABLE("unexpected pick");
}
RandomFullLattice::Element RandomFullLattice::makeElement() const noexcept {
if (std::get_if<Bool>(lattice.get())) {
return ElementImpl{rand.pick(true, false)};
}
if (std::get_if<UInt32>(lattice.get())) {
return ElementImpl{rand.upToSquared(33)};
}
if (std::get_if<ValType>(lattice.get())) {
Type type;
// Choose a random type. No need to make all possible types available as
// long as we cover all the kinds of relationships between types.
switch (rand.upTo(8)) {
case 0:
type = Type::unreachable;
break;
case 1:
type = Type::none;
break;
case 2:
type = Type::i32;
break;
case 3:
type = Type::f32;
break;
case 4:
type = Type(HeapType::any, rand.oneIn(2) ? Nullable : NonNullable);
break;
case 5:
type = Type(HeapType::none, rand.oneIn(2) ? Nullable : NonNullable);
break;
case 6:
type = Type(HeapType::struct_, rand.oneIn(2) ? Nullable : NonNullable);
break;
case 7:
type = Type(HeapType::array, rand.oneIn(2) ? Nullable : NonNullable);
break;
}
return ElementImpl{type};
}
if (const auto* l = std::get_if<Inverted<RandomFullLattice>>(lattice.get())) {
return ElementImpl{l->lattice.makeElement()};
}
if (const auto* l = std::get_if<ArrayFullLattice>(lattice.get())) {
return ElementImpl{typename ArrayFullLattice::Element{
l->lattice.makeElement(), l->lattice.makeElement()}};
}
if (const auto* l = std::get_if<Vector<RandomFullLattice>>(lattice.get())) {
std::vector<typename RandomFullLattice::Element> elem;
elem.reserve(l->size);
for (size_t i = 0; i < l->size; ++i) {
elem.push_back(l->lattice.makeElement());
}
return ElementImpl{std::move(elem)};
}
if (const auto* l = std::get_if<TupleFullLattice>(lattice.get())) {
return ElementImpl{typename TupleFullLattice::Element{
std::get<0>(l->lattices).makeElement(),
std::get<1>(l->lattices).makeElement()}};
}
WASM_UNREACHABLE("unexpected lattice");
}
RandomLattice::Element RandomLattice::makeElement() const noexcept {
if (const auto* l = std::get_if<RandomFullLattice>(lattice.get())) {
return ElementImpl{l->makeElement()};
}
if (const auto* l = std::get_if<Flat<uint32_t>>(lattice.get())) {
auto pick = rand.upTo(6);
switch (pick) {
case 4:
return ElementImpl{l->getBottom()};
case 5:
return ElementImpl{l->getTop()};
default:
return ElementImpl{l->get(std::move(pick))};
}
}
if (const auto* l = std::get_if<Lift<RandomLattice>>(lattice.get())) {
return ElementImpl{rand.oneIn(4) ? l->getBottom()
: l->get(l->lattice.makeElement())};
}
if (const auto* l = std::get_if<ArrayLattice>(lattice.get())) {
return ElementImpl{typename ArrayLattice::Element{
l->lattice.makeElement(), l->lattice.makeElement()}};
}
if (const auto* l = std::get_if<Vector<RandomLattice>>(lattice.get())) {
std::vector<typename RandomLattice::Element> elem;
elem.reserve(l->size);
for (size_t i = 0; i < l->size; ++i) {
elem.push_back(l->lattice.makeElement());
}
return ElementImpl{std::move(elem)};
}
if (const auto* l = std::get_if<TupleLattice>(lattice.get())) {
return ElementImpl{
typename TupleLattice::Element{std::get<0>(l->lattices).makeElement(),
std::get<1>(l->lattices).makeElement()}};
}
if (const auto* l = std::get_if<SharedPath<RandomLattice>>(lattice.get())) {
auto elem = l->getBottom();
l->join(elem, l->lattice.makeElement());
return ElementImpl{elem};
}
WASM_UNREACHABLE("unexpected lattice");
}
void indent(std::ostream& os, int depth) {
for (int i = 0; i < depth; ++i) {
os << " ";
}
}
void printFullElement(std::ostream& os,
const typename RandomFullLattice::Element& elem,
int depth) {
indent(os, depth);
if (const auto* e = std::get_if<typename Bool::Element>(&*elem)) {
os << (*e ? "true" : "false") << "\n";
} else if (const auto* e = std::get_if<typename UInt32::Element>(&*elem)) {
os << *e << "\n";
} else if (const auto* e = std::get_if<typename ValType::Element>(&*elem)) {
os << *e << "\n";
} else if (const auto* e =
std::get_if<typename Inverted<RandomFullLattice>::Element>(
&*elem)) {
os << "Inverted(\n";
printFullElement(os, *e, depth + 1);
indent(os, depth);
os << ")\n";
} else if (const auto* e =
std::get_if<typename ArrayFullLattice::Element>(&*elem)) {
os << "Array[\n";
printFullElement(os, e->front(), depth + 1);
printFullElement(os, e->back(), depth + 1);
indent(os, depth);
os << "]\n";
} else if (const auto* vec =
std::get_if<typename Vector<RandomFullLattice>::Element>(
&*elem)) {
os << "Vector[\n";
for (const auto& e : *vec) {
printFullElement(os, e, depth + 1);
}
indent(os, depth);
os << "]\n";
} else if (const auto* e =
std::get_if<typename TupleFullLattice::Element>(&*elem)) {
os << "Tuple(\n";
const auto& [first, second] = *e;
printFullElement(os, first, depth + 1);
printFullElement(os, second, depth + 1);
indent(os, depth);
os << ")\n";
} else {
WASM_UNREACHABLE("unexpected element");
}
}
void printElement(std::ostream& os,
const typename RandomLattice::Element& elem,
int depth = 0) {
if (const auto* e =
std::get_if<typename RandomFullLattice::Element>(&*elem)) {
printFullElement(os, *e, depth);
return;
}
indent(os, depth);
if (const auto* e = std::get_if<typename Flat<uint32_t>::Element>(&*elem)) {
if (e->isBottom()) {
os << "flat bot\n";
} else if (e->isTop()) {
os << "flat top\n";
} else {
os << "flat " << *e->getVal() << "\n";
}
} else if (const auto* e =
std::get_if<typename Lift<RandomLattice>::Element>(&*elem)) {
if (e->isBottom()) {
os << "lift bot\n";
} else {
os << "Lifted(\n";
printElement(os, **e, depth + 1);
indent(os, depth);
os << ")\n";
}
} else if (const auto* e =
std::get_if<typename ArrayLattice::Element>(&*elem)) {
os << "Array[\n";
printElement(os, e->front(), depth + 1);
printElement(os, e->back(), depth + 1);
indent(os, depth);
os << ")\n";
} else if (const auto* vec =
std::get_if<typename Vector<RandomLattice>::Element>(&*elem)) {
os << "Vector[\n";
for (const auto& e : *vec) {
printElement(os, e, depth + 1);
}
indent(os, depth);
os << "]\n";
} else if (const auto* e =
std::get_if<typename TupleLattice::Element>(&*elem)) {
os << "Tuple(\n";
const auto& [first, second] = *e;
printElement(os, first, depth + 1);
printElement(os, second, depth + 1);
indent(os, depth);
os << ")\n";
} else if (const auto* e =
std::get_if<typename SharedPath<RandomLattice>::Element>(
&*elem)) {
os << "SharedPath(\n";
printElement(os, **e, depth + 1);
indent(os, depth);
os << ")\n";
} else {
WASM_UNREACHABLE("unexpected element");
}
}
std::ostream& operator<<(std::ostream& os,
const typename RandomLattice::Element& elem) {
printElement(os, elem);
return os;
}
// Check that random lattices have the correct mathematical properties by
// checking the relationships between random elements.
void checkLatticeProperties(Random& rand, bool verbose) {
RandomLattice lattice(rand);
// Generate the lattice elements we will perform checks on.
typename RandomLattice::Element elems[3] = {
lattice.makeElement(), lattice.makeElement(), lattice.makeElement()};
if (verbose) {
std::cout << "Random lattice elements:\n"
<< elems[0] << "\n"
<< elems[1] << "\n"
<< elems[2];
}
// Calculate the relations between the generated elements.
LatticeComparison relation[3][3];
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
relation[i][j] = lattice.compare(elems[i], elems[j]);
}
}
// Reflexivity: x == x
for (int i = 0; i < 3; ++i) {
if (lattice.compare(elems[i], elems[i]) != EQUAL) {
Fatal() << "Lattice element is not reflexive:\n" << elems[i];
}
}
// Anti-symmetry: x < y implies y > x, etc.
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
auto forward = relation[i][j];
auto reverse = relation[j][i];
if (reverseComparison(forward) != reverse) {
Fatal()
<< "Lattice elements are not anti-symmetric.\nFirst element:\n\n"
<< elems[i] << "\nSecond element:\n\n"
<< elems[j]
<< "\nForward relation: " << LatticeComparisonNames[forward]
<< "\nReverse relation: " << LatticeComparisonNames[reverse] << "\n";
}
}
}
// Transitivity: x < y and y < z imply x < z, etc.
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
auto ij = relation[i][j], jk = relation[j][k], ik = relation[i][k];
if (ij == NO_RELATION || jk == NO_RELATION) {
continue;
}
if ((ij == LESS && jk == GREATER) || (ij == GREATER && jk == LESS)) {
continue;
}
auto expected = ij == EQUAL ? jk : ij;
if (ik != expected) {
Fatal() << "Lattice elements are not transitive.\nFrist element:\n\n"
<< elems[i] << "\nSecond element:\n\n"
<< elems[j] << "\nThird element:\n\n"
<< elems[k] << "\nFirst to second relation: "
<< LatticeComparisonNames[ij]
<< "\nSecond to third relation: "
<< LatticeComparisonNames[jk]
<< "\nFirst to thrid relation: " << LatticeComparisonNames[ik]
<< "\n";
}
}
}
}
// Joins (i.e. least upper bounds)
for (int i = 0; i < 3; ++i) {
{
// Identity: elem u bot = elem
auto join = elems[i];
lattice.join(join, lattice.getBottom());
if (lattice.compare(join, elems[i]) != EQUAL) {
Fatal()
<< "Join of element and bottom is not equal to element:\nElement:\n\n"
<< elems[i] << "\nJoin:\n\n"
<< join;
}
}
{
// Identity: bot u elem = elem
auto join = lattice.getBottom();
lattice.join(join, elems[i]);
if (lattice.compare(join, elems[i]) != EQUAL) {
Fatal()
<< "Join of bottom and element is not equal to element:\nElement:\n\n"
<< elems[i] << "\nJoin:\n\n"
<< join;
}
}
{
// Identity: elem u elem = elem
auto join = elems[i];
lattice.join(join, elems[i]);
if (lattice.compare(join, elems[i]) != EQUAL) {
Fatal()
<< "Join of element with itself equal to element:\nElement:\n\n"
<< elems[i] << "\nJoin:\n\n"
<< join;
}
}
for (int j = 0; j < 3; ++j) {
// Commutativity: x u y = y u x
auto ij = elems[i];
bool ijModified = lattice.join(ij, elems[j]);
auto ji = elems[j];
bool jiModified = lattice.join(ji, elems[i]);
if (lattice.compare(ij, ji) != EQUAL) {
Fatal() << "Join is not commutative:\nFirst element:\n\n"
<< elems[i] << "\nSecond element:\n\n"
<< elems[j] << "\nJoin(first, second):\n\n"
<< ij << "\nJoin(second, first):\n\n"
<< ji;
}
// Identity: x < y implies x u y = y
if (relation[i][j] == LESS) {
if (lattice.compare(ij, elems[j]) != EQUAL) {
Fatal()
<< "Join is not equal to greater element:\nLesser element:\n\n"
<< elems[i] << "\nGreater element:\n\n"
<< elems[j] << "\nJoin:\n\n"
<< ij;
}
if (jiModified) {
Fatal()
<< "Join incorrectly reported modification:\nLesser element:\n\n"
<< elems[i] << "\nGreater element:\n\n"
<< elems[j];
}
if (!ijModified) {
Fatal()
<< "Join should have reported modification:\nLesser element:\n\n"
<< elems[i] << "\nGreater element:\n\n"
<< elems[j];
}
}
for (int k = 0; k < 3; ++k) {
// *Least* upper bound: x <= z && y <= z implies x u y <= z
if (relation[i][k] == LESS && relation[j][k] == LESS) {
auto IJtoK = lattice.compare(ij, elems[k]);
if (IJtoK != EQUAL && IJtoK != LESS) {
Fatal() << "Join is not least upper bound:\nFirst element:\n\n"
<< elems[i] << "\nSecond element:\n\n"
<< elems[j] << "\nJoin:\n\n"
<< ij << "\nOther upper bound:\n\n"
<< elems[k];
}
}
}
}
}
}
// Utility class which provides methods to check properties of the transfer
// function and lattice of an analysis.
template<Lattice L, TransferFunction TxFn> struct AnalysisChecker {
L& lattice;
TxFn& txfn;
std::string latticeName;
std::string txfnName;
uint64_t latticeElementSeed;
Name funcName;
AnalysisChecker(L& lattice,
TxFn& txfn,
std::string latticeName,
std::string txfnName,
uint64_t latticeElementSeed,
Name funcName)
: lattice(lattice), txfn(txfn), latticeName(latticeName),
txfnName(txfnName), latticeElementSeed(latticeElementSeed),
funcName(funcName) {}
void printFailureInfo(std::ostream& os) {
os << "Error for " << txfnName << " and " << latticeName
<< " at lattice element seed " << latticeElementSeed << " and function "
<< funcName << ".\n";
}
// Prints information about a particular test case consisting of a randomly
// generated function and triple of randomly generate lattice elements.
void printVerboseFunctionCase(std::ostream& os,
typename L::Element& x,
typename L::Element& y,
typename L::Element& z) {
os << "Using lattice element seed " << latticeElementSeed << "\nGenerated "
<< latticeName << " elements:\n";
x.print(os);
os << ",\n";
y.print(os);
os << ",\n";
z.print(os);
os << "\nfor " << funcName << " to test " << txfnName << ".\n\n";
}
public:
// Given two input - output lattice pairs of a transfer function, checks if
// the transfer function is monotonic. If this is violated, then we print out
// the CFG block input which caused the transfer function to exhibit
// non-monotonic behavior.
void checkMonotonicity(const BasicBlock& bb,
typename L::Element& first,
typename L::Element& second,
typename L::Element& firstResult,
typename L::Element& secondResult) {
LatticeComparison beforeCmp = lattice.compare(first, second);
LatticeComparison afterCmp = lattice.compare(firstResult, secondResult);
// Cases in which monotonicity is preserved.
if (beforeCmp == LatticeComparison::NO_RELATION) {
// If there is no relation in the first place, we can't expect anything.
return;
} else if (beforeCmp == LatticeComparison::LESS &&
(afterCmp == LatticeComparison::LESS ||
afterCmp == LatticeComparison::EQUAL)) {
// x < y and f(x) <= f(y)
return;
} else if (beforeCmp == LatticeComparison::GREATER &&
(afterCmp == LatticeComparison::GREATER ||
afterCmp == LatticeComparison::EQUAL)) {
// x > y and f(x) >= f(y)
return;
} else if (beforeCmp == LatticeComparison::EQUAL &&
afterCmp == LatticeComparison::EQUAL) {
// x = y and f(x) = f(y)
return;
}
std::stringstream ss;
printFailureInfo(ss);
ss << "Elements ";
first.print(ss);
ss << " -> ";
firstResult.print(ss);
ss << " and ";
second.print(ss);
ss << " -> ";
secondResult.print(ss);
ss << "\n show that the transfer function is not monotone when given the "
"input:\n";
bb.print(ss);
ss << "\n";
Fatal() << ss.str();
}
// Checks transfer function relevant properties given a CFG and three input
// states. It does this by applying the transfer function on each CFG block
// using the same three input states each time and then checking properties on
// the inputs and outputs.
void checkTransferFunction(CFG& cfg,
typename L::Element x,
typename L::Element y,
typename L::Element z) {
for (const auto& bb : cfg) {
// Apply transfer function on each lattice element.
auto xResult = x;
txfn.transfer(bb, xResult);
auto yResult = y;
txfn.transfer(bb, yResult);
auto zResult = z;
txfn.transfer(bb, zResult);
// Check monotonicity for every pair of transfer function outputs.
checkMonotonicity(bb, x, y, xResult, yResult);
checkMonotonicity(bb, x, z, xResult, zResult);
checkMonotonicity(bb, y, z, yResult, zResult);
}
}
};
// Struct to set up and check liveness analysis lattice and transfer function.
struct LivenessChecker {
LivenessTransferFunction txfn;
FiniteIntPowersetLattice lattice;
AnalysisChecker<FiniteIntPowersetLattice, LivenessTransferFunction> checker;
LivenessChecker(Function* func, uint64_t latticeElementSeed, Name funcName)
: lattice(func->getNumLocals()), checker(lattice,
txfn,
"FiniteIntPowersetLattice",
"LivenessTransferFunction",
latticeElementSeed,
funcName) {}
FiniteIntPowersetLattice::Element getRandomElement(Random& rand) {
FiniteIntPowersetLattice::Element result = lattice.getBottom();
// Uses rand to randomly select which members are to be included (i. e. flip
// bits in the bitvector).
for (size_t i = 0; i < lattice.getSetSize(); ++i) {
result.set(i, rand.oneIn(2));
}
return result;
}
// Runs all checks for liveness analysis.
void runChecks(CFG& cfg, Random& rand, bool verbose) {
FiniteIntPowersetLattice::Element x = getRandomElement(rand);
FiniteIntPowersetLattice::Element y = getRandomElement(rand);
FiniteIntPowersetLattice::Element z = getRandomElement(rand);
if (verbose) {
checker.printVerboseFunctionCase(std::cout, x, y, z);
}
checker.checkTransferFunction(cfg, x, y, z);
}
};
// Struct to set up and check reaching definitions analysis lattice and transfer
// function.
struct ReachingDefinitionsChecker {
LocalGraph::GetSetsMap getSetsMap;
LocalGraph::Locations locations;
ReachingDefinitionsTransferFunction txfn;
AnalysisChecker<FinitePowersetLattice<LocalSet*>,
ReachingDefinitionsTransferFunction>
checker;
ReachingDefinitionsChecker(Function* func,
uint64_t latticeElementSeed,
Name funcName)
: txfn(func, getSetsMap, locations),
checker(txfn.lattice,
txfn,
"FinitePowersetLattice<LocalSet*>",
"ReachingDefinitionsTransferFunction",
latticeElementSeed,
funcName) {}
FinitePowersetLattice<LocalSet*>::Element getRandomElement(Random& rand) {
FinitePowersetLattice<LocalSet*>::Element result = txfn.lattice.getBottom();
// Uses rand to randomly select which members are to be included (i. e. flip
// bits in the bitvector).
for (size_t i = 0; i < txfn.lattice.getSetSize(); ++i) {
result.set(i, rand.oneIn(2));
}
return result;
}
// Runs all checks for reaching definitions analysis.
void runChecks(CFG& cfg, Random& rand, bool verbose) {
FinitePowersetLattice<LocalSet*>::Element x = getRandomElement(rand);
FinitePowersetLattice<LocalSet*>::Element y = getRandomElement(rand);
FinitePowersetLattice<LocalSet*>::Element z = getRandomElement(rand);
if (verbose) {
checker.printVerboseFunctionCase(std::cout, x, y, z);
}
checker.checkTransferFunction(cfg, x, y, z);
}
};
// Uninteresting implementation details for RandomFullLattice and RandomLattice.
RandomFullLattice::Element RandomFullLattice::getBottom() const noexcept {
return std::visit(
[](const auto& l) -> Element { return ElementImpl{l.getBottom()}; },
(const FullLatticeVariant&)*lattice);
}
RandomFullLattice::Element RandomFullLattice::getTop() const noexcept {
return std::visit(
[](const auto& l) -> Element { return ElementImpl{l.getTop()}; },
(const FullLatticeVariant&)*lattice);
}
// TODO: use std::remove_cvref_t from C++20 instead.
template<typename T> using bare = std::remove_cv_t<std::remove_reference_t<T>>;
LatticeComparison RandomFullLattice::compare(const Element& a,
const Element& b) const noexcept {
return std::visit(
[](const auto& l,
const auto& elemA,
const auto& elemB) -> LatticeComparison {
using ElemT = typename bare<decltype(l)>::Element;
using A = bare<decltype(elemA)>;
using B = bare<decltype(elemB)>;
if constexpr (std::is_same_v<ElemT, A> && std::is_same_v<ElemT, B>) {
return l.compare(elemA, elemB);
}
WASM_UNREACHABLE("unexpected element types");
},
(const FullLatticeVariant&)*lattice,
(const FullLatticeElementVariant&)*a,
(const FullLatticeElementVariant&)*b);
}
bool RandomFullLattice::join(Element& a, const Element& b) const noexcept {
return std::visit(
[](const auto& l, auto& elemA, const auto& elemB) -> bool {
using ElemT = typename bare<decltype(l)>::Element;
using A = bare<decltype(elemA)>;
using B = bare<decltype(elemB)>;
if constexpr (std::is_same_v<ElemT, A> && std::is_same_v<ElemT, B>) {
return l.join(elemA, elemB);
}
WASM_UNREACHABLE("unexpected element types");
},
(const FullLatticeVariant&)*lattice,
(FullLatticeElementVariant&)*a,
(const FullLatticeElementVariant&)*b);
}
bool RandomFullLattice::meet(Element& a, const Element& b) const noexcept {
return std::visit(
[](const auto& l, auto& elemA, const auto& elemB) -> bool {
using ElemT = typename bare<decltype(l)>::Element;
using A = bare<decltype(elemA)>;
using B = bare<decltype(elemB)>;
if constexpr (std::is_same_v<ElemT, A> && std::is_same_v<ElemT, B>) {
return l.meet(elemA, elemB);
}
WASM_UNREACHABLE("unexpected element types");
},
(const FullLatticeVariant&)*lattice,
(FullLatticeElementVariant&)*a,
(const FullLatticeElementVariant&)*b);
}
RandomLattice::Element RandomLattice::getBottom() const noexcept {
return std::visit(
[](const auto& l) -> Element { return ElementImpl{l.getBottom()}; },
(const LatticeVariant&)*lattice);
}
LatticeComparison RandomLattice::compare(const Element& a,
const Element& b) const noexcept {
return std::visit(
[](const auto& l,
const auto& elemA,
const auto& elemB) -> LatticeComparison {
using ElemT = typename bare<decltype(l)>::Element;
using A = bare<decltype(elemA)>;
using B = bare<decltype(elemB)>;
if constexpr (std::is_same_v<ElemT, A> && std::is_same_v<ElemT, B>) {
return l.compare(elemA, elemB);
}
WASM_UNREACHABLE("unexpected element types");
},
(const LatticeVariant&)*lattice,
(const LatticeElementVariant&)*a,
(const LatticeElementVariant&)*b);
}
bool RandomLattice::join(Element& a, const Element& b) const noexcept {
return std::visit(
[](const auto& l, auto& elemA, const auto& elemB) -> bool {
using ElemT = typename bare<decltype(l)>::Element;
using A = bare<decltype(elemA)>;
using B = bare<decltype(elemB)>;
if constexpr (std::is_same_v<ElemT, A> && std::is_same_v<ElemT, B>) {
return l.join(elemA, elemB);
}
WASM_UNREACHABLE("unexpected element types");
},
(const LatticeVariant&)*lattice,
(LatticeElementVariant&)*a,
(const LatticeElementVariant&)*b);
}
// The main entry point.
struct Fuzzer {
bool verbose;
Fuzzer(bool verbose) : verbose(verbose) {}
// Helper function to run per-function tests. latticeElementSeed is used to
// generate three lattice elements randomly. It is also used to select which
// analysis is to be tested for the function.
void runOnFunction(Function* func, uint64_t latticeElementSeed) {
RandEngine getFuncRand(latticeElementSeed);
// Fewer bytes are needed to generate three random lattices.
std::vector<char> funcBytes(128);
for (size_t i = 0; i < funcBytes.size(); i += sizeof(uint64_t)) {
*(uint64_t*)(funcBytes.data() + i) = getFuncRand();
}
Random rand(std::move(funcBytes));
checkLatticeProperties(rand, verbose);
CFG cfg = CFG::fromFunction(func);
switch (rand.upTo(2)) {
case 0: {
LivenessChecker livenessChecker(func, latticeElementSeed, func->name);
livenessChecker.runChecks(cfg, rand, verbose);
break;
}
case 1: {
ReachingDefinitionsChecker reachingDefinitionsChecker(
func, latticeElementSeed, func->name);
reachingDefinitionsChecker.runChecks(cfg, rand, verbose);
break;
}
}
}
// Generates a module. The module is used as an input to fuzz transfer
// functions as well as randomly generated lattice element states. Lattice
// properties are also fuzzed from the randomly generated states.
void run(uint64_t seed,
uint64_t* latticeElementSeed = nullptr,
std::string* funcName = nullptr) {
RandEngine getRand(seed);
std::cout << "Running with seed " << seed << "\n";
// 4kb of random bytes should be enough for anyone!
std::vector<char> bytes(4096);
for (size_t i = 0; i < bytes.size(); i += sizeof(uint64_t)) {
*(uint64_t*)(bytes.data() + i) = getRand();
}
Module testModule;
TranslateToFuzzReader reader(testModule, std::move(bytes));
reader.build();
if (verbose) {
std::cout << "Generated test module: \n";
std::cout << testModule;
std::cout << "\n";
}
// If a specific function and lattice element seed is specified, only run
// that.
if (latticeElementSeed && funcName) {
runOnFunction(testModule.getFunction(*funcName), *latticeElementSeed);
return;
}
ModuleUtils::iterDefinedFunctions(testModule, [&](Function* func) {
uint64_t funcSeed = getRand();
runOnFunction(func, funcSeed);
});
}
};
} // namespace wasm
int main(int argc, const char* argv[]) {
using namespace wasm;
const std::string WasmFuzzTypesOption = "wasm-fuzz-lattices options";
Options options("wasm-fuzz-lattices",
"Fuzz lattices for reflexivity, transitivity, and "
"anti-symmetry, and tranfer functions for monotonicity.");
std::optional<uint64_t> seed;
options.add("--seed",
"",
"Run a single workload generated by the given seed",
WasmFuzzTypesOption,
Options::Arguments::One,
[&](Options*, const std::string& arg) {
seed = uint64_t(std::stoull(arg));
});
std::optional<uint64_t> latticeElementSeed;
options.add("--lattice-element-seed",
"",
"Seed which generated the lattice elements to be checked.",
WasmFuzzTypesOption,
Options::Arguments::One,
[&](Options*, const std::string& arg) {
latticeElementSeed = uint64_t(std::stoull(arg));
});
std::optional<std::string> functionName;
options.add(
"--function-name",
"",
"Name of the function in the module generated by --seed to be checked.",
WasmFuzzTypesOption,
Options::Arguments::One,
[&](Options*, const std::string& arg) { functionName = arg; });
bool verbose = false;
options.add("--verbose",
"-v",
"Print extra information",
WasmFuzzTypesOption,
Options::Arguments::Zero,
[&](Options*, const std::string& arg) { verbose = true; });
options.parse(argc, argv);
Fuzzer fuzzer{verbose};
if (seed) {
if (latticeElementSeed && functionName) {
// Run test a single function and lattice element seed.
fuzzer.run(*seed, &(*latticeElementSeed), &(*functionName));
} else {
// Run just a single workload with the given seed.
fuzzer.run(*seed);
}
} else {
// Continuously run workloads with new randomly generated seeds.
size_t i = 0;
RandEngine nextSeed(getSeed());
while (true) {
std::cout << "Iteration " << ++i << "\n";
fuzzer.run(nextSeed());
}
}
return 0;
}
|