1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
|
/*
* Copyright 2015 WebAssembly Community Group participants
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//
// Simple WebAssembly interpreter. This operates directly on the AST,
// for simplicity and clarity. A goal is for it to be possible for
// people to read this code and understand WebAssembly semantics.
//
#ifndef wasm_wasm_interpreter_h
#define wasm_wasm_interpreter_h
#include <limits.h>
#include <sstream>
#include "support/bits.h"
#include "wasm.h"
#ifdef WASM_INTERPRETER_DEBUG
#include "wasm-printing.h"
#endif
namespace wasm {
using namespace cashew;
// Utilities
IString WASM("wasm"),
RETURN_FLOW("*return:)*");
enum {
maxCallDepth = 250
};
// Stuff that flows around during executing expressions: a literal, or a change in control flow
class Flow {
public:
Flow() {}
Flow(Literal value) : value(value) {}
Flow(IString breakTo) : breakTo(breakTo) {}
Literal value;
IString breakTo; // if non-null, a break is going on
bool breaking() { return breakTo.is(); }
void clearIf(IString target) {
if (breakTo == target) {
breakTo.clear();
}
}
friend std::ostream& operator<<(std::ostream& o, Flow& flow) {
o << "(flow " << (flow.breakTo.is() ? flow.breakTo.str : "-") << " : " << flow.value << ')';
return o;
}
};
//
// An instance of a WebAssembly module, which can execute it via AST interpretation.
//
// To embed this interpreter, you need to provide an ExternalInterface instance
// (see below) which provides the embedding-specific details, that is, how to
// connect to the embedding implementation.
//
// To call into the interpreter, use callExport.
//
class ModuleInstance {
public:
typedef std::vector<Literal> LiteralList;
//
// You need to implement one of these to create a concrete interpreter. The
// ExternalInterface provides embedding-specific functionality like calling
// an imported function or accessing memory.
//
struct ExternalInterface {
virtual void init(Module& wasm) {}
virtual Literal callImport(Import* import, LiteralList& arguments) = 0;
virtual Literal load(Load* load, size_t addr) = 0;
virtual void store(Store* store, size_t addr, Literal value) = 0;
virtual void growMemory(size_t oldSize, size_t newSize) = 0;
virtual void trap(const char* why) = 0;
};
Module& wasm;
ModuleInstance(Module& wasm, ExternalInterface* externalInterface) : wasm(wasm), externalInterface(externalInterface) {
memorySize = wasm.memory.initial;
externalInterface->init(wasm);
if (wasm.start.is()) {
LiteralList arguments;
callFunction(wasm.start, arguments);
}
}
Literal callExport(Name name, LiteralList& arguments) {
Export *export_ = wasm.checkExport(name);
if (!export_) externalInterface->trap("callExport not found");
return callFunction(export_->value, arguments);
}
std::string printFunctionStack() {
std::string ret = "/== (binaryen interpreter stack trace)\n";
for (int i = int(functionStack.size()) - 1; i >= 0; i--) {
ret += std::string("|: ") + functionStack[i].str + "\n";
}
ret += std::string("\\==\n");
return ret;
}
private:
size_t callDepth = 0;
#ifdef WASM_INTERPRETER_DEBUG
int indent = 0;
#endif
// Function stack. We maintain this explicitly to allow printing of
// stack traces.
std::vector<Name> functionStack;
//
// Calls a function. This can be used both internally (calls from
// the interpreter to another method), or when you want to call into
// the module.
//
Literal callFunction(IString name, LiteralList& arguments) {
class FunctionScope {
public:
std::map<IString, Literal> locals;
Function* function;
FunctionScope(Function* function, LiteralList& arguments)
: function(function) {
if (function->params.size() != arguments.size()) {
std::cerr << "Function `" << function->name << "` expects "
<< function->params.size() << " parameters, got "
<< arguments.size() << " arguments." << std::endl;
abort();
}
for (size_t i = 0; i < function->getNumLocals(); i++) {
if (i < arguments.size()) {
assert(function->isParam(i));
if (function->params[i] != arguments[i].type) {
std::cerr << "Function `" << function->name << "` expects type "
<< printWasmType(function->params[i])
<< " for parameter " << i << ", got "
<< printWasmType(arguments[i].type) << "." << std::endl;
abort();
}
locals[function->getLocalName(i)] = arguments[i];
} else {
assert(function->isVar(i));
locals[function->getLocalName(i)].type = function->getLocalType(i);
}
}
}
};
#ifdef WASM_INTERPRETER_DEBUG
struct IndentHandler {
int& indent;
const char *name;
IndentHandler(int& indent, const char *name, Expression *expression) : indent(indent), name(name) {
doIndent(std::cout, indent);
std::cout << "visit " << name << " :\n";
indent++;
#if WASM_INTERPRETER_DEBUG == 2
doIndent(std::cout, indent);
std::cout << "\n" << expression << '\n';
indent++;
#endif
}
~IndentHandler() {
#if WASM_INTERPRETER_DEBUG == 2
indent--;
#endif
indent--;
doIndent(std::cout, indent);
std::cout << "exit " << name << '\n';
}
};
#define NOTE_ENTER(x) IndentHandler indentHandler(instance.indent, x, curr);
#define NOTE_NAME(p0) { doIndent(std::cout, instance.indent); std::cout << "name in " << indentHandler.name << '(' << Name(p0) << ")\n"; }
#define NOTE_EVAL1(p0) { doIndent(std::cout, instance.indent); std::cout << "eval in " << indentHandler.name << '(' << p0 << ")\n"; }
#define NOTE_EVAL2(p0, p1) { doIndent(std::cout, instance.indent); std::cout << "eval in " << indentHandler.name << '(' << p0 << ", " << p1 << ")\n"; }
#else
#define NOTE_ENTER(x)
#define NOTE_NAME(p0)
#define NOTE_EVAL1(p0)
#define NOTE_EVAL2(p0, p1)
#endif
// Execute a statement
class ExpressionRunner : public Visitor<ExpressionRunner, Flow> {
ModuleInstance& instance;
FunctionScope& scope;
public:
ExpressionRunner(ModuleInstance& instance, FunctionScope& scope) : instance(instance), scope(scope) {}
Flow visitBlock(Block *curr) {
NOTE_ENTER("Block");
// special-case Block, because Block nesting (in their first element) can be incredibly deep
std::vector<Block*> stack;
stack.push_back(curr);
while (curr->list.size() > 0 && curr->list[0]->is<Block>()) {
curr = curr->list[0]->cast<Block>();
stack.push_back(curr);
}
Flow flow;
auto* top = stack.back();
while (stack.size() > 0) {
curr = stack.back();
stack.pop_back();
if (flow.breaking()) {
flow.clearIf(curr->name);
continue;
}
auto& list = curr->list;
for (size_t i = 0; i < list.size(); i++) {
if (curr != top && i == 0) {
// one of the block recursions we already handled
continue;
}
flow = visit(list[i]);
if (flow.breaking()) {
flow.clearIf(curr->name);
break;
}
}
}
return flow;
}
Flow visitIf(If *curr) {
NOTE_ENTER("If");
Flow flow = visit(curr->condition);
if (flow.breaking()) return flow;
NOTE_EVAL1(flow.value);
if (flow.value.geti32()) {
Flow flow = visit(curr->ifTrue);
if (!flow.breaking() && !curr->ifFalse) flow.value = Literal(); // if_else returns a value, but if does not
return flow;
}
if (curr->ifFalse) return visit(curr->ifFalse);
return Flow();
}
Flow visitLoop(Loop *curr) {
NOTE_ENTER("Loop");
while (1) {
Flow flow = visit(curr->body);
if (flow.breaking()) {
if (flow.breakTo == curr->in) continue; // lol
flow.clearIf(curr->out);
}
return flow; // loop does not loop automatically, only continue achieves that
}
}
Flow visitBreak(Break *curr) {
NOTE_ENTER("Break");
bool condition = true;
Flow flow(curr->name);
if (curr->value) {
flow = visit(curr->value);
if (flow.breaking()) return flow;
flow.breakTo = curr->name;
}
if (curr->condition) {
Flow conditionFlow = visit(curr->condition);
if (conditionFlow.breaking()) return conditionFlow;
condition = conditionFlow.value.getInteger() != 0;
}
return condition ? flow : Flow();
}
Flow visitSwitch(Switch *curr) {
NOTE_ENTER("Switch");
Flow flow;
Literal value;
if (curr->value) {
flow = visit(curr->value);
if (flow.breaking()) return flow;
value = flow.value;
NOTE_EVAL1(value);
}
flow = visit(curr->condition);
if (flow.breaking()) return flow;
int64_t index = flow.value.getInteger();
Name target = curr->default_;
if (index >= 0 && (size_t)index < curr->targets.size()) {
target = curr->targets[(size_t)index];
}
flow.breakTo = target;
flow.value = value;
return flow;
}
Flow generateArguments(const ExpressionList& operands, LiteralList& arguments) {
arguments.reserve(operands.size());
for (auto expression : operands) {
Flow flow = visit(expression);
if (flow.breaking()) return flow;
arguments.push_back(flow.value);
}
return Flow();
}
Flow visitCall(Call *curr) {
NOTE_ENTER("Call");
NOTE_NAME(curr->target);
LiteralList arguments;
Flow flow = generateArguments(curr->operands, arguments);
if (flow.breaking()) return flow;
Flow ret = instance.callFunction(curr->target, arguments);
#ifdef WASM_INTERPRETER_DEBUG
std::cout << "(returned to " << scope.function->name << ")\n";
#endif
return ret;
}
Flow visitCallImport(CallImport *curr) {
NOTE_ENTER("CallImport");
LiteralList arguments;
Flow flow = generateArguments(curr->operands, arguments);
if (flow.breaking()) return flow;
return instance.externalInterface->callImport(instance.wasm.getImport(curr->target), arguments);
}
Flow visitCallIndirect(CallIndirect *curr) {
NOTE_ENTER("CallIndirect");
Flow target = visit(curr->target);
if (target.breaking()) return target;
size_t index = target.value.geti32();
if (index >= instance.wasm.table.names.size()) trap("callIndirect: overflow");
Name name = instance.wasm.table.names[index];
Function *func = instance.wasm.getFunction(name);
if (func->type.is() && func->type != curr->fullType->name) trap("callIndirect: bad type");
LiteralList arguments;
Flow flow = generateArguments(curr->operands, arguments);
if (flow.breaking()) return flow;
return instance.callFunction(name, arguments);
}
Flow visitGetLocal(GetLocal *curr) {
NOTE_ENTER("GetLocal");
IString name = scope.function->getLocalName(curr->index);
NOTE_NAME(name);
NOTE_EVAL1(scope.locals[name]);
return scope.locals[name];
}
Flow visitSetLocal(SetLocal *curr) {
NOTE_ENTER("SetLocal");
IString name = scope.function->getLocalName(curr->index);
Flow flow = visit(curr->value);
if (flow.breaking()) return flow;
NOTE_NAME(name);
NOTE_EVAL1(flow.value);
assert(flow.value.type == curr->type);
scope.locals[name] = flow.value;
return flow;
}
Flow visitLoad(Load *curr) {
NOTE_ENTER("Load");
Flow flow = visit(curr->ptr);
if (flow.breaking()) return flow;
return instance.externalInterface->load(curr, instance.getFinalAddress(curr, flow.value));
}
Flow visitStore(Store *curr) {
NOTE_ENTER("Store");
Flow ptr = visit(curr->ptr);
if (ptr.breaking()) return ptr;
Flow value = visit(curr->value);
if (value.breaking()) return value;
instance.externalInterface->store(curr, instance.getFinalAddress(curr, ptr.value), value.value);
return value;
}
Flow visitConst(Const *curr) {
NOTE_ENTER("Const");
NOTE_EVAL1(curr->value);
return Flow(curr->value); // heh
}
Flow visitUnary(Unary *curr) {
NOTE_ENTER("Unary");
Flow flow = visit(curr->value);
if (flow.breaking()) return flow;
Literal value = flow.value;
NOTE_EVAL1(value);
if (value.type == i32) {
switch (curr->op) {
case Clz: return value.countLeadingZeroes();
case Ctz: return value.countTrailingZeroes();
case Popcnt: return value.popCount();
case EqZ: return Literal(int32_t(value == Literal(int32_t(0))));
case ReinterpretInt: return value.castToF32();
case ExtendSInt32: return value.extendToSI64();
case ExtendUInt32: return value.extendToUI64();
case ConvertUInt32: return curr->type == f32 ? value.convertUToF32() : value.convertUToF64();
case ConvertSInt32: return curr->type == f32 ? value.convertSToF32() : value.convertSToF64();
default: abort();
}
}
if (value.type == i64) {
switch (curr->op) {
case Clz: return value.countLeadingZeroes();
case Ctz: return value.countTrailingZeroes();
case Popcnt: return value.popCount();
case EqZ: return Literal(int32_t(value == Literal(int64_t(0))));
case WrapInt64: return value.truncateToI32();
case ReinterpretInt: return value.castToF64();
case ConvertUInt64: return curr->type == f32 ? value.convertUToF32() : value.convertUToF64();
case ConvertSInt64: return curr->type == f32 ? value.convertSToF32() : value.convertSToF64();
default: abort();
}
}
if (value.type == f32) {
switch (curr->op) {
case Neg: return value.neg();
case Abs: return value.abs();
case Ceil: return value.ceil();
case Floor: return value.floor();
case Trunc: return value.trunc();
case Nearest: return value.nearbyint();
case Sqrt: return value.sqrt();
case TruncSFloat32: return truncSFloat(curr, value);
case TruncUFloat32: return truncUFloat(curr, value);
case ReinterpretFloat: return value.castToI32();
case PromoteFloat32: return value.extendToF64();
default: abort();
}
}
if (value.type == f64) {
switch (curr->op) {
case Neg: return value.neg();
case Abs: return value.abs();
case Ceil: return value.ceil();
case Floor: return value.floor();
case Trunc: return value.trunc();
case Nearest: return value.nearbyint();
case Sqrt: return value.sqrt();
case TruncSFloat64: return truncSFloat(curr, value);
case TruncUFloat64: return truncUFloat(curr, value);
case ReinterpretFloat: return value.castToI64();
case DemoteFloat64: return value.truncateToF32();
default: abort();
}
}
abort();
}
Flow visitBinary(Binary *curr) {
NOTE_ENTER("Binary");
Flow flow = visit(curr->left);
if (flow.breaking()) return flow;
Literal left = flow.value;
flow = visit(curr->right);
if (flow.breaking()) return flow;
Literal right = flow.value;
NOTE_EVAL2(left, right);
assert(isConcreteWasmType(curr->left->type) ? left.type == curr->left->type : true);
assert(isConcreteWasmType(curr->right->type) ? right.type == curr->right->type : true);
if (left.type == i32) {
switch (curr->op) {
case Add: return left.add(right);
case Sub: return left.sub(right);
case Mul: return left.mul(right);
case DivS: {
if (right.getInteger() == 0) trap("i32.div_s by 0");
if (left.getInteger() == std::numeric_limits<int32_t>::min() && right.getInteger() == -1) trap("i32.div_s overflow"); // signed division overflow
return left.divS(right);
}
case DivU: {
if (right.getInteger() == 0) trap("i32.div_u by 0");
return left.divU(right);
}
case RemS: {
if (right.getInteger() == 0) trap("i32.rem_s by 0");
if (left.getInteger() == std::numeric_limits<int32_t>::min() && right.getInteger() == -1) return Literal(int32_t(0));
return left.remS(right);
}
case RemU: {
if (right.getInteger() == 0) trap("i32.rem_u by 0");
return left.remU(right);
}
case And: return left.and_(right);
case Or: return left.or_(right);
case Xor: return left.xor_(right);
case Shl: return left.shl(right.and_(Literal(int32_t(31))));
case ShrU: return left.shrU(right.and_(Literal(int32_t(31))));
case ShrS: return left.shrS(right.and_(Literal(int32_t(31))));
case RotL: return left.rotL(right);
case RotR: return left.rotR(right);
case Eq: return left.eq(right);
case Ne: return left.ne(right);
case LtS: return left.ltS(right);
case LtU: return left.ltU(right);
case LeS: return left.leS(right);
case LeU: return left.leU(right);
case GtS: return left.gtS(right);
case GtU: return left.gtU(right);
case GeS: return left.geS(right);
case GeU: return left.geU(right);
default: abort();
}
} else if (left.type == i64) {
switch (curr->op) {
case Add: return left.add(right);
case Sub: return left.sub(right);
case Mul: return left.mul(right);
case DivS: {
if (right.getInteger() == 0) trap("i64.div_s by 0");
if (left.getInteger() == LLONG_MIN && right.getInteger() == -1LL) trap("i64.div_s overflow"); // signed division overflow
return left.divS(right);
}
case DivU: {
if (right.getInteger() == 0) trap("i64.div_u by 0");
return left.divU(right);
}
case RemS: {
if (right.getInteger() == 0) trap("i64.rem_s by 0");
if (left.getInteger() == LLONG_MIN && right.getInteger() == -1LL) return Literal(int64_t(0));
return left.remS(right);
}
case RemU: {
if (right.getInteger() == 0) trap("i64.rem_u by 0");
return left.remU(right);
}
case And: return left.and_(right);
case Or: return left.or_(right);
case Xor: return left.xor_(right);
case Shl: return left.shl(right.and_(Literal(int64_t(63))));
case ShrU: return left.shrU(right.and_(Literal(int64_t(63))));
case ShrS: return left.shrS(right.and_(Literal(int64_t(63))));
case RotL: return left.rotL(right);
case RotR: return left.rotR(right);
case Eq: return left.eq(right);
case Ne: return left.ne(right);
case LtS: return left.ltS(right);
case LtU: return left.ltU(right);
case LeS: return left.leS(right);
case LeU: return left.leU(right);
case GtS: return left.gtS(right);
case GtU: return left.gtU(right);
case GeS: return left.geS(right);
case GeU: return left.geU(right);
default: abort();
}
} else if (left.type == f32 || left.type == f64) {
switch (curr->op) {
case Add: return left.add(right);
case Sub: return left.sub(right);
case Mul: return left.mul(right);
case Div: return left.div(right);
case CopySign: return left.copysign(right);
case Min: return left.min(right);
case Max: return left.max(right);
case Eq: return left.eq(right);
case Ne: return left.ne(right);
case Lt: return left.lt(right);
case Le: return left.le(right);
case Gt: return left.gt(right);
case Ge: return left.ge(right);
default: abort();
}
}
abort();
}
Flow visitSelect(Select *curr) {
NOTE_ENTER("Select");
Flow ifTrue = visit(curr->ifTrue);
if (ifTrue.breaking()) return ifTrue;
Flow ifFalse = visit(curr->ifFalse);
if (ifFalse.breaking()) return ifFalse;
Flow condition = visit(curr->condition);
if (condition.breaking()) return condition;
NOTE_EVAL1(condition.value);
return condition.value.geti32() ? ifTrue : ifFalse; // ;-)
}
Flow visitReturn(Return *curr) {
NOTE_ENTER("Return");
Flow flow;
if (curr->value) {
flow = visit(curr->value);
if (flow.breaking()) return flow;
NOTE_EVAL1(flow.value);
}
flow.breakTo = RETURN_FLOW;
return flow;
}
Flow visitHost(Host *curr) {
NOTE_ENTER("Host");
switch (curr->op) {
case PageSize: return Literal((int32_t)Memory::kPageSize);
case CurrentMemory: return Literal(int32_t(instance.memorySize));
case GrowMemory: {
Flow flow = visit(curr->operands[0]);
if (flow.breaking()) return flow;
int32_t ret = instance.memorySize;
uint32_t delta = flow.value.geti32();
if (delta > uint32_t(-1) /Memory::kPageSize) trap("growMemory: delta relatively too big");
if (instance.memorySize >= uint32_t(-1) - delta) trap("growMemory: delta objectively too big");
uint32_t newSize = instance.memorySize + delta;
if (newSize > instance.wasm.memory.max) trap("growMemory: exceeds max");
instance.externalInterface->growMemory(instance.memorySize * Memory::kPageSize, newSize * Memory::kPageSize);
instance.memorySize = newSize;
return Literal(int32_t(ret));
}
case HasFeature: {
IString id = curr->nameOperand;
if (id == WASM) return Literal(1);
return Literal((int32_t)0);
}
default: abort();
}
}
Flow visitNop(Nop *curr) {
NOTE_ENTER("Nop");
return Flow();
}
Flow visitUnreachable(Unreachable *curr) {
NOTE_ENTER("Unreachable");
trap("unreachable");
return Flow();
}
Literal truncSFloat(Unary* curr, Literal value) {
double val = value.getFloat();
if (std::isnan(val)) trap("truncSFloat of nan");
if (curr->type == i32) {
if (val > (double)std::numeric_limits<int32_t>::max() || val < (double)std::numeric_limits<int32_t>::min()) trap("i32.truncSFloat overflow");
return Literal(int32_t(val));
} else {
int64_t converted = (int64_t)val;
if ((val >= 1 && converted <= 0) || val < (double)LLONG_MIN) trap("i64.truncSFloat overflow");
return Literal(converted);
}
}
Literal truncUFloat(Unary* curr, Literal value) {
double val = value.getFloat();
if (std::isnan(val)) trap("truncUFloat of nan");
if (curr->type == i32) {
if (val > (double)std::numeric_limits<uint32_t>::max() || val <= (double)-1) trap("i32.truncUFloat overflow");
return Literal(uint32_t(val));
} else {
uint64_t converted = (uint64_t)val;
if (converted < val - 1 || val <= (double)-1) trap("i64.truncUFloat overflow");
return Literal(converted);
}
}
void trap(const char* why) {
instance.externalInterface->trap(why);
}
};
if (callDepth > maxCallDepth) externalInterface->trap("stack limit");
callDepth++;
functionStack.push_back(name);
Function *function = wasm.getFunction(name);
assert(function);
FunctionScope scope(function, arguments);
#ifdef WASM_INTERPRETER_DEBUG
std::cout << "entering " << function->name << '\n';
#endif
Flow flow = ExpressionRunner(*this, scope).visit(function->body);
assert(!flow.breaking() || flow.breakTo == RETURN_FLOW); // cannot still be breaking, it means we missed our stop
Literal ret = flow.value;
if (function->result == none) ret = Literal();
assert(function->result == ret.type);
callDepth--;
assert(functionStack.back() == name);
functionStack.pop_back();
#ifdef WASM_INTERPRETER_DEBUG
std::cout << "exiting " << function->name << " with " << ret << '\n';
#endif
return ret;
}
size_t memorySize; // in pages
template <class LS>
size_t getFinalAddress(LS* curr, Literal ptr) {
auto trapIfGt = [this](uint64_t lhs, uint64_t rhs, const char* msg) {
if (lhs > rhs) {
std::stringstream ss;
ss << msg << ": " << lhs << " > " << rhs;
externalInterface->trap(ss.str().c_str());
}
};
uint32_t memorySizeBytes = memorySize * Memory::kPageSize;
uint64_t addr = ptr.type == i32 ? ptr.geti32() : ptr.geti64();
trapIfGt(curr->offset, memorySizeBytes, "offset > memory");
trapIfGt(addr, memorySizeBytes - curr->offset, "final > memory");
addr += curr->offset;
trapIfGt(curr->bytes, memorySizeBytes, "bytes > memory");
trapIfGt(addr, memorySizeBytes - curr->bytes, "highest > memory");
return addr;
}
ExternalInterface* externalInterface;
};
} // namespace wasm
#endif // wasm_wasm_interpreter_h
|