summaryrefslogtreecommitdiff
path: root/src/wasm-ir-builder.h
blob: c46f9f2ca7609caf18d7f1ed75159bcb9bd87139 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
/*
 * Copyright 2023 WebAssembly Community Group participants
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef wasm_wasm_ir_builder_h
#define wasm_wasm_ir_builder_h

#include <vector>

#include "ir/names.h"
#include "support/result.h"
#include "wasm-builder.h"
#include "wasm-traversal.h"
#include "wasm-type.h"
#include "wasm.h"

namespace wasm {

// A utility for constructing valid Binaryen IR from arbitrary valid sequences
// of WebAssembly instructions. The user is responsible for providing Expression
// nodes with all of their non-child fields already filled out, and IRBuilder is
// responsible for setting child fields and finalizing nodes.
//
// To use, call CHECK_ERR(visit(...)) or CHECK_ERR(makeXYZ(...)) on each
// expression in the sequence, then call build().
//
// Unlike `Builder`, `IRBuilder` requires referenced module-level items (e.g.
// globals, tables, functions, etc.) to already exist in the module.
class IRBuilder : public UnifiedExpressionVisitor<IRBuilder, Result<>> {
public:
  IRBuilder(Module& wasm) : wasm(wasm), builder(wasm) {}

  // Get the valid Binaryen IR expression representing the sequence of visited
  // instructions. The IRBuilder is reset and can be used with a fresh sequence
  // of instructions after this is called.
  Result<Expression*> build();

  // If the IRBuilder is empty, then it's ready to parse a new self-contained
  // sequence of instructions.
  [[nodiscard]] bool empty() { return scopeStack.empty(); }

  // Call visit() on an existing Expression with its non-child fields
  // initialized to initialize the child fields and refinalize it.
  Result<> visit(Expression*);

  // Like visit, but pushes the expression onto the stack as-is without popping
  // any children or refinalization.
  void push(Expression*);

  // Set the debug location to be attached to the next visited, created, or
  // pushed instruction.
  void setDebugLocation(const std::optional<Function::DebugLocation>&);

  // Give the builder a pointer to the counter tracking the current location in
  // the binary. If this pointer is non-null, the builder will record the binary
  // locations relative to the given code section offset for all instructions
  // and delimiters inside functions.
  void setBinaryLocation(size_t* binaryPos, size_t codeSectionOffset) {
    this->binaryPos = binaryPos;
    this->codeSectionOffset = codeSectionOffset;
  }

  // Set the function used to add scratch locals when constructing an isolated
  // sequence of IR.
  void setFunction(Function* func) { this->func = func; }

  // Handle the boundaries of control flow structures. Users may choose to use
  // the corresponding `makeXYZ` function below instead of `visitXYZStart`, but
  // either way must call `visitEnd` and friends at the appropriate times.
  Result<> visitFunctionStart(Function* func);
  Result<> visitBlockStart(Block* block, Type inputType = Type::none);
  Result<> visitIfStart(If* iff, Name label = {}, Type inputType = Type::none);
  Result<> visitElse();
  Result<> visitLoopStart(Loop* iff, Type inputType = Type::none);
  Result<>
  visitTryStart(Try* tryy, Name label = {}, Type inputType = Type::none);
  Result<> visitCatch(Name tag);
  Result<> visitCatchAll();
  Result<> visitDelegate(Index label);
  Result<> visitTryTableStart(TryTable* trytable,
                              Name label = {},
                              Type inputType = Type::none);
  Result<> visitEnd();

  // Used to visit break nodes when traversing a single block without its
  // context. The type indicates how many values the break carries to its
  // destination.
  Result<> visitBreakWithType(Break*, Type);
  // Used to visit switch nodes when traversing a single block without its
  // context. The type indicates how many values the switch carries to its
  // destination.
  Result<> visitSwitchWithType(Switch*, Type);

  // Binaryen IR uses names to refer to branch targets, but in general there may
  // be branches to constructs that do not yet have names, so in IRBuilder we
  // use indices to refer to branch targets instead, just as the binary format
  // does. This function converts a branch target name to the correct index.
  //
  // Labels in delegates need special handling because the indexing needs to be
  // relative to the try's enclosing scope rather than the try itself.
  Result<Index> getLabelIndex(Name label, bool inDelegate = false);

  // Instead of calling visit, call makeXYZ to have the IRBuilder allocate the
  // nodes. This is generally safer than calling `visit` because the function
  // signatures ensure that there are no missing fields.
  Result<> makeNop();
  Result<> makeBlock(Name label, Signature sig);
  Result<> makeIf(Name label, Signature sig);
  Result<> makeLoop(Name label, Signature sig);
  Result<> makeBreak(Index label, bool isConditional);
  Result<> makeSwitch(const std::vector<Index>& labels, Index defaultLabel);
  // Unlike Builder::makeCall, this assumes the function already exists.
  Result<> makeCall(Name func, bool isReturn);
  Result<> makeCallIndirect(Name table, HeapType type, bool isReturn);
  Result<> makeLocalGet(Index local);
  Result<> makeLocalSet(Index local);
  Result<> makeLocalTee(Index local);
  Result<> makeGlobalGet(Name global);
  Result<> makeGlobalSet(Name global);
  Result<> makeLoad(unsigned bytes,
                    bool signed_,
                    Address offset,
                    unsigned align,
                    Type type,
                    Name mem);
  Result<> makeStore(
    unsigned bytes, Address offset, unsigned align, Type type, Name mem);
  Result<> makeAtomicLoad(unsigned bytes, Address offset, Type type, Name mem);
  Result<> makeAtomicStore(unsigned bytes, Address offset, Type type, Name mem);
  Result<> makeAtomicRMW(
    AtomicRMWOp op, unsigned bytes, Address offset, Type type, Name mem);
  Result<>
  makeAtomicCmpxchg(unsigned bytes, Address offset, Type type, Name mem);
  Result<> makeAtomicWait(Type type, Address offset, Name mem);
  Result<> makeAtomicNotify(Address offset, Name mem);
  Result<> makeAtomicFence();
  Result<> makeSIMDExtract(SIMDExtractOp op, uint8_t lane);
  Result<> makeSIMDReplace(SIMDReplaceOp op, uint8_t lane);
  Result<> makeSIMDShuffle(const std::array<uint8_t, 16>& lanes);
  Result<> makeSIMDTernary(SIMDTernaryOp op);
  Result<> makeSIMDShift(SIMDShiftOp op);
  Result<>
  makeSIMDLoad(SIMDLoadOp op, Address offset, unsigned align, Name mem);
  Result<> makeSIMDLoadStoreLane(SIMDLoadStoreLaneOp op,
                                 Address offset,
                                 unsigned align,
                                 uint8_t lane,
                                 Name mem);
  Result<> makeMemoryInit(Name data, Name mem);
  Result<> makeDataDrop(Name data);
  Result<> makeMemoryCopy(Name destMem, Name srcMem);
  Result<> makeMemoryFill(Name mem);
  Result<> makeConst(Literal val);
  Result<> makeUnary(UnaryOp op);
  Result<> makeBinary(BinaryOp op);
  Result<> makeSelect(std::optional<Type> type = std::nullopt);
  Result<> makeDrop();
  Result<> makeReturn();
  Result<> makeMemorySize(Name mem);
  Result<> makeMemoryGrow(Name mem);
  Result<> makeUnreachable();
  Result<> makePop(Type type);
  Result<> makeRefNull(HeapType type);
  Result<> makeRefIsNull();
  Result<> makeRefFunc(Name func);
  Result<> makeRefEq();
  Result<> makeTableGet(Name table);
  Result<> makeTableSet(Name table);
  Result<> makeTableSize(Name table);
  Result<> makeTableGrow(Name table);
  Result<> makeTableFill(Name table);
  Result<> makeTableCopy(Name destTable, Name srcTable);
  Result<> makeTableInit(Name elem, Name table);
  Result<> makeTry(Name label, Signature sig);
  Result<> makeTryTable(Name label,
                        Signature sig,
                        const std::vector<Name>& tags,
                        const std::vector<Index>& labels,
                        const std::vector<bool>& isRefs);
  Result<> makeThrow(Name tag);
  Result<> makeRethrow(Index label);
  Result<> makeThrowRef();
  Result<> makeTupleMake(uint32_t arity);
  Result<> makeTupleExtract(uint32_t arity, uint32_t index);
  Result<> makeTupleDrop(uint32_t arity);
  Result<> makeRefI31(Shareability share);
  Result<> makeI31Get(bool signed_);
  Result<> makeCallRef(HeapType type, bool isReturn);
  Result<> makeRefTest(Type type);
  Result<> makeRefCast(Type type);
  Result<>
  makeBrOn(Index label, BrOnOp op, Type in = Type::none, Type out = Type::none);
  Result<> makeStructNew(HeapType type);
  Result<> makeStructNewDefault(HeapType type);
  Result<>
  makeStructGet(HeapType type, Index field, bool signed_, MemoryOrder order);
  Result<> makeStructSet(HeapType type, Index field, MemoryOrder order);
  Result<> makeArrayNew(HeapType type);
  Result<> makeArrayNewDefault(HeapType type);
  Result<> makeArrayNewData(HeapType type, Name data);
  Result<> makeArrayNewElem(HeapType type, Name elem);
  Result<> makeArrayNewFixed(HeapType type, uint32_t arity);
  Result<> makeArrayGet(HeapType type, bool signed_);
  Result<> makeArraySet(HeapType type);
  Result<> makeArrayLen();
  Result<> makeArrayCopy(HeapType destType, HeapType srcType);
  Result<> makeArrayFill(HeapType type);
  Result<> makeArrayInitData(HeapType type, Name data);
  Result<> makeArrayInitElem(HeapType type, Name elem);
  Result<> makeRefAs(RefAsOp op);
  Result<> makeStringNew(StringNewOp op);
  Result<> makeStringConst(Name string);
  Result<> makeStringMeasure(StringMeasureOp op);
  Result<> makeStringEncode(StringEncodeOp op);
  Result<> makeStringConcat();
  Result<> makeStringEq(StringEqOp op);
  Result<> makeStringWTF8Advance();
  Result<> makeStringWTF16Get();
  Result<> makeStringIterNext();
  Result<> makeStringSliceWTF();
  Result<> makeContBind(HeapType contTypeBefore, HeapType contTypeAfter);
  Result<> makeContNew(HeapType ct);
  Result<> makeResume(HeapType ct,
                      const std::vector<Name>& tags,
                      const std::vector<Index>& labels);
  Result<> makeSuspend(Name tag);

  // Private functions that must be public for technical reasons.
  Result<> visitExpression(Expression*);

  // Do not push pops onto the stack since we generate our own pops as necessary
  // when visiting the beginnings of try blocks.
  Result<> visitPop(Pop*) { return Ok{}; }

private:
  Module& wasm;
  Function* func = nullptr;
  Builder builder;

  // Used for setting DWARF expression locations.
  size_t* binaryPos = nullptr;
  size_t lastBinaryPos = 0;
  size_t codeSectionOffset = 0;

  // The location lacks debug info as it was marked as not having it.
  struct NoDebug : public std::monostate {};
  // The location lacks debug info, but was not marked as not having
  // it, and it can receive it from the parent or its previous sibling
  // (if it has one).
  struct CanReceiveDebug : public std::monostate {};
  using DebugVariant =
    std::variant<NoDebug, CanReceiveDebug, Function::DebugLocation>;

  DebugVariant debugLoc;

  struct ChildPopper;

  void applyDebugLoc(Expression* expr);

  // The context for a single block scope, including the instructions parsed
  // inside that scope so far and the ultimate result type we expect this block
  // to have.
  struct ScopeCtx {
    struct NoScope {};
    struct FuncScope {
      Function* func;
      // Used to determine whether we need to run a fixup after creating the
      // function.
      bool hasSyntheticBlock = false;
      bool hasPop = false;
    };
    struct BlockScope {
      Block* block;
    };
    struct IfScope {
      If* iff;
      Name originalLabel;
    };
    struct ElseScope {
      If* iff;
      Name originalLabel;
    };
    struct LoopScope {
      Loop* loop;
    };
    struct TryScope {
      Try* tryy;
      Name originalLabel;
    };
    struct CatchScope {
      Try* tryy;
      Name originalLabel;
    };
    struct CatchAllScope {
      Try* tryy;
      Name originalLabel;
    };
    struct TryTableScope {
      TryTable* trytable;
      Name originalLabel;
    };
    using Scope = std::variant<NoScope,
                               FuncScope,
                               BlockScope,
                               IfScope,
                               ElseScope,
                               LoopScope,
                               TryScope,
                               CatchScope,
                               CatchAllScope,
                               TryTableScope>;

    // The control flow structure we are building expressions for.
    Scope scope;

    // The branch label name for this scope. Always fresh, never shadowed.
    Name label;

    // For Try/Catch/CatchAll scopes, we need to separately track a label used
    // for branches, since the normal label is only used for delegates.
    Name branchLabel;

    bool labelUsed = false;

    // If the control flow scope has an input type, we need to lower it using a
    // scratch local because we cannot represent control flow input in the IR.
    Type inputType;
    Index inputLocal = -1;

    // The stack of instructions being built in this scope.
    std::vector<Expression*> exprStack;

    // Whether we have seen an unreachable instruction and are in
    // stack-polymorphic unreachable mode.
    bool unreachable = false;

    // The binary location of the start of the scope, used to set debug info.
    size_t startPos = 0;

    ScopeCtx() : scope(NoScope{}) {}
    ScopeCtx(Scope scope, Type inputType)
      : scope(scope), inputType(inputType) {}
    ScopeCtx(
      Scope scope, Name label, bool labelUsed, Type inputType, Index inputLocal)
      : scope(scope), label(label), labelUsed(labelUsed), inputType(inputType),
        inputLocal(inputLocal) {}
    ScopeCtx(Scope scope, Name label, bool labelUsed, Name branchLabel)
      : scope(scope), label(label), branchLabel(branchLabel),
        labelUsed(labelUsed) {}

    static ScopeCtx makeFunc(Function* func) {
      return ScopeCtx(FuncScope{func}, Type::none);
    }
    static ScopeCtx makeBlock(Block* block, Type inputType) {
      return ScopeCtx(BlockScope{block}, inputType);
    }
    static ScopeCtx makeIf(If* iff, Name originalLabel, Type inputType) {
      return ScopeCtx(IfScope{iff, originalLabel}, inputType);
    }
    static ScopeCtx makeElse(If* iff,
                             Name originalLabel,
                             Name label,
                             bool labelUsed,
                             Type inputType,
                             Index inputLocal) {
      return ScopeCtx(
        ElseScope{iff, originalLabel}, label, labelUsed, inputType, inputLocal);
    }
    static ScopeCtx makeLoop(Loop* loop, Type inputType) {
      return ScopeCtx(LoopScope{loop}, inputType);
    }
    static ScopeCtx makeTry(Try* tryy, Name originalLabel, Type inputType) {
      return ScopeCtx(TryScope{tryy, originalLabel}, inputType);
    }
    static ScopeCtx makeCatch(Try* tryy,
                              Name originalLabel,
                              Name label,
                              bool labelUsed,
                              Name branchLabel) {
      return ScopeCtx(
        CatchScope{tryy, originalLabel}, label, labelUsed, branchLabel);
    }
    static ScopeCtx makeCatchAll(Try* tryy,
                                 Name originalLabel,
                                 Name label,
                                 bool labelUsed,
                                 Name branchLabel) {
      return ScopeCtx(
        CatchAllScope{tryy, originalLabel}, label, labelUsed, branchLabel);
    }
    static ScopeCtx
    makeTryTable(TryTable* trytable, Name originalLabel, Type inputType) {
      return ScopeCtx(TryTableScope{trytable, originalLabel}, inputType);
    }

    bool isNone() { return std::get_if<NoScope>(&scope); }
    Function* getFunction() {
      if (auto* funcScope = std::get_if<FuncScope>(&scope)) {
        return funcScope->func;
      }
      return nullptr;
    }
    void noteSyntheticBlock() {
      if (auto* funcScope = std::get_if<FuncScope>(&scope)) {
        funcScope->hasSyntheticBlock = true;
      }
    }
    void notePop() {
      if (auto* funcScope = std::get_if<FuncScope>(&scope)) {
        funcScope->hasPop = true;
      }
    }
    bool needsPopFixup() {
      // If the function has a synthetic block and it has a pop, then it's
      // possible that the pop is inside the synthetic block and we should run
      // the fixup. Determining more precisely that a pop is inside the
      // synthetic block when it is created would be complicated and expensive,
      // so we are conservative here.
      if (auto* funcScope = std::get_if<FuncScope>(&scope)) {
        return funcScope->hasSyntheticBlock && funcScope->hasPop;
      }
      return false;
    }
    Block* getBlock() {
      if (auto* blockScope = std::get_if<BlockScope>(&scope)) {
        return blockScope->block;
      }
      return nullptr;
    }
    If* getIf() {
      if (auto* ifScope = std::get_if<IfScope>(&scope)) {
        return ifScope->iff;
      }
      return nullptr;
    }
    If* getElse() {
      if (auto* elseScope = std::get_if<ElseScope>(&scope)) {
        return elseScope->iff;
      }
      return nullptr;
    }
    Loop* getLoop() {
      if (auto* loopScope = std::get_if<LoopScope>(&scope)) {
        return loopScope->loop;
      }
      return nullptr;
    }
    Try* getTry() {
      if (auto* tryScope = std::get_if<TryScope>(&scope)) {
        return tryScope->tryy;
      }
      return nullptr;
    }
    Try* getCatch() {
      if (auto* catchScope = std::get_if<CatchScope>(&scope)) {
        return catchScope->tryy;
      }
      return nullptr;
    }
    Try* getCatchAll() {
      if (auto* catchAllScope = std::get_if<CatchAllScope>(&scope)) {
        return catchAllScope->tryy;
      }
      return nullptr;
    }
    TryTable* getTryTable() {
      if (auto* tryTableScope = std::get_if<TryTableScope>(&scope)) {
        return tryTableScope->trytable;
      }
      return nullptr;
    }
    Type getResultType() {
      if (auto* func = getFunction()) {
        return func->type.getSignature().results;
      }
      if (auto* block = getBlock()) {
        return block->type;
      }
      if (auto* iff = getIf()) {
        return iff->type;
      }
      if (auto* iff = getElse()) {
        return iff->type;
      }
      if (auto* loop = getLoop()) {
        return loop->type;
      }
      if (auto* tryy = getTry()) {
        return tryy->type;
      }
      if (auto* tryy = getCatch()) {
        return tryy->type;
      }
      if (auto* tryy = getCatchAll()) {
        return tryy->type;
      }
      if (auto* trytable = getTryTable()) {
        return trytable->type;
      }
      WASM_UNREACHABLE("unexpected scope kind");
    }
    Name getOriginalLabel() {
      if (std::get_if<NoScope>(&scope) || getFunction()) {
        return Name{};
      }
      if (auto* block = getBlock()) {
        return block->name;
      }
      if (auto* ifScope = std::get_if<IfScope>(&scope)) {
        return ifScope->originalLabel;
      }
      if (auto* elseScope = std::get_if<ElseScope>(&scope)) {
        return elseScope->originalLabel;
      }
      if (auto* loop = getLoop()) {
        return loop->name;
      }
      if (auto* tryScope = std::get_if<TryScope>(&scope)) {
        return tryScope->originalLabel;
      }
      if (auto* catchScope = std::get_if<CatchScope>(&scope)) {
        return catchScope->originalLabel;
      }
      if (auto* catchAllScope = std::get_if<CatchAllScope>(&scope)) {
        return catchAllScope->originalLabel;
      }
      if (auto* tryTableScope = std::get_if<TryTableScope>(&scope)) {
        return tryTableScope->originalLabel;
      }
      WASM_UNREACHABLE("unexpected scope kind");
    }
    bool isDelimiter() { return getElse() || getCatch() || getCatchAll(); }
  };

  // The stack of block contexts currently being parsed.
  std::vector<ScopeCtx> scopeStack;

  // Map label names to stacks of label depths at which they appear. The
  // relative index of a label name is the current depth minus the top depth on
  // its stack.
  std::unordered_map<Name, std::vector<Index>> labelDepths;

  Name makeFresh(Name label, Index hint = 0) {
    return Names::getValidName(
      label,
      [&](Name candidate) {
        return labelDepths.insert({candidate, {}}).second;
      },
      hint,
      "");
  }

  Index blockHint = 0;
  Index labelHint = 0;

  Result<> pushScope(ScopeCtx&& scope) {
    if (auto label = scope.getOriginalLabel()) {
      // Assign a fresh label to the scope, if necessary.
      if (!scope.label) {
        scope.label = makeFresh(label);
      }
      // Record the original label to handle references to it correctly.
      labelDepths[label].push_back(scopeStack.size() + 1);
    }
    if (binaryPos) {
      scope.startPos = lastBinaryPos;
      lastBinaryPos = *binaryPos;
    }
    bool hasInput = scope.inputType != Type::none;
    Index inputLocal = scope.inputLocal;
    if (hasInput && !scope.isDelimiter()) {
      if (inputLocal == Index(-1)) {
        auto scratch = addScratchLocal(scope.inputType);
        CHECK_ERR(scratch);
        inputLocal = scope.inputLocal = *scratch;
      }
      CHECK_ERR(makeLocalSet(inputLocal));
    }
    scopeStack.emplace_back(std::move(scope));
    if (hasInput) {
      CHECK_ERR(makeLocalGet(inputLocal));
    }
    return Ok{};
  }

  ScopeCtx& getScope() {
    if (scopeStack.empty()) {
      // We are not in a block context, so push a dummy scope.
      scopeStack.push_back({});
    }
    return scopeStack.back();
  }

  Result<ScopeCtx*> getScope(Index label) {
    Index numLabels = scopeStack.size();
    if (!scopeStack.empty() && scopeStack[0].isNone()) {
      --numLabels;
    }
    if (label >= numLabels) {
      return Err{"label index out of bounds"};
    }
    return &scopeStack[scopeStack.size() - 1 - label];
  }

  // Collect the current scope into a single expression. If it has multiple
  // top-level expressions, this requires collecting them into a block. If we
  // are in a block context, we can collect them directly into the destination
  // `block`, but otherwise we will have to allocate a new block.
  Result<Expression*> finishScope(Block* block = nullptr);

  Result<Name> getLabelName(Index label, bool forDelegate = false);
  Result<Name> getDelegateLabelName(Index label) {
    return getLabelName(label, true);
  }
  Result<Index> addScratchLocal(Type);

  struct HoistedVal {
    // The index in the stack of the original value-producing expression.
    Index valIndex;
    // The local.get placed on the stack, if any.
    LocalGet* get;
  };

  // Find the last value-producing expression, if any, and hoist its value to
  // the top of the stack using a scratch local if necessary.
  MaybeResult<HoistedVal> hoistLastValue();
  // Transform the stack as necessary such that the original producer of the
  // hoisted value will be popped along with the final expression that produces
  // the value, if they are different. May only be called directly after
  // hoistLastValue(). `sizeHint` is the size of the type we ultimately want to
  // consume, so if the hoisted value has `sizeHint` elements, it is left intact
  // even if it is a tuple. Otherwise, hoisted tuple values will be broken into
  // pieces.
  Result<> packageHoistedValue(const HoistedVal&, size_t sizeHint = 1);

  Result<Type> getLabelType(Index label);
  Result<Type> getLabelType(Name labelName);

  void fixLoopWithInput(Loop* loop, Type inputType, Index scratch);

  void dump();
};

} // namespace wasm

#endif // wasm_wasm_ir_builder_h